文档库 最新最全的文档下载
当前位置:文档库 › 饲料生产工艺设计参数标准

饲料生产工艺设计参数标准

饲料生产工艺设计参数标准
饲料生产工艺设计参数标准

饲料生产工艺参数标准一、

粉碎工艺

二、

混合时间及混合均匀度

三、

制粒工艺

四、粒径比

A、

φ≤2.0mm长度为直径的2.5-3.5倍

B、

2.0mm<φ≤

3.0mm长度为直径的2-3倍

C、

3.0mm<φ长度为直径的1.5-2.5倍

五、缝包工艺

A、

缝包线要平直,不得有跳线,线距袋口3-4厘米,缝包线长小于5厘米。B、

标签放袋子左侧,距袋口5厘米处,上边与袋口对齐。

C、

保证料名称、编织袋、标签三者一致。

六、环模规格、颗粒粒度及分级筛

注:生产小鱼破碎料时用成鱼料破碎,分级筛规格使用同小鸡料.

七、计量器具允许误差范围

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

冲压工艺及模具设计一

第一章概述 内容简介: 本章讲述冲压冲压模具设计的基础知识。涉及冲压和冲模概念、冲压工序和冲模分类;常见冲压设备及工作原理、选用原则;冲压成形基本原理和规律;冲压成形性能及常见冲压材料;模具材料种类;模具制造特点、模具零件加工方法及应用等。 章节内容: 1.1冲压的定义 1.2冲压工序分类 1.3冲压工艺的特点及其应用 1.4冲压变形的理论基础 1.5冲压用板料 1.6冲压设备简介 学习目的与要求: 1.掌握冲压和冲模概念、冲压工序和冲模分类; 2.认识常见冲压设备,掌握选用原则; 3.了解屈服准则、塑性变形时应力应变关系、体积不变条件、硬化规律、等冲压成形基本规律; 4.了解冲压成形性能与机械性能关系; 5.认识模具制造特点,掌握模具零件加工方法。 重点内容: 冲压成形基本概念、冲压设备及选用、冲压成形基本规律及应用、冲压成形性能与机械性能关系、常用模具零件加工方法及应用。 难点内容: 冲压成形基本规律、冲压成形性能与机械性能关系。

主要参考书: [1] 王同海.实用冲压设计技术.北京:机械工业出版社,2000 [2] 冯炳尧.模具设计与制造简明手册.上海:上海科学技术出版社,2000 复习思考题:<参考答案下载> 1-1什么是冲压加工? 1-2 冲压加工又何特点? 1-3冲压加工又哪几种类型? 1-4什么是分离工序? 1-5 什么是塑性变形工序? 1-6 我国冲压技术的发展方向是怎么样的? 1-7 常用的冲压设备有哪几种? 1-8 通用曲柄压力机的工作原理是怎么样的? 1-9 选用冲压设备的基本原则是什么? 1-10怎样根据冲压工艺来选择压力机的种类? 1-11怎样选择压力机规格大小? 1-12如何正确使用压力机? 1-13使用时如何正确地调整压力机? 1-14冲压材料常用的备料设备有哪些? 1-15剪板机由哪几部分组成? 1-16如何正确使用剪板机? 例题与解答: [1]冲压塑性变形辅助分析 [2]拉深变形中的变形趋向:注意变形过程、变形区与传力区、变形缺陷 电子教材 1.1 冲压的定义 冲压是利用冲模在冲压设备上对板料施加压力(或拉力),使其产生分离或变形,从而获得一定形状、尺寸和性能的制件的加工方法。冲压加工的对象一般为金属板料(或带料)、薄壁管、薄型材等,板厚方向的变形一般不侧重考虑,因此也称为板料冲压,

冲压件工艺过程设计的内容及步骤

第二章冲压件工艺过程设计的内容及步骤 不论冲压件的几何形状和尺寸大小如何,其生产过程一般都是从原材料剪切下料开始,经过各种冲压工序和其他必要的辅助工序(如退火,酸洗,表面处理等)加工出图纸所要求的零件。对于某些组合冲压件或精度要求较高的冲压件,还需要经过切削,焊接或铆接等加工,才能完成。冲压件工艺过程的制定和模具设计是冷冲压课程设计的主要内容。进行冲压设计就是根据已有的生产条件,综合考虑影响生产过程顺利进行的各方面因素,合理安排零件的生产工序,最优地选用,确定各工艺参数的大小和变化范围,设计模具,选用设备等,以使零件的整个生产过程达到优质,高产,低耗,安全的目的。 2.1 工艺过程设计的基本内容 冲压工艺规程是模具设计的依据,而良好的模具结构设计,又是实现工艺过程的可靠保证,若冲压工艺有改动,往往会造成模具的返工,甚至报废。冲制同样的零件,通常可以采用几种不同方法。工艺过程设计的中心就是依据技术上先进,经济上合理,生产上高效,使用上安全可靠的原则,使零件的生产在保证符合零件的各项技术要求的前提下,达到最佳的技术效果和经济效益。 冲压件工艺过程设计的主要内容和步骤是: 一. 分析零件图(冲压件图) 产品零件图是分析和制定冲压工艺方案的重要依据,设计冲压工艺过程要从分析产品的零件图人手。分析零件图包括技术和经济两个方面: 1. 冲压加工的经济性分析 冲压加工方法是一种先进的工艺方法,因其生产率高,材料利用率高,操作简单等一系列优点而广泛使用。由于模具费用高,生产批量的大小对冲压加工的经济性起着决定性作用,批量越大,冲压加工的单件成本就越低,批量小时,冲压加工的优越性就不明显,这时采用其他方法制作该零件可能有更好的经济效果。例如在零件上加工孔,批量小时采用钻孔比冲孔要经济;有些旋转体零件,采用旋压比拉深会有更好的经济效果。所以,要根据冲压件的生产纲领,分析产品成本,阐明采用冲压生产可以取得的经济效益。 2. 冲压件的工艺性分析 冲压件的工艺性是指该零件在冲压加工中的难易程度。在技术方面,主要分析该零件的形状特点,尺寸大小,精度要求和材料性能等因素是否符合冲压工艺的要求。良好的工艺性应保证材料消

