文档库 最新最全的文档下载
当前位置:文档库 › 自动控制系统的数学模型

自动控制系统的数学模型

自动控制系统的数学模型
自动控制系统的数学模型

第二章自动控制系统的数学模型

教学目的:

(1)建立动态模拟的概念,能编写系统的微分方程。

(2)掌握传递函数的概念及求法。

(3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。

(4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。

(5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。

(6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力

教学要求:

(1)正确理解数学模型的特点;

(2)了解动态微分方程建立的一般步骤和方法;

(3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数;

(4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入

下的闭环传递函数、误差传递函数,能够熟练的掌握;

(5)掌握运用梅逊公式求闭环传递函数的方法;

(6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函

数的方法。

教学重点:

有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。

教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式

的余子式

k

教学方法:讲授

本章学时:10学时

主要内容:

2.0 引言

2.1 动态微分方程的建立

2.2 线性系统的传递函数

2.3 典型环节及其传递函数

2.4系统的结构图

2.5 信号流图及梅逊公式

2.0引言:

什么是数学模型?为什么要建立系统的数学模型?

1. 系统的数学模型:描述系统输入输出变量以及各变量之间关系的数学表达式。

1) 动态模型:描述系统处于暂态过程中个变量之间关系的表达式,他

一般是时间函数。如:微分方程,传递函数,状态方程等。

2) 静态模型:描述过程处于稳态时各变量之间的关系。一般不是时间

函数

2. 建立动态模型的方法

1) 机理分析法:用定律定理建立动态模型。

2) 实验法: 运用实验数据提供的信息,采用辨识方法建模。

3. 建立动态模型的意义:找出系统输入输出变量之间的相互关系,以便分析设计系统,使系统控制效果最优。

2.1动态微分方程的建立

无论什么系统,输入输出量在暂态过程中都遵循一定的规律,来反映该系统的特征。

为了使系统满足暂态性要求,必须对系统暂态过程进行分析,掌握其内在规律,数学模型可以描述这一规律。

一、编写系统或元件微分方程的步骤:

1. 根据实际情况,确定系统的输入输出变量。

2. 从系统输入端开始,按信号传递顺序,以此写出组成系统的各个元件的微分 方程(或运动方程)。

3. 消去中间变量,写出输入输出变量的微分方程。

二、举例

例1 R —L —C 电路

根据电路基本原理有:

??

?

?

?==++dt du c i u u L R c r c dt

di

i

r c c c u u dt du

Rc dt

u d Lc =++?22

例2 质量-弹簧-阻尼系统

由牛顿定律: ∑=ma F

22dt

y

d m dt dy f ky F =--

F ky dt dy

f dt

y d m =++?22

3) 电动机:

电路方程: a a a

a a r i R dt

di L E u +=- (1) 动力学方程: dt

d J

M M c Ω

=- (2) ???=Ω=(4) (3)

a d d a i k M k E

(4) →(2) 得:(5) d

c

d a k M dt d k J i +Ω=

(3)(5)→(1) 得:

)(2

2c d a

c a a r

d d a d a M k R dt dM R L u k dt d k J R dt d k J L --=Ω+Ω+Ω 整理并定义两个时间常数

m d

a

T k JR =2 机电时间常数

a a

a

T R L = 电磁时间常数 ∴ 电机方程

(........)122-=Ω+Ω+Ωr d m m a u k dt d T dt

d T T

如果忽略阻力矩 即0=c M ,方程右边只有电枢回路的控制量r u ,则电机方程是一典型二阶方程

如果忽略a T (0=a T )电机方程就是一阶的

r d

m

u k dt d T 1

=Ω+Ω

小结:本节通过讲授介绍了自动控制系统的数学模型,介绍了系统的动态以及静

态数学模型,描述了系统的动态微分方程,并通过几个典型实例给出了求自动控制系统动态微分方程的步骤。

2.2线性系统的传递函数

求解微分方程,可求出系统的输出响应,但如果方程阶次较高,则计算很繁,因此对系统的设计分析不便,所以应用传递函数将实数中的微分运算变成复数中的代数运算,可是问题分析大大简化.

1. 传递函数的定义:

传递函数:线性系统,在零初始条件下,输出信号的拉氏变换与输入拉氏变换之比,叫做系统的传递函数。

线性定常控制系统微分方程的一般表达式:

设线性定常系统由下述n 阶线性常微分方程描述:

)

()()()()

()()()(1111011110t r b t r dt d

b t r dt d b t r dt d b t

c a t c dt d

a t c dt

d a t c dt d a m m m m m m n n n n n n ++???++=++???++------

式中c(t)是系统输出量,r(t)是系统输入量,),,3,2,1(n i a i ???=和),,2,1(m j b j ???=是与系统结构和参数有关的常系数。

