文档库 最新最全的文档下载
当前位置:文档库 › 行列式的几种求法

行列式的几种求法

行列式的几种求法
行列式的几种求法

行列式的求法有多种,以下简单进行总结。 一、逆序定义法

行列式的逆序法定义如下:

1212121112121222(,,......,)12,,......,1

2(1)......n n n

n n j j j j j nj j j j n n nn

a a a a a a a a a a a a τ=

-∑

这里,12,,......,n j j j 为1,2,...,n 的任一排列,12(,,......,)n j j j τ为该排列的逆序数,求和是对所有的排列求的,因此,该和式一共有!n 项,每项都是n 个数相乘,并得计算逆序数,计算量巨大。因此,一般而言,逆序法定义具有理论上研究的意义,而比较少用于求行列式。但是,如果行列式的项中有大量的0,那么用逆序法计算可能会很简单。以下举例如下:

例1:求

11

22

nn

a a a

解答:

12121211

22

(,,......,)12,,......,(1)......n n n

j j j j j nj j j j nn

a a a a a a τ=

-∑

只当11j =,22j =,……,n j n =,其项才可能非零。因此,

11

22

(1,2,......,)01,12,2,1,12,2,1,12,2,(1)......(1)............n n n n n n n

nn

a a a a a a a a a a a a τ=-=-=

例2、求

1

2

n

d d d 。

解答:

1212121

2

(,,......,)12,,......,(1)......n n n

j j j j j nj j j j n

d d a a a d τ=

-∑

只当1j n =,21j n =-,……,1n j =,其项才可能非零。因此,

1

(1)2

(,1, (1)

2

1,2,1,112(1)

(1)

......n n n n n n n n n

d d a a a d d d d τ---=-=- 。

例3、求

1

2

1

n n

d d d d -

解答:1212121

2

(,,......,)12,,......,1

(1)......n n n

j j j j j nj j j j n n

d d a a a d d τ-=

-∑

只当12j =,23j =,……,1n j n -=,1n j =时,其项才能非零,于是

1

2

(2,3,4,......,1,,1)11,22,31,,11211

(1)......(1)......n n n n n n n n

n n

d d a a a a d d d d d d τ-----=-=-

二、按任意行或任意列展开

11121212221

1

1

21

1

(1)

(1)n n

n

n i j

ij ij

j j n n nn

n

n

i j

ij ij

i i a a a a a a M A a a a M A +==+===-==-=∑∑∑∑

其中,ij M 是原行列式划去第i 行和第j 列所成的行列式,称为i 行j 列位置上的余子式,而

(1)i j ij ij A M +=-则称为i 行j 列位置上的代数余子式。至于各个ij M 的计算,则继续按照此

递归定义计算下去。当然,必须说的是,如果单纯这样做,计算量也是相当之大的。不过,如果行列式中有大量零,可以考虑这种方法(没有零,就利用行列式性质弄出大量零)。以下举几个例子:

例4、438 951 276

解答:438

519195

951438423352853360 762627

276

=-+=?-?+?=

例5、3642 0157 3456 2175

解答:

3642

342362364

0157

135653467345

3456

275215217

2175

=?-+

342

563635

356342317)4321141

752527

275

=?-?+?=?(--?+?=-

362

623236

34625228125(6)14

463634

215

=?-+?=?-+?-=

364

353434

345641611413317

272735

217

=-?+?-?=-?+?-=-

这样,

3642

342362364

0157

1356534673451(41)5147(17)230 3456

275215217

2175

=?-+=?--?+?-=-

三、利用初等变换求行列式

利用初等变换求行列式是最常用的行列式求法。以下简单举几个例子:

例6、1111 1200 1030 1004

解答:

111111111111111112000111011101111(2)210300121001200121004011300220002------====?1?1?-=---------例7、

010001000

1

a b c a b c

解答:

2

222222220000000100100100100()010010010010001001

001

001

a b c a b c a b c a b c a a

a a a

b

c b b b b c c

c

c

------=

=

=

=-++

四、递归法求行列式

用递归法求行列式,必须寻找行列式的自相似结构。以下讲解几个例题: 例8、求解范德蒙行列式

1

2

3

2

22212

3

1

11112

31111n

n n n n n n n

x x x x D x x x x x x x x ----=

1

2

3

21

31

1

2

222

22

2

12

3

212

313

111

1112

1212

12

321231312131

12213311111111100

011

1100

()

()

(n n n n n n

n n n n n n n n n n n n n

n n x x x x x x x x x x D x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -------------==---------=--

1222

221331121311232

2223232131121312

222

3)

0()()()

11110

111()()......()0

01

11()()......()

()()......n n n n n n n n n n n n

n n n n n n

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x -------------=---=---=--

11

()n n x x D --利用上述递推公式,有

213111

21311324222

213113242243311()()......()()()......()()()......()......()()......()()()......()()......()......()(n n n n n n n n n n n D x x x x x x D x x x x x x x x x x x x D x x x x x x x x x x x x x x x x x x D ---=---=------==---------=

1)

j i i j n

x x ≤<≤-∏

例9、求解行列式

0111

1

1

n n

x x

x a a a a - 。

解答:记111

1

1

1

n n n x x D x a a a a +-=

,则

11

111

12

1

21211112011

11

1

11(1)111

(1)()..................n n n

n n n n n n n n n n n n n n n n n n

n x x x

x x x

D x x x

a a a a a a a a x

D a x D a x D a x a x D a x a x a x a a x a x +++---+---------=

=?

+-----=+--=+=++==++++=+++

五、其它方法

与线性代数的其它知识相结合,还有其它一些方法,日后细说。

几种特殊行列式的巧算

几种特殊行列式的巧算 摘要:在高等代数课程中,n阶行列式的计算问题非常重要,它是行列式理论 的重要组成部分。计算n阶行列式的一般方法有:按行(列)展开,化三角行列式法,降阶法等。对于这些解法,高等代数课本已做了详细介绍,本文重点探索关于三对角,爪型等具有一定特征的行列式的计算,跟几种具有特殊解法的行列式(如范德蒙行列式)计算,突出一个“巧”字,从而提高解题速度。 关键词:“三对角”行列式分离线性因子法“爪型”行列式范德蒙行列式等. 引言: n阶行列式

11121212221 2 n n n n nn a a a a a a a a a 是所有取自不同行、不同列的n 个元素的乘积1212n j j nj a a a 的代数和,其中12 n j j j 是一 个n 阶排列,每个项1212n j j nj a a a 前面带有正负号.当12n j j j 是偶排列时, 项1212n j j nj a a a 前面带有正号,当12 n j j j 是奇排列时,项12 12n j j nj a a a 前面带有负号.即 11 121212221 2 n n n n nn a a a a a a a a a = 121212 () 12() (1) .n n n j j j j j nj j j j a a a τ-∑ 这里 12 () n j j j ∑ 表示对所有的n 阶排行求和. 行列式的计算是高等代数的一个重要内容,同时也是在工程应用中具有很高价值的数学工具,本文针对行列式的几种特殊类型,给出了每一种类型特殊的计算方法,具体如下: 一 三对角行列式的计算 形如 b a b a b a b a b a b a b a b a D n +++++= 0000000000000的行列式称为“三对角”行列式.该 类行列式的计算方法有:猜想法, 递推法, 差分法.下面我们首先用猜想法来解一下这个行 列式. 当b a ≠时 b a b a b a b a b a b a b a b D b a D n n ++++-+=- 000000000000)(1 =21 )(---+n n abD D b a . 即有递推关系式21)(---+=n n n abD D b a D ,为了得到n D 的表达式,可先设b a ≠,采用