冲压工艺

?冲模的架模、调模 架模的步骤: 架模前:①选择适合模具吨位的冲床,检查模具高度是否在冲床的允许范围内。 ②冲床上下台面要清理干净,不得有异物,模具下模座底面不得有杂物,要放平。 ③模具要放置于冲床台面的正中间。 ④冲床行程选择寸动。 架模中:①压模时要先升滑块,然后用寸动方式慢慢降到下死点。 ②有模柄之模具,必须将模柄对准模柄孔,至下死点,闭合先缩下模。 ③无模柄之模具,将模具放置于合适的位置,并注意有落料孔的模具千万不能堵住落料孔。 ④使用的垫块必须平整,并须检查其受力是否平衡,并注意不堵料以防止堵料而使模具受损。 ⑤可成型模先缩紧上模,然后放入所需冲制料厚的废料,使用滑块调整至合适的闭合高度,并空打二至三次,再锁紧下模。 ⑥V型的模具架时将上下模具滑块闭合锁模后,将滑块升高所冲料厚的尺寸。 架模后:①检查上下模有无锁紧。 ②检查上下模是否有异常现象。 ③工具到位,清理现场。 ?架模注意事项: ①首先选择适合模具的冲床,压模时先升滑块,且调试方式必须是寸动,已免因速度过快,损坏冲床的模具; ②叉车在往冲床台面叉模具时,人员要远离危险区; ③架模时上下模板要清理干净,不可有异物; ④有模柄之模具必须先退出冲床固定模柄螺丝,且模柄与模柄孔大小适当; ⑤当在搬动模具时,用力不要太小,特别是较小的模具已勉模具滑倒造成工伤事件; ⑥架设有落料孔之模具,一定要检查是否堵塞落料孔; ⑦如模具高度不够,需加垫块,所加垫块的高度必须一致而材质一样; ⑧对于特殊的模具要用特殊的方法去架,以免造成模具损坏,如“V”型之模具架模时,将上下模用滑块闭合锁模后,将滑块升高所冲料厚的尺寸; ⑨架模员在锁模时,所站立的方式必须是八字脚,且用力不要过猛,以免人员滑倒和用力过猛造成工伤事故发生。 ?模具调试的注意事项 ①试模先检查上下模有无锁紧,模具内有无异常,如有请立即改善再进行试模动作; ②试模前了解模具的功能,该工程它的工作内容是什么,要注意些什么问题; ③试模时必须用寸动方式慢慢把上模压至下死点,再调滑块所需高度; ④针对下料,冲孔的模具不要下得太深,把材料剪断孔冲穿即可以免模具损坏; ⑤针对模具内有字母,压印的模具,千万不能空打,需垫该产品一个产料厚进行调试,直到OK为准。 ⑥试模时产品正反方向不可放反,当一个产品正反都可以放入模具定位内,或你不知如何下手时,特别注意前一个工程和后面几个工程连贯观察研究,如还无法请找上级处理,千万不能轻易乱动; ⑦对于“V”型之模具,试模是特别小心注意,用滑块闭合将模具高度上升一个料厚; ⑧对于铆合调模时,模具同样不能下得太深,一律用滑块方法进行调模。 ?冲压作业中异常处理指南: ①毛边:原因:a.模具刃口,冲头损耗;b. 模具间隙过大;c. 模具跑单边;