设r(t)和c(t)及其各阶系数在t=0是的值均为零,即零初始条件,则对上式中各项分别求拉氏变换,并令c(s)=L[c(t)],R(s)=L[r(t)],可得s 的代数方程为:

)(][)(][11101110s R a s b s b s b s C a s a s a s a m m m m n n n n ++???++=++???++---- 于是,由定义得系统传递函数为:

)()()()()(11101110s N s M a s a s a s a b s b s b s b s R s C s G n n n n m m m m =

++???++++???++==----

式中

m m m m b s b s b s b s M ++???++=--1110)( n n n n a s a s a s a s N ++???++=--1110)(

2. 关于传递函数的几点说明:

1)传递函数的概念只适应于线性定常系统。 2)G(s)虽然描述了输出与输入之间的关系,但它不提供任何该系统的物理结构。因为许多不同的物理系统具有完全相同的传递函数。

3)传递函数只与系统本身的特性参数有关,与系统的输入量无关。 4)传递函数不能反映系统非零初始条件下的运动规律。

5)传递函数分子多项式阶次(m )小于等于分母多项式的阶次(n )。 6)传递函数与微分方程之间的关系。

)

()

()(s R s C s G =

如果将dt

d

S ?

置换 微分方程传递函数?

7)脉冲响应(脉冲过渡函数)g(t)是系统在单位脉冲)(t δ输入时的输出响应。 因为 1)]([)(==t L s R δ

??-=-===--t

t d g t r d t g t r s R s C L s C L t c 0

11)()()()()]()([)]([)(τττττ

传递函数G(s)的拉氏反变换是脉冲响应g(t) 3.传递函数的求法:

图 2-6

输入量Xr=u ,

Xc=i 。列回路电压方程:

u=Ri+L

dt

di

(2—27) 即Xr(s)=RXc(s)+LSXc(s) (2-28)

经整理得:)()(s Xr s Xc =1

/11+s T R (2—29)

其中 T l =

R

L

,为电路的时间常数。

思考题:

)0()0()(][('2

22y sy s y s dt

y d L --=-,什么是零初始条件? 如何从该框图求得?与ψ之间的关系?

传递函数从微分方程?

2.3典型环节及其传递函数

任何系统都是由各环节构成,知道了各典型环节的传递函数就不难求出系统的传递函数,从而对系统进行分析。这些典型环节包括:比例环节、惯性环节、积分环节、微分环节、振荡环节和时滞环节。下面分别加以介绍:

1. 比例环节

K s G =)(

式中 K ——增益

特点: 输入输出量成比例,无失真和时间延迟。

实例:电子放大器,齿轮,电阻(电位器),感应式变送器等。 2. 惯性环节

1

1

)(+=TS s G

式中 T ——时间常数

特点: 含一个储能元件,对突变的输入其输出不能立即复现,输出无振荡。

实例:图2-4所示的RC 网络,直流伺服电动机的传递函数也包含这一环节。 3. 微分环节

理想微分 KS s G =)( 一阶微分 1)(+=S s G τ

二阶微分 12)(22++=S S s G ξττ

特点: 输出量正比输入量变化的速度,能预示输入信号的变化趋势。 实例: 测速发电机输出电压与输入角度间的传递函数即为微分环节。 4.积分环节

S

s G 1

)(=

特点: 输出量与输入量的积分成正比例,当输入消失,输出具有记忆功能。

实例: 电动机角速度与角度间的传递函数,模拟计算机中的积分器等。 5. 振荡环节

121

2)(2

2222++=++=TS S T S S s G n

n n ξωξωω 式中 ξ——阻尼比)10(<≤ξ n ω——无阻尼自然振荡频率 n

T ω1

=

特点:环节中有两个独立的储能元件,并可进行能量交换,其输出出现振荡。

实例:RLC 电路的输出与输入电压间的传递函数。

6. 纯时间延时环节 )()(τ-=t r t c

s

(

=

)

e

s

Gτ-

式中τ——延迟时间

特点:输出量能准确复现输入量,但须延迟一固定的时间间隔。

实例:管道压力、流量等物理量的控制,其数学模型就包含有延迟环节。

小结:通过本节的讲授使学生掌握了传递函数的基本概念及典型环节传递函数。

并了解了典型二阶环节各参数的物理意义。

2.4 系统的结构图

一、结构图的定义及其组成

1.结构图:是描述系统各组成元件之间信号传递关系的数学图形,它表示了系统的输入输出之间的关系。

2.结构图的组成:

(1)信号线:带箭头的直线,箭头表示信号传递方向。

(2)分支点(引出点):表示信号引出或测量的位置。

注意:同一位置引出的信号大小和性质完全一样。

(3)比较点:对两个以上信号加减运算。

(4) 方框:方框图内输入环节的传递函数。

3.动态结构图的绘制步骤:

(1)建立控制系统各元件的微分方程(传递函数)要标明输入输出量。 (2)对元件的微分方程进行拉氏变换,并作出各元件的结构图。 (3)按系统各变量的传递顺序,依次将各元件的结构图连接起来。

二、系统动态结构图的求法

例如图2-9是闭环调速系统

图2-9

(一)求各环节的传递函数和方框图

1. 比较环节和速度调节器的传递函数和方框图

s

c R R R R s u s I s f 000001222

)()(1++

=-,2)()(0101

0R s c s c s I I f +==--δ,s

c R s u s I c 111)

()(+

=

1

)

()(R s u s I r r =, )()()(s I s I s I f r c -= n

)11

)()((1)(011s

T s u s u s s k s u f r c

k +-+=ττ 式中 00410c R T = 为滤波常数 111c R =τ为时间常数

01

R R k c =

为比例系数 )(1s w 为速度调节器函数

)(2s w 为速度反馈滤波传递函数 方框图如

图2-10

2. 速度反馈传递函数

)()(s n k s u sp f = sp k 为速度反馈系数

图2-11

3. 电动机及功率放大器装置的传递函数 函数:s s s k s u s u s w ==)

()

()( s k 为功放电压放大系数

图2-12

电动机电框回路的微分方程:n c dt

d l i R u

e id

d

d d d ++=

n(S)

零初始条件下拉氏变换:)()]()([)

1()

()()(4s w s n c s u s T R s n c s u s I e d d d e d d -=+-=

)(4s w —电框回路传递函数

图2-13

电动机带负载时运动方程:dt

dn

GD c i c i m z m d 3752=-

拉氏变换: )()(375)()(2s Sn R c

T s Sn R c c R c GD s I s I d e m d e m d e z d ==-

)()]()([)]

()([)(s w s I s I S

T c R s I s I s n s z d m e d

z d -=-= (2-47) (二)系统动态结构图

图2-14

三、框图的等效变换

1.框图几种常见的连接方式 (1)环节串联连接的传递函数

图2-15

证明:)()()(11s x s w s x r =

)()()(112s x s w s x = )()()(233s x s w s x = 消去中间变量得几个环节串联的传递函数

)()()()(321s w s w s w s w = (2-50) 若有几个环节串联,则等效函数:

∏===n

i i n s w s w s w s w s w 121)()()......()()( (2-51)

(2)环节并联的传递函数

图2-16

证明:

)()()()]()()([)()()()()()()

()()()(321321321s x s w s x s w s w s w s w s x s x s w s x s w s x s x s x s x r r r r r c =++=++=++= (2-52)

)()()()()

()

(321s w s w s w s w s x s x r c ++==∴

(2-53)

若有几个环节并联:∑===n

i i n s w s w s w s w s w 1

21)()()......()()( (2-54)

(3)反馈连接的等效传递函数

图2-17

特点:将输出量返回系统输入形式闭环。有两个通道(正向通道 反馈通道)。 传递函数的推导:

)()()(1s E s w s x c = )()()(s x s x s E f r = )()()(2s x s w s x c f = )()()()(2s x s w s x s E c r = )]()()()[()(21s x s w s x s w s x c r c = )()()()()()(121s x s w s x s w s w s x r c c =± )

()(1)

()(211s w s w s w s w ±=∴传递函数为 (2-55)

2.框图的等效变换

(1)相加点从单元输入端移到输出端

变换后: )]

()()[()()()()()(21112113s x s x s w s w s x

s w s x s x +=+= (2)相加点从单元输出端移到输入端 图

2-19

变换前:)()()()(2113s x s x s w s x +=

变换后:

)()()()(

)()(1

)()(21112113

S X S W S X S W S X S W S X S X +=??????+=

(3)分支点从单元输入端移到输出端

图2-30

(4)分支点从单元输出端移到输入端

图2-31

(5)分支点及相加点可以互换

图2-32

四、几个基本概念及术语

图2-34 反馈控制系统方框图R(s)——给定输入

C(s)——输出

B(s)——主反馈量

E(s)——误差

(1) 前向通路传递函数 假设N(s)=0

打开反馈后,输出C(s)与R(s)之比。在图中等价于C(s)与误差之比E(s)。 打开反馈后,输出量拉氏与输入量拉氏之比。

)()()()

()

(21s G s G s G s E s C == (2) 反馈回路传递函数 (Feedforward Transfer Function )假设N(s)=0 主反馈信号B(s)与输出信号C(s)之比。

)()

()

(s H s C s B = (3) 开环传递函数 (Open-loop Transfer Function )假设N(s)=0 主反馈信号B(s)与误差信号E(s)之比。

(4)只有给定输入作用(N (S )=0)

)

()()(1)

()()(2121s H s G s G s G s G s G r +=

系统输出:)

()()(1)

()()()(2121s H s G s G s R s G s G s C r +=

(5)只有扰动作用 []0)(=s N

)