(完整word)行列式的计算技巧与方法总结,推荐文档

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 23222113 1211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 01504 321 - 解 =-6 015043 21601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ2211222112110 0= 下三角形行列式 nn n n a a a a a a Λ ΛΛΛΛΛΛ2122 21 110 00.2211nn a a a Λ= 对角行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ221121 222111000= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

,21 2222111211nn n n n n a a a a a a a a a D Λ Λ ΛΛΛΛΛ= 则 nn n n n n T a a a a a a a a a D Λ ΛΛΛΛΛΛ 212 22 12 12111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号. 推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即 .21 21 112112 1 21 112111kD a a a a a a a a a k a a a ka ka ka a a a D nn n n in i i n nn n n in i i n ===Λ ΛΛ Λ ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛΛΛ 第i 行(列)乘以k ,记为k i ?γ(或k C i ?). 推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如, nn n n in in i i i i n a a a c b c b c b a a a D Λ ΛΛΛΛΛ ΛΛΛΛΛ2 1 221111211+++=. 则 2121 21 11211212111211D D a a a c c c a a a a a a b b b a a a D nn n n in i i n nn n n in i i n +=+=Λ ΛΛ Λ ΛΛΛ ΛΛΛΛΛ ΛΛΛΛΛ ΛΛ Λ Λ Λ. 性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变. 注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +. 2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

几类特殊N阶行列式的计算概要

目录 1 引言 (2) 2 文献综述 (2) 2.1 国内研究现状 (2) 2.2 国内研究现状评价 (3) 2.3 提出问题 (3) 3 预备知识 (3) 3.1 N阶行列式的定义 (3) 3.2 行列式的性质 (4) 3.3 行列式的行(列)展开和拉普拉斯定理 (4) 3.3.1 行列式按一行(列)展开 (4) 3.3.2 拉普拉斯定理 (5) 4 几类特殊N阶行列式的计算 (5) 4.1 三角形行列式的计算 (6) 4.2 两条线型行列式的计算 (7) 4.3 箭形行列式的计算 (8) 4.4 三对角行列式的计算 (8) 4.5 Hessenberg型行列式的计算 (10) 4.6 行(列)和相等的行列式的计算 (11) 4.7 相邻行(列)元素差1的行列式的计算 (12) 4.8 范德蒙型行列式的计算 (13) 5 结论 (15) 5.1 主要发现 (15) 5.2 启示 (15) 5.3 局限性 (15) 5.4 努力方向 (15) 参考文献 (16)

1 引言 行列式是代数学中的一个重要内容,在数学理论上有十分重要的地位.早在17世纪和18世纪初,行列式就在解线性方程组中出现.1772年法国数学家范德蒙(1735-1796)首先把行列式作为专门理论独立于线性方程之外研究.到了19世纪,是行列式理论形成和发展的重要时期,19世纪中叶出现了行列式的大量定理.因此,到19世纪末行列式基本面貌已经勾画清楚. 行列式的计算是高等代数的重要内容之一,也是理工科线性代数的重要内容之一,同时也是学习中的一个难点.在数学和现实中有着广泛的应用,懂得如何计算行列式尤为重要.对于阶数较低的行列式,一般可直接利用行列式的定义和性质计算出结果.对于一般的N阶行列式,特别是当N较大时,直接用定义计算行列式往往是困难和繁琐的,因此研究行列式的计算方法则显得十分必要.通常需灵活运用一些计算技巧和方法,使计算大大简化,从而得出结果.本文归纳了几类特殊N阶行列式的计算方法,从这几类特殊的N阶行列式的计算中,可以总结出归纳出一些行列式的计算方法,只要将这些方法与传统方法结合起来,就可以基本上解决n阶行列式的计算问题. 本文先阐述行列式的定义及其基本性质,然后介绍了几类特殊行列式的计算方法,并结合了相关例题讨论了行列式的求解方法. 2 文献综述 2.1 国内研究现状 现查阅到的文献资料中,大部分只是简单的介绍了行列式的定义、行列式的性质、行列式按行(列)展开、克拉默法则等.其中[1]、[3]介绍了行列式的定义、性质、行列式按行(列)展开,[2]、[4]介绍了利用行列式的性质计算行列式,[4]、[8]直接介绍行列式的计算,主要讲解了行列式的计算在Matlab上的实现,[7]、[9]、[10]介绍了行列式的简单计算和行列式的常用计算方法,[11]、[12]、[13]同样也是介绍了行列式的性质、定义和克拉默法则,[14]在行列式的定义、性质、按行(列)展开克拉默法则等方面介绍得比较完整,[15]-[18]系统介绍了行列式计算中和各种方法,如定义法、降阶法、升降法、拆开法、目标行列式法、乘积法、化三角开法、消去法、加边法、归纳法、递推法、特征值法等行列式的计算方法.