冲压工艺设计样本

冲压工艺设计是针对具体的冲压零件, 首先从其生产批量、形状结构、尺寸精度、材料等方面入手, 进行冲压工艺性审查, 必要时提出修改意见; 然后根据 具体的生产条件, 并综合分析研究各方面的影响因素, 制定出技术经济性好的 冲压工艺方案。其设计流程如图8.1.1所示, 它主要包括冲压件的工艺分析和冲 压工艺方案制定两大方面的内容。 一般按以下步骤进行: 1.收集并分析有关设计的原始资料 冲压工艺设计的原始资料主要包括: 冲压件的产品图及技术条件; 原材 料的尺寸规格、性能及供应状况; 产品的生产批量; 工厂现有的冲压设备条件; 工厂现有的模具制造条件及技术水平; 其它技术资料等。 图8.1.1 冲压工艺设计流程 其中, 产品图是工艺设计最直接的原始依据; 其它技术资料是冲压模设计的参考资料; 而其余原始资料对确定冲压件的加工方法、制定冲压工艺方案和选择模具的结构类型均有着直接的影响。 2.产品零件的冲压工艺性分析与审查 冲压工艺性是指冲压件对冲压工艺的适应性, 即冲压件的结构形状、尺寸大小、精度要求及所用材料等方面是否符合冲压加工的工艺要求。一般说来, 工艺性良好的冲压件, 可保证材料消耗少, 工序数目少, 模具结构简单, 产品质量稳定, 成本低, 还能使技术准备工作和生产的组织管理做到经济合理。冲压工艺性分析的目的就是了解冲件加工的难易, 为制定冲压工艺方案奠定基础。 在产品零件冲压工艺性分析之前, 应先进行冲压生产经济性分析。因为模具成本较高, 约占冲压件总成本的10%~30%, 冲压加工的优越性主要体现在批量生产情

况下, 而生产量小时, 采用其它加工方法可能比冲压方法更经济。因此零件的生产批量是决定零件采用冲压加工是否较为经济合理的重要因素。 产品零件冲压工艺性分析以产品零件图为依据, 认真分析研究该零件的形状特点、尺寸大小及精度要求, 所用材料的冲压成形性能, 分析冲压生产产生各种质量问题的可能性。特别要注意零件的极限尺寸(如最小冲孔尺寸, 最小窄槽宽度, 最小孔间距和孔边距, 最小弯曲半 径, 最小拉深圆角半径等)、尺寸公差、设计基准及其它特殊要求。因为这些要素对所需的工序性质、数量、排列顺序的确定以及冲压定位方式, 模具结构形式与制造精度的选择均有显著影响。 经过上述的分析研究, 如果发现冲压件的工艺性不合理, 则应会同产品设计人员, 在不影响产品使用要求的前提下, 对冲压件形状、尺寸、精度要求乃至原材料的选用等进行适当的修改。 如图8.1.2所示零件的三个安装孔有精确的位置要求, 而外形是无关紧要的, 因此在对零件的外形稍加修改后能够将原来有废料排样A变为无废料排样B。结果, 在不影响零件精度的条件下, 材料利用率提高40%, 生产率提高一倍。 如图8.1.3a) 所示零件为两个弯曲件焊接而成, 在不影响使用条件下改为如图8.1.3b) 所示一个整体零件, 即减少了一个零件, 又使工艺过程变得简单, 还节约了原材料。 图8.1.2 冲裁件的形状改进图8.1.3 弯曲件的形状改进

(完整版)研发工艺设计规范

研发工艺设计规范 1.范围和简介 1.1 范围 本规范规定了研发设计中的相关工艺参数。 本规范适用于研发工艺设计 1.2简介 本规范从PCB外形,材料叠层,基准点,器件布局,走线,孔,阻焊,表面处理方式,丝印设计等多方面,从DFM角度定义了PCB的相关工艺设计参数。 2.引用规范性文件 下面是引用到的企业标准,以行业发布的最新标准为有效版本。 3 术语和定义 细间距器件:pitch≤0.65mm异型引脚器件以及pitch≤0.8mm的面阵列器件。 Stand off:器件安装在PCB板上后,本体底部与PCB表面的距离。 PCB表面处理方式缩写: 热风整平(HASL喷锡板):Hot Air Solder Leveling 化学镍金(ENIG):Electroless Nickel and Immersion Gold 有机可焊性保护涂层(OSP):Organic Solderability Preservatives 说明:本规范没有定义的术语和定义请参考《印刷板设计,制造与组装术语与定义》(IEC60194)4. 拼板和辅助边连接设计 4.1 V-CUT连接 [1]当板与板之间为直线连接,边缘平整且不影响器件安装的PCB可用此种连接。V-CUT为直通型,不能在中间转弯。 [2]V-CUT设计要求的PCB推荐的板厚≤3.0mm。 [3]对于需要机器自动分板的PCB,V-CUT线两面(TOP和BOTTOM面)要求各保留不小于 1mm的器件禁布区,以避免在自动分板时损坏器件。

图1 :V-CUT自动分板PCB禁布要求 同时还需要考虑自动分板机刀片的结构,如图2所示。在离板边禁布区5mm的范围内,不允许布局器件高度高于25mm的器件。 采用V-CUT设计时以上两条需要综合考虑,以条件苛刻者为准。保证在V-CUT的过程中不会损伤到元器件,且分板自如。 此时需考虑到V-CUT的边缘到线路(或PAD)边缘的安全距离“S”,以防止线路损伤或铜,一般要求S≥0.3mm。如图4所示。