()()(1)

()(212s H s G s G s G s G n +=

)

()()(1)

()()(212s H s G s G s N s G s C n +=

系统总输出:

)]()()([)

()()(1)

()()()(1212s N s R s G s H s G s G s G s C s C s C n r ++=

+=

小结:通过本课学习使学生掌握电路或系统动态结构图的求法,并能应用各环节

的传递函数,求系统的动态结构图;掌握等效的概念及等效变换的基本原则,能够求出复杂结构图的传递函数。

2.5 信号流图及梅逊公式

一、信号流图

由系统的结构图可以求出系统的传递函数,但是系统很复杂时,结构图简化很繁,采用信号流图,不必对信号流图简化,应用统一公式,可求出系统的传递函数。

1.绘制方法:

(1)由代数方程绘制: 例: 描述系统的方程组为:

信号流图是由节点和支路组成的信号传递网络,节点表示系统的变量或是信号用“O ”表示,支路用有向线段表示。

该系统的信号流图:

图2-35

X 2=aX 1+bX 2+gX 5 X 3=cX 2

X 4=dX 1+lX 3+fX 4 X 5=X 1+hX

4

X 5

(2)由系统结构图绘制

图2-36

图2-37

2.信号流图使用术语

源点 ;汇点 ;混合节点 ;闭通路(回环);回路增益 ;前向通路;自回路 ;不接触回路。 讲法:结合信号流图讲述。

3.梅逊增益公式求传递函数

利用梅逊增益公式,不用对系统结构图变换,一点写出系统的传递函数。

∑=??==n K K K r c T X X T 11 (2-65)

X r ---系统输出量;X c ---系统的输出量;T----系统总传输;T k ---第K 条前

X c

向通路的传输;

n —从输入节点到输出节点的前向通路数;?---信号流图的特征式。

∑∑∑∑-++-+-=?m m L L L L )1(...1321 (2-66)

∑-1

L 信号流图中所有不同回环传输之和。

∑-2

L 信号流图中每两个互不接触回环的传输乘积之和。 ∑3

L

--信号流图中每三个互不接触回环的传输乘积之和。

∑-m

L

信号流图中每m 个互不接触回环的传输乘积之和。

-?k 第K 条前向通路特征式的余子式,是在中除去与第K 条前向通路相接触的各回环传输(即将其置零)。

例1:如图求系统总的传输。

图2—38

根据梅逊增益公式:T=∑=??n

k k k T 1

1

此系统有两条前向通路n=2,其传输1T =abcd,T 2

=fd;三个回环:

L a =be,L b =-abcdg,L c =-fdg 三个回环只有L a 和L b 互不接触

∑∑==∴0,32L L L L c a

∴系统的特征方程式 :∑∑+-=?211L L

=1-(L c a c b a L L L L +++)

=1-be+(abc+f-bef)dg

?1为除去(在?中)得T 1特征余子式11=?

2?在中?除去与T 2接触回环L c b L ,得特征余子式be -=?1

系统的传输为:T=∑=?+??

=??212211)(1

1k k k T T T

=

dg

bef abc f be be fd abcd )(1)

1(-++--+

例2:如图求系统传递函数

图2—39

信号流图

图2-40

系统前向通路:T1=W1W3W5,T2=W2W4W5

系统回环及传输: a ∠ =-W1W3W5H1 b ∠=-W2W4W5

X 2

X 2

数学建模 个人认识和心得体会

数学建模的体会思考 经过这段时间的学习,了解了更多的关于这门学科的知识,可以说就是见识了很多很多,作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。对了,就在这里,在这里,我瞧到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都就是用建模的思想,来解决实际问题,很神奇。 数学建模给了我很多的感触:它所教给我们的不单就是一些数学方面的知识,更多的其实就是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力与量化分析能力得到很好的锻炼与提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 数学模型主要就是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活与工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产与销售的最优方案……这些问题与建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往就是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被您把握,它就转化成了您自身的素质,不仅在您以后的学习工作中继续发挥作用,也为您的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不就是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习与查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不就是任何专业中都能涉猎得到的。它能极大地拓宽与丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习就是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来瞧,我们都就是直接受益者。就拿数学建模比赛写的论文来说。原本以为这就是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于就是,自己必须要充分利用图书馆与网络的作用,查阅各种有关资料,以尽量获得比较全面的知识与信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别就是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性与积极性。再次,数学建模也培养了我们的概括力与想象力,也就就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓住问题的本质方面,使问题尽可能简单化,这样才能解决问题。其实,在我们做论文之前,考虑到的因素有很多,如果把这一系列因数都考虑的话,将会花费更多的时间与精神。因此,在我们考虑一些因素并不就是本质问题的时候,我就将这些因数做了假设以及在模型的推广时才考虑。这就使模型更加合理与理想。数学建模还能增强我们的抽象能力以及想象力。对实际问题再进行“翻译”,即进行抽象,要用我们熟悉的数学语言、数学符号与数学公式将它们准确的表达出来。