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

行列式的定义及其性质证明

行列式的定义及其性质证明 摘要:本文给出了与原有行列式定义不同的定义,利用此定义和引理导出定理,进一步导出行列式的性质,给出了行列式性质与以往教材不同的完整证明,形成了有关行列式的新的知识体系,通过定理性质的证明过程,重点在培养同学们的逻辑思维能力、推理能力和创新能力。 关键词:行列式;定义;性质;代数余子式;逆序数 1 基本定理与性质的证明 引理设t为行标排列q1q2…qn与列标排列p1p2…p n的逆序数之和,若行标排列与列标排列同时作相应的对换,则t的奇偶性不变。 证明根据对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。若行标排列与列标排列同时作相应的对换,则行标排列的逆序数与列标排列的逆序数的奇偶性同时改变,因而它们的逆序数之和的奇偶性不变。 定理1 n阶行列式也可定义为 证明由定义1和引理即可证得。 性质1 行列式与它的转置行列式相等(由定理1即可证得)。 (根据性质1知对行成立的性质对列也成立) 性质2 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。 证明利用定理1和代数余子式的定义即可证得。 性质3 如果行列式中有两行(两列)元素对应相等,则此行列式等于零。 证明(利用递推方法来证)设行列式中第k行和第j行的元素对应相等,由性质2可知 又A is=(-1)i+s(s=1,2,…,n),根据性质2,M i+s又可以展开成n-1项的和,每一项都是一实数与n-1阶行列式的乘积,以此类推,M i+s 总可以展开成一个实数与一个二阶行列式的乘积之和,即 (mi为实数,Di为含有原行列式中k行和j行的二阶行列式),这个二阶行列式的两行就是原n阶行列式中的k行j行对应的元素,由于这

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 00400300200 1000. 解析:这是一个四级行列式,在展开式中应该有244=! 项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321 =τ,所以此项取正号.故 0 04003002001000 =()()241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 221132 1 33323122211100 00 00=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 1 21n 11210000D 0 n n n a a a b b b b b += = . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

行列式计算7种技巧

行列式计算7种技巧7种手段 编者:Castelu 韩【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a

技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 1112111121111211122121 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变 1112111 12112112212121 21 2 n n s s sn s t s t sn tn t t tn t t tn n n nn n n nn a a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++= 技巧6:分块行列式的值等于其主对角线上两个子块行列式的值

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

行列式的计算技巧与方法总结

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式 构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

线性代数行列式基本概念

目录 目录 (1) 一、行列式 (2) 见ppt。 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

几种特殊类型行列式及其计算

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品. 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版.同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅. 本毕业论文内容不涉及国家机密. 论文题目:几种特殊类型行列式及其计算 作者单位:数学与信息科学系 作者签名: 2012年5月31 日

目录 摘要 (1) 引言 (2) 1行列式的定义及性质 (3) 1.1 定义 (3) 1.2 性质 (3) 2行列式的分类及其计算方法 (4) 2.1 箭形(爪形)行列式 (4) 2.2 两三角型行列式 (4) 2.3 两条线型行列式 (7) 2.4 Hessenberg型行列式 (9) 2.5 三对角型行列式 (10) 2.6 各行(列)元素和相等的行列式 (11) 2.7 相邻两行(列)对应元素相差1的行列式 (12) 2.8 范德蒙德型行列式 (13) 结束语 (14) 参考文献 (15) 致谢 ······································································································································错误!未定义书签。