AO工艺设计参数

污水处理A/O工艺设计参数 1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝 化脱氮,故两池的容积大小对总氮的去除率极为重要。A/O的容积比主要与该废 水的曝气分数有关。缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。 而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。后将A/O容积比按1:6改造,缺氧池运行平稳。 1.1、A/O除磷工艺的基本原理 A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。在厌氧、好氧交替条 件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过 量去除系统中的磷。其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚 合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。 厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用 水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。研究发现,厌 氧状态时间越长,对磷的释放越彻底。 好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷 酸盐吸收到细胞内并转变成聚磷贮存能量。好氧状态时间越长,对磷的吸收越充分。由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

冲压工艺与模具设计知识点总结

1,P1,冲压是通过模具对板材施加压力或拉力,使板材塑性成形,有时对板材施加剪切力而使板材分离,从而获得一定尺寸、形状和性能的一种零件加工方法。冲压工艺可以分成分离工序和成形工序两大类。(判断:表1和表2) 2,P18,硬化定义:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。N称为材料的硬化指数,是表明材料冷变形硬化性能的重要参数。硬化指数n大时,表现在冷变形过程中材料的变形抗力随变形的增加而迅速增大,材料的塑性变形稳定性较好,不易出现局部的集中变形和破坏,有利于提高伸长类变形的成形极限。P30,成形破裂:胀形(a破裂)和扩孔翻边破裂(B破裂)。3,P32(了解)硬化指数n值:材料在塑性变形时的硬化强度。N大,说明该材料的拉伸失稳点到来较晚。塑性应变比r值:r值反映了板材在板平面方向和板厚方向由于各向异性而引起应变能力不一致的情况,它反映了板材在板平面内承受拉力或压力时抵抗变薄或变厚的能力。 4,P45,冲裁过程的三个阶段:弹性变形阶段,塑性变形阶段,断裂分离阶段。 5,P48,断面的4个特征区:圆角带,光亮带,断裂带,毛刺。(简答)影响断面质量的因素:1,材料力学性能的影响。材料塑性好,材料被剪切的深度较大,所得断面光亮带所占的比例就大,圆角也大;反之则反。2,模具间隙的影

响。间隙过小时,最初形成的滞留裂纹,在凸模继续下压时,产生二次剪切,会在光亮带中部形成高而薄的毛刺;间隙过大时,使光亮带所占比列减小,材料发生较大的塌角,第二次拉裂使得断面的垂直度差,毛刺大而厚,难以去除,使冲裁件断面质量下降。3,模具刃口状态的影响。刃口越锋利,拉力越集中,毛刺越小;刃口磨损后,压缩力增大,毛刺增大。4,断面质量还与模具结构、冲裁件轮廓形状、刃口的摩擦条件等有关。 6,P50,降低冲裁力的方法:阶梯凸模冲裁(缺点:长凸模插入凹模较深,容易磨损,修磨刃口夜间麻烦),斜刃口冲裁,加热冲裁。 7,P52,F卸:从凸模上将零件或废料卸下来所需要得力。 F推:顺着冲裁方向将零件或废料从凹模腔推出的力。 F顶:逆着冲裁方向将零件或废料从凹模腔顶出的力。 设h为凹模孔口直臂的高度,t为材料厚度,则工件数:n=h|t。刚性卸料装置和下出料方式的冲裁模总压力:F总=F冲+F推 弹性和下出料方式的总冲压力:F总=F冲+F卸+F推 弹性和上出料方式的总冲压力:F总=F冲+F卸+F顶(选择)8,P53,冲裁间隙:冲裁模的凸模和凹模刃口之间的间隙。分双边(C)和单边(Z)两种。 间隙的影响:(1)对冲裁件质量的影响。间隙较大时,材料所受的拉伸作用增大,冲裁完毕后材料弹性恢复,冲裁件尺寸向实体

PCB工艺设计规范

PCB板设计规范 文件编号:QI-22-2006A 版本号:A/0 编写部门:工程部 编写:职位:日期: 审核:职位:日期: 批准:职位:日期: 目录

一、PCB版本号升级准则 (1) 二、PCB板材要求 (2) 三、PCB安规文字标注要求 (3) 四、PCB零件脚距、孔径及焊盘设计要求 (15) 五、热设计要 求 (16) 六、PCB基本布局要求 (18) 七、拼板规 则 (19) 八、测试点要 求 (20) 九、安规设计规 范 (22) 十、A/I工艺要 求 (24)

