文档库 最新最全的文档下载
当前位置:文档库 › 分离与富集

分离与富集

分离与富集
分离与富集

分离与富集

读书报告

题名:共沉淀分离富集法的应用与新进展姓名:樊红霞

指导老师:陈建荣

学院:化学与生命科学学院

专业:分析化学

班级:10级

学号:2010210638

成绩:

共沉淀分离富集法的应用与新进展

姓名:樊红霞学号:2010210638 专业:分析化学

摘要:对共沉淀分离富集法的应用与新进展进行了综述。近年来,由于其与固体进样分析仪器的结合而得到了迅速发展,从自然水样到高纯和其它特殊材料曲分析,从空属元素到非空属乃至有机物的测定,越来越多、越来越好的有机和无机的共沉淀体系正被研究和广泛应用。关键词:共沉淀;分离;富集;进展

引言

沉淀法是一种传统的分离富集方法,但共沉淀法能在60年代迅速发展得益于Luke C L 的技能:在溶液中加入沉淀剂和一点点金属(称为载体)离子共沉淀溶液中的痕量金属元素,另一方面得益于其与具有高选择性的固体进样仪器的结合,使富集倍数极大提高而被应用于超痕量分析,近年来又与流动注射分析结合克服了耗时多的缺点。科学技术的发展对共沉淀方法提出了更高要求,新型沉淀剂的研究,两种或数种沉淀剂的联合使用以及传统沉淀剂与其他分离富集技术的联用等方面的研究非常活跃。另外由于其操作相对简便,实验条件容易满足,经济可行,正在被广泛应用于材料物质的改性方面,利用共沉淀合成纳米材料已见报道。因此探索新型高选择性共沉淀剂和将理论与经验规律结合,寻找特定的沉淀剂和与之相配的载体离子以及寻求简单、快速的共沉淀技术是最新的发展动向。

1新共沉淀捕集剂的研究与应用[1]

Luke C L等最初使用的沉淀剂主要是金属氢氧化物和二乙基硫代氨基甲酸盐,研究了它们共沉淀痕量金属离子的实验条件。而后30年间,大多数研究致力于开发新的共沉淀捕集剂,以适应各种式样中不同组分的分离富集并达到尽可能高的回收率。

1.1新的金属氢氧化物和其它无机共沉淀捕集剂

金属氢氧化物作为共沉淀剂捕集剂以其不需要有机试剂、易于离心分离以及回收率高等优点而得到广泛应用,最早使用和用的最多的是Fe(OH)3、Al(OH)3、Mg(OH)2,进入80年代以后,新的无机共沉淀捕集剂不断涌现,日本学者在这方面处于领先地位,Yoshimura W等对Zr(OH)4、Harada Y等对La(OH)3、Ueda J等对Hf(OH)4做了较多研究。日本学者还对Be(OH)2、Ga(OH)3、Y(OH)3、Sn(OH)4作为共沉淀捕集剂进行了应用研究。其它的无机共沉淀捕集剂还有GaPO4、碱式碳酸锌、BaSO4、AlPO4等。以上这些新的无机氢氧化物共沉淀捕集剂大多以稀有元素作为载体离子,比起以前的无机捕集剂具有以下优点:

1.1.1 载体离子对被测元素的电热原子吸收测定(ETAAS)具有增感效应

Taketa K等在pH 9.0~11.3的样品溶液中用Y(OH)3,定量共沉淀锰,用石墨炉原子吸收测定,由于钇的存在使锰的原子吸收提高了3倍。又如Ueda J 等在pH 9.5下用Hf(OH)4共沉淀水溶液中的披,由于铪的存在使原子吸收增加约1.5倍,并改善了重现性。

1.1.2 能在酸性条件下共沉淀被测元素

一般金属氢氧化物只能在碱性条件下共沉淀被测元素,但Hiraide M 等使用Sn(OH)4在pH5~6的弱酸性条件下共沉淀溶液中的铅等5种重金属离子,用原子吸收测定.锡不产生干扰,此方法已应用于高纯镁及河水的分析。