数学建模感想

学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。 这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,

数学建模心得体会3篇_心得体会

数学建模心得体会3篇_心得体会 数学建模学习心得(2): 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。 2. 数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。 4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。 数学建模心得体会 一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的

数学模型心得

《数学模型》学习心得 在大三的上半学期我选的是数学建模这门课程,因为我从小就爱学数学。我的专业是艺术设计,但是我仍然对数学充满兴趣,在数学建模的课程中我学到了很多知识,知道数学建模其实就应用在我们的生活中,科学,艺术,生活都体现着它的魅力。 通过上数学建模这门课程和资料的查阅,我知道了学习数学模型的意义。说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。 我认为学习数学模型的意义有如下几点: 一、学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的。

二、学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。根据学习我总结了数学建模的基本步骤: 一、问题分析。 1、总体设计。将分析过程中的问题要点用文字记录下来;将 问题结构化。 2、合理分析、选取基本要素。 3、启发式的思维方法。首先应集思广益充分发挥集体的力量, 然后从各种角度分析考虑问题。 二、合理假设。 1、基本假设。变量、参数的定义,以及根据有关“规律”作出 的变量间相互关系的假定。 2、其他假设。暂忽略因素、限定系统边界、说明模型应用范围 以及局部进程中的二次假设等。 三、模型构造。 四、模型求解和检验。 我们这门课所学到的相关数学建模的一些类型大致为初等模型、简单的优化模型、数学规划模型、微分方程模型、稳定性模型、差分方程模型、离散模型、概率模型、统计回归模型等。其中所用到的方法大致为量纲分析方法、集合分析方法、线性规划方法、整体规划方法、非线性规划方法、微分方程方法、差分方程方法、差值与拟合

体会:数学建模的学习心得体会

数学建模的学习心得体会 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它

论文心得-数学建模优秀论文心得体会

论文心得-数学建模优秀论文心得体会.txt你妈生你的时候是不是把人给扔了把胎盘养大?别把虾米不当海鲜。别把虾米不当海鲜。阅读一篇论文对我主要有以下四个方面的启发与指导: (1)大致了解数学建模论文写作时应包含哪些内容 (2)每部分内容都应写些什么 (3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中 (4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误 所以,在下面的学习心得中将主要涉及以上四个方面的内容。 摘要: 简明扼要地指出了处理问题的方法途径并给出作答,起到了较好的总结全文,理清条理的作用。让读者对以下论述有一个总体印象,而且对于本题的答案用图表形式给出,清晰明了 问题重述:(略) 问题背景: 交待问题背景,说明处理此问题的意义和必要性。 优点:叙述详尽,条理清楚,论证充分 缺点:前两段过于冗长,可作适当删节 问题分析: 进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径 优点:条理比较清晰,论述符合逻辑,表达清楚 缺点:似乎不够详细,尤其是第三段有些过于概括。 模型的假设与约定: 共有8条比较合理的假设 优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。 缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS 作以说明。 符号说明及名词定义 优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。 缺点:有些地方没有标注量纲,比如A和B的量纲不明确。 模型建立与求解 6.1问题一: 对所给数据惊醒处理和统计,得出规律,找到联系。 优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。 6.2问题二: 6.2.1最短路的确定 为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径