一、PCB版本号升级准则: 板设计需要有产品名称,版本号,设计日期及商标。 2.产品名称,需要通过标准化室拟定,如果是工厂的品牌,那么可以采用红光厂注册商标( )商标需要统一字符大小,或者同比例缩放字符。不能标注商标的,则可以简单字符冠名,即用红光汉语拼音几个首字母,例如,HG 或HGP冠于产品名称前。 3.版本的序列号,可以用以下标识REV0,0~9, 以及,,等,微小改动用.A、.B、.C 等区分。具体要求如下: ①如果PCB板中线条、元件器结构进行更换,一定要变更主序号,即从向 等跃迁。 ②如果仅仅极小改动,例如,部分焊盘大小;线条粗细、走向移动;插件孔 径,插件位置不变则主级次数可以不改,升级版只需在后一位数加上A、B、C和D,五次以上改动,直接升级进主位。 ③考虑国人的需要,常规用法,不使用序号。 ④如果改变控制IC,原来的IC引脚不通用,请改变型号或名称。 ⑤PCB版本定型,技术确认BOM单下发之后,工艺再改文件,请在原技术责 任工程师确认的版本号后加入字符(-G)。工艺部门多次改动也可参照技术部门数字序号命名,例如,G1,G2向上升级…等。 板日期,可以用以下方案标明。XX-YY-ZZ,或者,XX/YY/ZZ。 XX表示年,YY表示月,ZZ表示日。例如:11-08-08,也可以11-8-8,或者,11/8/8。PCB板设计一定要放日期标记。 二、PCB 板材要求 确定PCB 所选用的板材,板材类型见表1,若选用高TG 值的板材,应在文件中注明厚度公差。 注1:1、CEM-1: 纸芯环氧玻璃布复合覆铜箔板,保持了优异的介电性能、机械性能、和耐热性;且允许冲孔加工,其冲孔特性较玻璃环氧基材FR-4更优越,模具寿命更长;高温时翘曲变形很小。

污水处理中AO工艺的设计参数

A/O生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。污水进入厌氧池后,与回流污泥混合。活性污泥中的聚磷菌在这一过程中大量吸收污水中的BOD,并将污泥中的磷以正磷酸盐的形式释放到混合液中。混合液进入好氧池后,有机物被氧化分解,同时聚磷菌大量吸收混合液中的正磷酸盐到污泥中。由于聚磷菌在好氧条件下吸收的磷多于厌氧条件下释放的磷,因此污水经过“厌氧-好氧”的交替作用和二沉池的污泥分离达到除磷的目的。一般情况下,TP的去除率可达到85%以上。 A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶

冲压工艺与模具设计的内容及步骤

冲压工艺与模具设计的内容及步骤 冲压工艺与模具设计是进行冲压生产的重要技术准备工作。冲压工艺与模具设计应结合工厂的设备、人员等实际情况, 从零件的质量、生产效率、生产成本、劳动强度、环境的保护以及生产的安全性各个方面综合考虑,选择和设计出技术先进、经济上合理、使用安全可靠的工艺方案和模具结构, 以使冲压件的生产在保证达到设计图样上所提出的各项技术要求的基础上,尽可能降低冲压的工艺成本和保证安全生产。 一般来讲,设计的主要内容及步骤包括: 1?工艺设计 (1零件及其冲压工艺性分析 根据冲压件产品图,分析冲压件的形状特点、尺寸大小、精度要求、原材料尺寸规格和力学性能,并结合可供选用的冲压设备规格以及模具制造条件、生产批量等因素,分析零件的冲压工艺性。良好的冲压工艺性应保证材料消耗少、工序数目少、占用设备数量少、模具结构简单而寿命高、产品质量稳定、操作简单。(2 确定工艺方案,主要工艺参数计算在冲压工艺性分析的基础上,找出工艺与模具设计的特点与难点,根据实际情况提出各种可能的冲压工艺方案,内容包括工序性质、工序数目、工序顺序及组合方式等。有时同一 种冲压零件也可能存在多个可行的冲压工艺方案,通常每种方案各有优缺点, 应从产品质量、生产效率、设备占用情况、模具制造的难易程度和寿命高低、生产成本、操作方便与安全程度等方面进行综合分析、比较,确定出适合于现有生产条件的最佳方案。此外,了解零件的作用及使用要求对零件冲压工艺与模具设计是有帮助的 工艺参数指制定工艺方案所依据的数据,如各种成形系数(拉深系数、胀形系数等、零件展开尺寸以及冲裁力、成形力等。计算有两种情况 第一种是工艺参数可以计算得比较准确,如零件排样的材料利用率、冲裁压力中心、工件面积等;

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法 浙江旺能环保股份有限公司作者:周玉彩 摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。 关键词:参数、垃圾、焚烧、炉排、汽轮机组。 前言: 生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。 一、生活垃圾焚烧炉排炉工艺设计参数的计算 1、待处理生活垃圾的性质 1.1待处理生活垃圾主要组成成分 表1:待处理生活垃圾的性质 表2:待处理生活垃圾可燃物的元素分析(应用基)% 表3:要求设计主要参数 1.2 根据垃圾元素成分计算垃圾低位热值: LHV=81C+246H+26S-26O-6W (Kcal/Kg) =81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。 1.3根据垃圾元素成分计算垃圾高位热值: HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。 2、处理垃圾的规模及能力 焚烧炉3台: 每台炉日处理垃圾350t;

处理垃圾量: 1000t/24h=41.67(t/h); 炉系数:(8760-8000)/8000=0.095; 实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h); 全年处理量: 45.6*8000=36.5*104t; 故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。 3、设计参数计算: 3.1垃圾仓的设计和布置 已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3 求:垃圾的容积工程公式:V=a*T 式中: V----垃圾仓容积m3; a--- 容量系数,一般为 1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻 仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积; T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化; V=a*T=1.2*5*1000/0.35=17142.86(m3 )。 故:垃圾仓的容积设计取18000(m3)。 垃圾仓的深度为Hm Hm=L*D/V=18000/75.5*18.5=12.88(m)。 故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。 3.2焚烧炉的选择与计算 (1)焚烧炉的加料漏斗 焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。 垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。 料斗的容积V D V D=G/24*Kx/ρL 式中: V D---料斗的容积(m3); G--- 每台炉日处理垃圾的量,(t/h);