1.1.3 某些稀土元素作为载体离子可以避免光谱干扰

Nakamara T 等使用Zr(OH)4共沉淀水样中铍等8种痕量元素,并用石墨炉原子吸收法(GFAAS)测定,在脱水时先形成耐火的氧化锆.由于其熔点高达273℃.在原子化过程中(1500~2600℃),氧化锆始终状态稳定,不会产生光谱干扰。

1.2 有机共沉淀捕集剂

许多性能优良的有机沉淀剂至今仍广泛应用于共沉淀分离富集中,如二乙基硫代氨基甲酸盐(DDTC)、呲咯烷二硫代甲酸胺(APDC)、8-羟基喹啉,dimethylglyoxime(DMG)和l-(2-吡啶偶氡)-2-萘酚(PAN)。近年来又出现了一些新的有机试剂,主要具有以下两方面的特点:1.2.1 能应用于酸性溶液中

无机共沉淀捕集剂大多是载体离子的水解产物,它们一般不能应用于酸性溶液中。近年出现了一些有机试剂.能适用于酸性甚至强酸性溶液中。如Frlgge G等使用六亚甲基二硫代氨基甲酸,六亚甲基四胺(HMA,MDTC)在pH=1条件下下共沉淀分离富集铜铝合金中银、金、铋等17种痕量元素。罗淑梅等使用APDC在0.3mol.L-1HNO3介质中共沉淀分离高纯氧化镧和氧化钇中的痕量钴和镍。Beinrohr E 等使用双硫腙(DTZ)在稀HNO和HCI溶液中共沉淀分离银、铋、镉等8种痕量元素。

1.2.2 不需要载体离子[2]

以前的有机共沉淀捕集剂均是用一种有机沉淀剂加一种作为载体的金属离子所组成,而大部分的无机共沉淀捕集剂本身就是载体离子的水解产物。选择合适的载体离子是一件很麻烦的工作,否则它们会对后面的测定产生光谱或其它干扰。以前的研究表明,含-SH基团的有机螫台剂,如二硫代氨基甲酸盐、二硫基喹啉等,其上的-SH基团易被氧化成难溶干水的有机二硫化物。80年代以来,国外学者利用它们既能螯合溶液中的多种痕量元素同时其氧化产物又能将金属螫合物共沉淀下来的特性应用于分离富集取得了成功,这是一类不加载体离子的共沉淀捕集剂。这方面拉脱维亚的Vircavs M 等做了较多的研究.如用APDC作为螯合剂,在H2O2的作用下部分被氧化成难溶于水的DPTD,在此过程中,钒.钴.铁等9种痕量元素的螯合物被共沉淀下来,回收率均大于92%。而且DPTD固相的适用酸度范围很大,3.5

mol.L-1HCl~pH 6.3。VirCavs M 等又利用5,8-二硫基喹啉作为螫合剂.它的氧化产物5,8-多醌基聚二硫代物(PQPD)作为捕集剂共沉淀钒、铬、锰等22种痕量元素,除铱外其它元素的回收率均大于95%,适用的酸度范围为1.5 mol.L-1HCl~pH 12。Vircavs M 等又使用5-Br和2-甲硫基-8-羟基喹啉及其氧化产物共沉淀水溶液中的痕量As(Ⅲ),Cu(Ⅱ)和Cd(Ⅱ),回收率大于95%.适用的酸度范围分别为1 mol.L-1HCl~pH 1l 和2mol.L-1HCl~pH 11。Hiraide M 等用二硫化物共沉淀富集水佯中的痕量钴,再用超声悬浮液进样ETAAS测定,检出限可达3ng.L-1。