数学建模集训个人总结

数学建模集训个人总结 数学,一直是我比较热衷的科目。数学建模也是数学的一种,但它却有别于数学。数学建模更贴近实际,是一门把数学知识同实际问题紧紧联系的学问,它可以让我们体会怎么样把数学理论与实际生活相结合。因此我便对数模有了浓厚的兴趣,并有志向在方面发展。参加数学建模竞赛是我的一个计划。在大学的第一个暑假,我很高兴参加了数学建模集训,这次集训让我充实了自己。 数学建模竞赛是本科生接触实际科学问题的第一步,是利用所学书本知识、广泛涉猎课外知识、利用数学和计算机工具、为某一具体问题建立抽象模型、给出求解方法并解决问题、最后撰写论文并给出客观评价的一个系统工程。数学建模就是利用数学知识对一些实际问题建立模型,但又不是纯数学的。它不仅要数学思维,还计算机编程能力、论文写作能力有一定的要求。其实更重要的是团队协作能力,这对我们以后工作、生活都有非常大的作用。 在这个炎热的暑假里,我们学校的老师、同学们都还留在学校奋战着。我们学校的数学建模集训分成了两个阶段。由本校毛老师和曹老师,姚老师还有总校的杜老师授课。时间为一个月。短暂的时间里,老师传授了我们很多数学的知识及相关软件运用,如图论,运筹学,优化论等知识,和matlab,lingo,spss等软件。虽然也只是短短的一个月,但在这短暂的时间里,老师教了我们很多建模和论文写作的精髓,这些让我受益匪浅,并对数学建模有了新的认识,更有了强大的动力和支持。 在这一个月的学习中,我最大的收获可能就是,我更深层次的了解了数学建模,了解了自己的不足,体会到团结合作的那种精神。同时在平时的课余时间里,我也结识了一些学习高手,结伴共战。初始时,对于大一的我,数学建模是神秘的,我觉得那是一件很高深的事情。从各种数学知识的积累,到各类软件的运用;从整体性思维,到对每一处细节的分析;数学建模这个词语,对每位新人,都是如此的玄妙。这个暑假我们几乎是在实验室里度过的,“痛并快乐着”,学到的不仅仅是实际的知识,更重要的是一种思维——分析,解决问题的一种思维。 数学建模让我在奋斗中领会了这样的一个道理“想象力比知识重要,因为知识是有限的,而想象力概括着世界的一切,推动着社会科技的进步,并且是知识的源泉。”在本次数学建模集训解决问题时,我觉得充分发挥想象力和联想能力,从而将一个问题看成另一个问题,才 能将问题比较容易地解决的。数学建模竞赛作为一种竞赛,它真的给了我们很多的锻炼机会。首先是敏锐的洞察力、丰富的想象力的培养。其次是创新能力真正得到了锻炼。创新能力在数学建模的过程中体现的淋漓尽致。它需要我们利用自己已有的知识和经验,在坚强的个性品质支持下,新颖而独特地提出问题、分析问题、解决问题,并由此产生有价值的新思想、新方法、新成果。而且让我们在应试教育摇篮中成长起来的大学生平生第一次感觉到了素质教育的魅力和美丽。建

高考中常用函数模型归纳及应用

高考中常用函数模型.... 归纳及应用 一. 常数函数y=a 判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。关于方程解的个数问题时常用。 例1.已知x ∈(0, π],关于方程2sin(x+ 3 π )=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[ 3,2] C.( 3,2] D.( 3,2) 解析;令y=2sin(x+3π ), y=a 画出函数y=2sin(x+3 π ),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点, 由图象知( 3,2),选D 二. 一次函数y=kx+b (k ≠0) 函数图象是一条直线,易画易分析性质变化。常用于数形结合解决问题,及利用“变元”或“换元”化归 为一次函数问题。有定义域限制时,要考虑区间的端点值。 例2.不等式2x 2 +1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( ) A .-2≤x ≤2 B. 4 31- ≤x ≤0 C.0≤x ≤ 47 1+ D. 4 7 1-≤x ≤ 4 1 3- 解析:不等式可化为m(x-1)- 2x 2 +1≥0 设f(m)= m(x-1)- 2x 2 +1 若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需? ? ?≥-≥0)2(0 )2(f f ,解之可得答案D 三. 二次函数y=ax 2 +bx+c (a ≠0) 二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。很多问题都可以化归和转化成二次函数问题。比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。 例3.(1).若关于x 的方程x 2 +ax+a 2 -1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2 +ax+a 2 -1由题意得f(0)= a 2 -1 <0,即-1<a <1即可。 一元二次方程的根分布问题可借助二次函数图象解决,通常考虑二次函数的开口方向,判别式对称轴与根的位置关系,端点函数值四个方面。也可借助韦达定理。

学习数学建模心得体会3篇.doc

学习数学建模心得体会3篇 数学建模已成为国际、国内数学教育中稳定的内容和热点之一。下面是为大家准备的学习数学建模心得体会,希望大家喜欢! 学习数学建模心得体会范文1自从大二下学期真正开了数学模型这一门课之后,我对数学认识又进一步加深。虽然我是学纯数学即数学与应用数学,但是在我的认知中,数学最多的是单纯地证明一些定理抑或是反复的计算一些步骤比较多的题进而求解。随着老师在课堂上一点一点的引导、介绍、讲解,我渐渐地发现数学真的是很万能啊(在我看来),任何实际问题只要运用数学建立模型都可以抽象成一个数学方面的问题,进而单纯的分析、计算、求解。这只是我大体的认识。 首先,通过数学模型这一门课我解开了数学模型的神秘面纱,与数学模型紧密相连的就是数学建模,简而言之来说数学建模就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数之间的关系的数学问题(或称一个数学模型),在借用计算机求解该数学问题,并解释,检验,评价所得的解,从而确定能否将其用于解决实际问题的多次循环,不断深化的过程。 以下是我学习数学模型的一些心得: 第一,数学模型是数学的一个分支,它还没有脱离数学,众所周