工艺设计信息全面数字化与标准化

工艺设计信息全面数字化与标准化作者:陈宗舜 1.工艺信息数字化的内涵 两化融合对设计信息全面数字化要求,一是要求工艺设计信息的优化,二是要求工艺设计信息必须为企业信息集成与建立数字化企业提供基础。本文主要就工艺设计信息必须为企业信息集成与建立数字化企业提供基础提出以下意见,供参考。在企业信息化调查中,了解到虽然目前企业使用CAPP进行工艺设计,有的还使用类似部门级PDM进行工艺文件、流程管理,由于没有考虑企业系统集成,CAPP输出工艺规程、文档的标准化与规范化程度很差,CAPP输出没有达到全面数字化要求,达不到企业系统集成的要求,如果要实现系统集成,原来存入计算机工艺规程、文档必须返工,造成极大时间、人力的浪费,成了企业信息集成与数字化的又一拦路虎,为此必须引起各企业的重视。为了使各企业完整了解工艺信息数字化的内涵及其在企业信息化中重要性,提出以下几点。 2.工艺信息数字化的由来 工艺信息数字化来源于CAPP技术的应用,CAPP技术应用于产品设计目前已是众所周知,CAPP系统输出人们看到的是计算机屏幕上的工艺规程及技术文件和用绘图仪、打印机输出常规的工艺规程、文件,其实这些屏幕上的工艺、图形、技术文件和输出常规的工艺规程、图纸、文件,存在计算机内部都是各种格式的数据,所以应用CAPP技术进行工艺规程设计,其设计过程和输出工艺规程、图形及技术文件以近入数字化范畴。 3.工艺设计信息数字化的发展 常规的CAPP技术已进入工艺信息数字化的范畴,对传统的产品设计要求或单独(非集成)CAPP系统,常规的CAPP技术已经能满足要求。由于市场经济的发展,企业竞争因素的变化,企业各方面都需要应用信息技术,因此出现了 CAD/CAPP/CAM等一系列CAX技术与MRP/MRP-II/ERP等一系列管理信息化技术。由于传统企业的产品开发、生产经营管理是按企业内部的分工由各部门分工进行的,互相之间以图纸、工艺、技术文件、计划、统计、报表、单据及各种通知、会议为手段组织企业生产经营。在开展“甩图纸”、“甩账本”示范工程后,由于CAD/CAPP/ERP都为孤岛,这种初级信息化解决不了传统企业的产品开发、生产经营管理数据信息的共享,系统不能集成运行,发挥不了企业信息化最佳效果。根据世界经济发展的经验,应用信息技术改造与提高传统企业是企业现代化的必由之路,为此制造企业要充分发挥信息技术的作用必须走系统集成的道路。按照系统集成的要求,常规的CAPP技术不能满足要求,因为常规CAPP的工艺规程、图纸、文件,存在计算机内部都是各种格式的数据,不需要输入到其它计算机系统中,其它系统也不会读取这些数据,这对单独(非集 成)CAPP系统已满足要求。但是在系统集成的要求下,CAPP系统的输出不能再是单一的纸质表格文件,还需要数字化的加工数据包括:加工顺序、加工机床、加工工装、加工内容以及材料数据、装配关系数据等等。因此单独(非集成)CAPP

工艺设计的基本原则和程序

工艺设计的基本原则和程序 一、工艺设计的基本原则 水泥厂工艺设计的基本原则可归纳如下: (1)根据计划任务书规定的产品品种、质量、产量要求进行设计。 计划任务书规定的产品产量往往有一定范围,设计产量在该范围之内或略超出该范围,都应认为是合适的;但如限于设备选型,设计达到的产量略低干该范围,则应提出报告,说明原因,取得上级同意后,按此继续设计。 对于产品品种,如果设计考虑认为计划任务书的规定在技术上和经济上有不适当之处,也应提出报告,阐明理由,建议调整,并取得上级的同意。例如,某大型水泥厂计划任务书要求生产少量特种水泥,设计单位经过论证,认为大型窑改变生产品种,在技术上和经济上均不合理,建议将少量特种水泥安排给某中小型水泥厂生产,经上级批准后,改变了要求的品种。 窑、磨等主机的产量,除了参考设备说明和经验公式计算以外,还应根据国内同类型主机的生产数据并参考国内外近似规格的主机产量进行标定。在工厂建成后的较短时期内,主机应能达到标定的产量;同时,标定的主机产量应符合优质、高产、低消耗和设备长期安全运转的要求,既要发挥设备能力,但又不能过分追求强化操作。 (2)选择技术先进、经济合理的工艺流程和设备。 工厂的工艺流程和主要设备确定以后,整个工厂设计可谓大局已定。工厂建成后,再想改变其工艺流程和主要设备,将是十分困难的。例如,要把湿法厂改为干法厂,固然困难;要把旧干法厂改为新型干法厂,也非易事。例如,为了利用窑尾废气余热来烘干原料,生料磨系统也得迁移,输送设备等也得重新建设,诸如此类的情况,在某些条件下就不一定可行。 在选择生产工艺流程和设备时,应尽量考虑节省能源,采用国内较成熟的先进经验和先进技术;