几种特殊类型行列式及其计算 摘要:行列式的计算是一个普遍的难题.在一些文献中我们已经了解了一些解决它的基本方法,例如:化为上下三角形法,降阶法,加边法,拆项法,递推法,数学归纳法.本文是对几种特殊类型的行列式给以归纳,再根据不同类型给出相应的计算方法.这使得绝大多数行列式能够被归为这其中的某一种,从而能快速简洁的计算出这些行列式. 关键词:行列式;爪形;两三角型;两条线型;范德蒙德型 Several Special Types of Determinants and Its Calculation Abstract: The n-th determinant calculation is a common difficult problem for students. We have already knew some ways in some documents to solve it, for example: the making definition, changing into triangle (upper and low), decreasing the degree, adding the margin, splitting some items, recursive algorithm and induction. This article aims to conclude some special kinds of determinants firstly and then gives the relevant calculation methods.That made most of the determinants can be attributed to one of that kinds,then it can be calculated more quickly and pithily. Key Words: Determinant; Claw; “Two-triangle”type; “Two-wire”type; “Vandermonde”type 1

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

行列式的几种求法

行列式的求法有多种,以下简单进行总结。 一、逆序定义法 行列式的逆序法定义如下: 1212121112121222(,,......,)12,,......,1 2(1)......n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里,12,,......,n j j j 为1,2,...,n 的任一排列,12(,,......,)n j j j τ为该排列的逆序数,求和是对所有的排列求的,因此,该和式一共有!n 项,每项都是n 个数相乘,并得计算逆序数,计算量巨大。因此,一般而言,逆序法定义具有理论上研究的意义,而比较少用于求行列式。但是,如果行列式的项中有大量的0,那么用逆序法计算可能会很简单。以下举例如下: 例1:求 11 22 nn a a a 。 解答: 12121211 22 (,,......,)12,,......,(1)......n n n j j j j j nj j j j nn a a a a a a τ= -∑ 只当11j =,22j =,……,n j n =,其项才可能非零。因此, 11 22 (1,2,......,)01,12,2,1,12,2,1,12,2,(1)......(1)............n n n n n n n nn a a a a a a a a a a a a τ=-=-= 例2、求 1 2 n d d d 。 解答: 1212121 2 (,,......,)12,,......,(1)......n n n j j j j j nj j j j n d d a a a d τ= -∑ 只当1j n =,21j n =-,……,1n j =,其项才可能非零。因此,

关于行列式的一般定义和计算方法

关于行列式的一般定义和计算方法 n 阶行列式的定义 n 阶行列式 nn n n n n a a a a a a a a a 2 122221112 11=∑ -n n n j j j nj j j j j j a a a 212 1 2121) () 1(τ 2 N 阶行列式是 N ! 项的代数和; 3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积; 特点:(1)(项数)它是3!项的代数和; (2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为: (3)(符号规律)三个正项的列标构成的排列为123,231,312. 它们都是偶排列; 三个负项的列标构成的排列为321,213,132, 它们都是奇排列. § 行列式的性质 性质1:行列式和它的转置行列式的值相同。 即nn n n n n a a a a a a a a a 2 122221112 11=nn n n n n a a a a a a a a a 2122212121 11; 行列式对行满足的性质对列也同样满足。 性质2 互换行列式的两行(列),行列式的值变号. 如: D= d c b a =ad-b c , b a d c =bc-ad= -D 以r i 表第i 行,C j 表第j 列。交换 i ,j 两行记为r j i r ?,交换i,j 两列记作 C i ? C j 。 32 2311332112312213a a a a a a a a a ---3221133123123322113332 31 232221 13 1211 a a a a a a a a a a a a a a a a a a D ++==(1

相关文档
相关文档 最新文档