知数学是一门比较抽象的课程,主要需要和训练的还是逻辑思维。因此数学模型需要和训练的都基本是思维,但和纯数学区别的是数学模型只要抽象出数学问题的本质,进而建模,那之后不是非得自己一步步地演算、求解。 第二,数学模型最后的求解很多时候都不可避免地要用到计算机,比如像matlab,spss,linggo之类的数学软件。因此在学习过程中我们也得对这些软件有一定的了解和认识。这也就与平常的学习方式产生了区别,平常的数学方式因为其内容和讲授被限制在了平常的阶梯教室,但数学模型这一门课就必须通过自己的实践运用计算机来达到自己的目的。因此我们的学习方式就多了一项(通过计算机进一步了解数学模型的魅力)。 第三,因为数学模型是对现实问题的分析,因此老师在课堂上进行的授课通常会是老师引导、师生之间相互商量,因此课堂氛围一般都比较活泼,学习起来会相对的比较轻松。这样对学生的思维的开拓有很大的好处。因为我们在生活和学习的过程中都接触过很多问题的数学问题的模型,所以思考其整个过程及其影响因素就不会出现无从下手的感觉。相反的,在考虑问题的时候,我们更能提出自己的一些见解并能积极地与老师展开讨论。 第四,数学模型充分挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,它也培养了我们的概括力和想象力,也就是要一眼就能抓

高中物理中常用的三角函数数学模型强烈推荐!!!

高中物理中常用的三角 函数数学模型强烈推 荐!!! Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即(边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 2、由斜边求直角边 3、两直角边互求 (四)典例分析 经典例题1如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少 2所示。 θtan 1?=mg F 经典例题2如图3所示,质量为m ,挡 挡板和使球压紧斜面,重力的分解如图4所示。 二、三角函数求物理极值 因正弦函数和余弦函数都有最大值(为1 的基本形式,那么我们可以通过三角函数公式整理出正弦(或余弦)函数的基本形式,然 后在确定极值。现将两种三角函数求极值的常用模型归纳如下: 1.利用二倍角公式求极值 正弦函数二倍角公式θθθcos sin 22sin = 图3 图4

数学建模心得体会

浅谈学习《数学建模的实践与认识》课程的体会 院系:外国语学院班级:日语132 姓名:黄松学号:201321010483 内容提要 数学建模是利用数学方法解决实际问题的一种实践应用。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式来表达,建立起数学模型,然后运用先进的数学方法和计算机技术进行求解。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。 关键词 数学建模实践应用实际问题数学模型 一、数学建模在国内的兴起与发展 数学建模是在上世纪六七十年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过30多年的发展,现在,绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。 大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。 全国大学生数学建模竞赛已成为全国高校规模最大的基础性学科竞赛,创办于1992年,每年一届,目前也是世界上规模最大的数学建模竞赛。2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。 二、数学建模的过程与方法 数学建模是一种数学的思想方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。其过程主要包括以下六个阶段:。 1 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 2 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 3 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。 4 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 5 模型分析:对所得的结果进行数学上的分析。 6 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。 7 模型应用:应用方式因问题的性质和建模的目的而异。

数学建模心得体会

数学建模心得体会各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。 1. 团队精神: 团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),

很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。 2. 有影响力的leader: 在比赛中,leader 是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a 题,有人想做b 题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。 3. 合理的时间安排: 做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一

2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab 作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo 软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,

数学建模心得体会

经过一个学期数学建模的学习,学到了很多,收获也很多,老师们的精彩讲课,让我感受到了老师们的热情以及对学术的尊敬,也让我陶醉在数学建模这门深奥而又让人着迷于这门科学,在此,感谢老师的栽培和培育.接下来让我谈谈对数学建模的理解。 在我看来,数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并”解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型。 数学建模广泛涉猎课外知识、利用数学和计算机工具、为某一具体问题建立抽象模型、给出求解方法并解决问题、最后撰写论文并给出客观评价的一个系统工程。数学建模就是利用数学知识对一些实际问题建立模型,但又不是纯数学的。它不仅要数学思维,还要计算机编程能力,论文写作能力,其实更重要的是团队协作能力,这是对以后工作有非常大的帮助的,更甚是人生。 第一、 通过这学期学的题目来体现我对数学建模的理解,由于一个学期的笔记太多,现 在我就用一道题来表达一下数学建模的应用 例:工厂有两条生产线,分别生产M 和P 两种型号的产品,利润分别为200元/ 个和300元/个,生产能力分别为100和120,生产一个产品分别需1个和2个 劳动日,工厂每天能提供160个劳动日。假设原材料不受限制,如何安排生产计 划,利润最大。 设生产计划为生产x1个M和x2个P,数学模型为 ???????≥≥≤+≤≤+=. 02,01, 1602211202,1001..2 3001200max x x x x x x t s x x z 由此看出,数学建模就是运用数学实现模型化,运用数学理论,公式,定律,定理,函数等数学物理知识来实现,求得最我们想要的最大值或者最小值以及通过模型来实现趋势的预测。