污水处理中AO工艺的设计参数

工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:5>4,理论消耗量为1.72 ⑤硝化段的负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05·d ⑥硝化段污泥负荷率:<0.185·d ⑦混合液浓度3000~4000() ⑧溶解氧:A段<0.2~0.5 O段>2~4 ⑨值:A段=6.5~7.5 O段=7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化14需氧4.57g,消耗碱度7.1g(以3计)。 反硝化反应还原13将放出2.6g氧,生成3.75g碱度(以3计) ⑿需氧量——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(2)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以应包括这三部分。 ’’4.6 a’─平均转化1的的需氧量2 b’─微生物(以计)自身氧化(代谢)所需氧量2·d。 上式也可变换为: ’·’或’’·

─所去除的量() ─氧的比耗速度,即每公斤活性污泥()平均每天的耗氧量2·d ─比需氧量,即去除1的需氧量2 由此可用以上两方程运用图解法求得a’ b’ —被硝化的氨量 4.6—13-N转化成3-所需的氧量(2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 (θ)(20)×1.02420 θ─实际温度 2.分压力对的影响(ρ压力修正系数) ρ=所在地区实际压力()/101325()=实际值/标准大气压下值 3.水深对的影响 2·(0.101321) ─曝气池中氧的平均饱和浓度() ─曝气设备装设深度()处绝对气压() 9.81×10-3H ─当地大气压力() 21·(1)/[79+21·(1)]?? ─扩散器的转移效率 ─空气离开池子时含氧百分浓度 综上所述,污水中氧的转移速率方程总修正为: α(20)(βρθ×1.024θ-20 {理论推出氧的转移速率α(β)} 在需氧确定之后,取一定安全系数得到实际需氧量

冲压车间工艺参数管理流程

1、目的: 本条例规定了冲压车间模具工艺参数设定、更改、优化过程中的职责、步骤以及其它相关内容。 2、编制和适用范围: 本文件由冲压车间模修工段负责编制,由车间高级经理批准,适用于冲压车间。 3、术语: 模具工艺参数:与模具相关的压机参数,如压机闭合高度、拉伸垫高度、压力、气源角度、传感器数量等。 4、责任: 模修工程师负责模具工艺参数的设定、更改等工作,最终由模修工段长审核。 5、规定: 5.1新模具上线工艺参数设定 新模具进厂后,上线进行试生产。试生产前,应参照附件一《新模具上线调试步骤》进行设定。 5.2模具工艺参数更改、优化 5.2.1模具在量产后,为了适应板料性能的波动,同时达到并超越客户要求,应持续对模具工艺参数进行改进、优化。更改时由模修工程师填写《模具参数更改申请单》,模修工程师与模修工段长共同签字确认,并更新《冲压车间模具参数工艺卡》。其中《冲压车间模具参数工艺卡》的更改,须由模具工程师提请,由模修工段长审核批准。 5.2.2在生产过程中,除模具工程师及其授权人外,任何人不得调整模具工艺参数,包括封闭高度、清洗机的使用、挤干辊压力、拉伸垫压力,气源角度、传感器数量、拉伸垫高度、行程等。如果需要临时调整以上参数,应由模具工程师或其授权人临时执行,确认并跟踪生产及零件状态。 5.2.3屏蔽操作 5.2.3.1 冲压车间可屏蔽的装置为模具传感器,传感器的选用每轮生产时由生产压机操作进行检查。 5.2.3.2 在生产过程中需要对传感器进行屏蔽时,由生产压机操作拉动模修工程师批准后临时执行,模具工程师在《冲压件质量检查记录单》中签字确认。屏蔽后模具工程师或其授权人需本轮次全程跟踪投料状态,生产记录在《临时更改记录单》。生产结束后必须对参数进行恢复。 5.2.3.3 线下需尽快对被屏蔽的传感器进行维修,维修状态记录WOR单进行存档。下轮生产前未完成

V型滤池工艺的介绍与设计参数

(1)过滤过程: 待滤水由进水总渠经进水阀和方孔后,溢过堰口再经侧孔进入被待滤水淹沿的V型槽,分别经槽底均匀的配水孔和V型槽堰进入滤池。被均质滤料滤层过滤的滤后水经长柄滤头流入底部空间,由方孔汇入气水分配管渠,在经管廊中的水封井、出水堰、清水渠流入清水池。 (2)反冲洗过程: 关闭进水阀,但有一部分进水仍从两侧常开的方孔流入滤池,由V型槽一侧流向排水渠一侧,形成表面扫洗。而后开启排水阀将池面水从排水槽中排出直至滤池水面与V型槽顶相平。反冲洗过程常采用“气冲→气水同时反冲→水冲”三步。 气冲打开进气阀,开启供气设备,空气经气水分配渠的上部小孔均匀进入滤池底部,由长柄滤头喷出,将滤料表面杂质擦洗下来并悬浮于水中,被表面扫洗水冲入排水槽。 气水同时反冲洗在气冲的同时启动冲洗水泵,打开冲洗水阀,反冲洗水也进入气水分配渠,气、水分别经小孔和方孔流入滤池底部配水区,经长柄滤头均匀进入滤池,滤料得到进一步冲洗,表扫仍继续进行。 停止气冲,单独水冲表扫仍继续,最后将水中杂质全部冲入排水槽。

V型滤池的工艺设计、施工安装和自动控制

滤池有多种型式,以石英砂作为滤料的普通快滤池使用历史悠久。在此基础上,人们从不同的工艺角度发展了其它型式的快滤池。V型滤池就是在此基础上由法国德利满公司在70年代发展起来的。V型滤池采用了较粗、较厚的均匀颗粒的石英砂滤层;采用了不使滤层膨胀的气、水同时反冲洗兼有待滤水的表面扫洗;采用了气垫分布空气和专用的长柄滤头进行气、水分配等工艺。它具有出水水质好、滤速高、运行周期长、反冲洗效果好、节能和便于自动化管理等特点。因此70年代已在欧洲大陆广泛使用。80年代后期,我国南京、西安、重庆等地开始引进使用。90年代以来,我国新建的大、中型净水厂差不多都采用了V型滤池这种滤水工艺,特别是广东省新建的净水厂几乎都采用了V型滤池。91年至94年我公司在沙口水厂(50万m3/d)的建设中,首次自行设计、施工安装了V型滤池。此后我们就开展了V型滤池的设计与安装这项工作。我们先后帮高明、中山小榄、中山东凤、顺德龙江、三水、广宁、汕头、惠州等兄弟自来水公司设计和安装了V 型滤池。在近十年来的V型滤池的设计、施工安装以及自动控制过程中,我们取得了一定的实践经验,有以下几点工作体会: 一、研究掌握V型滤池结构、工作原理、工艺特点 滤池是水厂净水工艺中的重要环节,而滤池过滤能力的再生,是滤池稳定高效运行的关键。若采用较好的反冲洗技术,使滤池经常处于最优条件下工作,不仅可以节水、节能,还能提高水质,增大滤层的截污能力,延长工作周期,提高产水量。而V型滤池过滤能力的再生,就采用了先进的气、水反冲洗兼表面扫洗这一技术。因此滤池的过滤周期比单纯水冲洗的滤池延长了75%左右,截污水量可提高118%,而反冲洗水的耗量比单纯水冲洗的滤池可减少40%以上。滤池在气冲洗时,由于用鼓风机将空气压入滤层,因而从以下几方面

冲压工艺课程设计说明书.doc

1.冲压工艺分析 1.1材料的特性 设计要求,零件图如图1-1所示。 该制件的材料为45#,用于制造 abcdefg ,具有较好的冲压性能。 生产批量:大批量 材 料:45# 材料厚度:t=2mm 图11-1 表1-1 牌号 力学性能 硬度HBS ≤ /b a MP σ /s a MP σ 5/(%)δ /(%)ψ 未经处理 10# 335 205 31 55 137 1.2零件结构 零件简单、对称,比较适合冲裁。 1.3尺寸精度分析 图1-1已部分标注公差,8±0.02和61。40未标注公差,按IT14选取。 1.4冲裁方案的确定 1.4.1 分析制件的工序 该制件由于外形已经给定,则仅需冲孔工艺即可。 1.4.2模具结构形式的确定 根据要求确定方案为对称式冲孔模具。 2.必要的尺寸设计 2.1排样的设计与计算 由于该制件为圆形,采用无废料的排样方法是不可能做到的;但能采用有废料和少废料的方法。 2.1.1确定搭边值

根据《冲压工艺与模具设计》表2-13,查得: 搭边a 和1a 数值(低碳钢),t=2mm 时,a =1.2mm, 1a =1.5mm 。 2.1.2确定条料的进距 进距A : A B a =+制 =61+1.2=62.2mm 宽度B : 0 010[2()]B D a b -?-?=++?+ = = mm 2.1.3材料利用率 材料利用率是冲压工艺中一个非常重要的经济技术指标。其计算可用一个进距内冲裁件的实际面积与毛坯面积的百分比表示: 1100%.s A B η=? (2-1) 式中 S 1── 一个进距内冲裁件的实际面积,单位mm 2; A ── 送料进距,单位mm ; B ── 条料宽度,单位mm 。 所以材料的利用率为:1 100%.s A B η=? =2.100%.R A B π? =asdfghjk ≈72% 2.1.4画出排样图 根据以上资料画出排样图,如图2-1所示: 图2-1 2.2冲裁总压力的计算 2.2.1 计算冲裁力 冲裁力为冲孔所产生, 11.. b F L t σ= =π×8×2×600≈30159.29N ≈30.160kN F 1总=41..b F L t σ==120.640KN

相关文档
相关文档 最新文档