数学建模学习心得体会

数学建模学习心得体会 【1】数学建模学习心得体会 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生 与选择的过程。它给学生再现了一种“微型科研”的过程。数学建 模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感 体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学 模型的构建意识与能力,才能指导和要求学生通过主动思维,自主 构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些 实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代 替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从 而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是 学生学习数学的重要方式。学生的数学学习活动应当是一个主动、 活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导 学生自主探索、合作交流,对学习过程、学习材料、学习发现主动 归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。 询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、 优劣,鼓励学生有创造性的想法和作法。 2.数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,

高考数学函数模型及其应用

重庆名校精华中学08届高考一轮复习教案函数模型及其应用 一.课标要求: 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义; 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二.命题走向 函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。 预测2007年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。 (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。 三.要点精讲 1.解决实际问题的解题过程 (1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量; (2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式; (3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解. 这些步骤用框图表示: 2 (1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域; (3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。 四.典例解析

学习数学建模心得体会2.doc

学习数学建模心得体会 2 随着科学技的速展,人越来越到数学科学的重要性:数学的思考方式具有根本的重要性,数学和构造知提供了方法,将它用于技能使科学家和工程生出系的、能复制的、且可以播的知??数学科学于争是必不可少的, 数学科学是一种关性的、普遍的、可行的技. 在当今高科技与算机技日新月异且日益普及的社会里,高新技的展离不开数学的支持,没有良好的数学素养已无法工程技的新与突破。因此,如何在数学教育的程中培养人的数学素养,人学会用数学的知与方法去理,得数学工作者的思考。大学生数学建模活及全国大学生数学建模正是在种形下开展并展起来的,其目的在于激励学生学数学 的极性,提高学生建立数学模型和运用算机技解决的合能力,拓学生的知面,培养造精神及合作意, 推大学数学教学体系、教学内容和教学方法的改革. 极富意的活,大学参加了全国大学生数学建模。了更好地、指此活,更多的学生投入此活并从中受益,学生根据与指的践,数学建模活的作用与施一些,以期起到深化数学教学改革、推程建的作用。方法,去近似刻画、建立相数学模型并加以解决的程。大学生数学建模的能力,而我国大学生数学建模。参加数学建模活的教与学生普遍反映,数学建模活既丰富了学生的外生活,又培养了学生各方面的能力,同也促了大学数学教学的改革。通数学建模活,教与学生数学的作用有了一步的。激学生学数学的趣。今大学工科数学教学普遍存在内容多、学少的情况,此很多教采取了牲用、偏重理解以完成教学度的方法,使学生数学的重要性不,影响了学生学数学的趣,很多学生入学段才感到数学的重要,但已晚。 数学建模活及的目是社会、和生践中适当化的,体了数学用的广泛性;学生参与数学建模及活,感受到了数学的生机与活力,感受到了自己各方面能力的促,从而激起他学数学的趣。培养学生多方面的能力,培养合用数学知及方法行分析、推理、算的能力。由于数学建模的程是反复用数学知与方法行分析、推理与算,以得出的最佳数学模型及模型最解的程,因而学生明感到自己一方面的能力在具体的建模程中得到了大提高 学数学建模也有一段了,在没学数学建模,我以程是跟几何形相关的,但在学了之后才完全理解了,通段的学使得我数学建模有了一个全新的,数学建模就是当人面各种,根据人的理解,完成模型的假,建立和确定求解的方法与途径,然后建立好方程,然后再与算机的件相合,最得到的最佳求解答案。

高中数学题型解法归纳《线性目标函数和综合函数》

【知识要点】 一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过建立变量之间的函数关系和对所得函数的研究,使问题得到解决. 数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法;数学模型则是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述. 数学模型来源于实际,它是对实际问题抽象概括加以数学描述后的产物,它又要回到实际中去检验,因此对实际问题有深刻的理解是运用数学模型方法的前提. 二、函数是描述客观世界变化规律的基本数学模型,不同的变化现象需要用不同的函数模型来描述,数学应用题的建模过程就是信息的获取、存储、处理、综合、输出的过程,熟悉一些基本的数学模型,有助于提高我们解决实际问题的能力. 三、线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案. 四、利用导数解决生活中的优化问题的一般步骤: (1)读题和审题,主要是读懂那些字母和数字的含义. (2)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系)(x f y =(注意确定函数的定义域); (3)求函数的导数)(/ x f ,解方程0)(/ =x f ; (4)如果函数的定义域是闭区间,可以比较函数在区间端点和使0)(/ =x f 的点的函数值的大小,最大(小)者为最大(小)值; 如果函数的定义域不是闭区间,0)(/ =x f 又只有一个解,则该函数就在此点取得函数的最大(小)值,但是要进行必要的单调性说明.

数学建模心得体会3篇

全文共计5099字 数学建模心得体会3篇 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域 1

相关文档
相关文档 最新文档