1.3 沉淀剂的联合使用和辅助络合剂的加人

为了提高分离富集的效率,两种甚至散种沉淀剂联合使用屡有报道。用得较多的是两种有机试剂的联合使用,Saleh A E 用酚酞和二苄基二硫代氯基甲酸盐联合共沉淀水中Se (Ⅳ)。张晓凌等用邻菲咯啉一曙红体系共沉淀吸光光度法测自来水中的铁.检出限为1.5×10-3μg.mL-1 。有机和无机沉淀剂的联合使用,汤志勇等采用8-羟基喹啉-丹宁酸-硫化钠(HTS)体系作捕集剂,共沉淀水样中的铅,捡出限可达2.84×10-5μg.mL-1。Chen Z S 在硫脲存在下用氢氧化铟定量共沉淀天然水中镉钴、铜、铬、铁、锰、镍和铅等痕量重金属离子。无机沉淀剂的联合使用,Akagi T 等使用MgCI2和Ga(II)在pH 9.0时共沉淀预富集海水中的痕量金属,用ICP—AES测定。Ishino F 等使用Fe(OH)3和Bi(OH)3混合共沉淀预富集水样中的痕量磷酸盐.用吸光光度法测定,检出限为3.0×10-3μg.mL-1。最近又有文献提出了辅助络合剂的概念,以一种沉淀剂为主要捕集剂,再以一种螯合剂为辅助络合剂.用以提高共沉淀法的选择性。Atsuya I 等以DMG为主沉淀剂,镍为载体离子,PAN为辅助络合剂定量共沉淀海水中的多种痕量元素。

2 共沉淀分离富集技术与仪器的联用

近年来,共沉淀分离富集技术与一些固体进样仪器分析法相结合,极大地发挥了沉淀法固有的优点,提高了富集倍数.改善了分析灵敏度,使被测样品检出限降低若干数量级。

2.1 共沉淀分离富集技术与固体进样仪器的联用

2.1.1 与使用内置微型杯及杯型石墨炉固体进样技术的原子吸收光谱法联用[3-7]

这是一种新的、灵敏而准确的固体进样技术。Atsuya I 等用DMG-Ni-PAN络合物作为捕集剂共沉淀湖水和海水中亚ng·mL-1。级镉、铜、锰、铅和锌,再用配有内置微型杯固体进样装置的ETAAS进行渊定,使分析灵敏度提高至少1×103倍,富集,倍数可达1×104。。Akatsuka K 等用8-羟基喹啉-Mg定量共沉淀后,在一特殊设计的杯型石墨炉中直接用ETAAS测定水样中μg.kg-1级铜和锰,检出限分别为12和14 ng.kg-1,水样体积为300mL。Nakamura T 等用Zr(OH)4共沉淀自然

水样中的痕量铍、铬、铁、钴、镍、铜、镉和铅.所得沉淀在电炉600℃下焙烧,在衡重的微

型石墨杯中称1.0 mg 沉淀并直接用ETAAS测定,铍和铬的检出限可达0.23 ng·L-1和1.4 ng·L-1。

2.1.2 与中子活化分析法(NAA)联用

在中子活化分析法前采用的痕量元素预富集方法有许多种,但NAA对富集后得到的固相的纯度和所用的化学试剂有较高的要求和较多的限制,与其它方法相比.共沉淀方法似乎最具吸引力。Stone WE 等用碲共沉淀NAA法测样品中的钯、金、砷、铱、铂、银、硒和锑,检出限在5~1 pg.g-1范围内。朱归萍等用萃取与共沉淀相结合NAA法测定水中的As(Ⅱ)和As(Ⅴ)。

2.1.3 与x射线荧光分析法(XRF)联用

XRF是与共沉淀法结合最早的固体进样分析法,它对共沉淀法广泛应用于分离分析起了很大的推动作用,至今仍被普遍采用。Kurata N 等用Zr(OH)4在pH 9.4~9.5下共沉淀富集铜中锑、锡、铋、铅、砷、铁,再用XRF测定,相对标准偏差小于3 %。

2.2 共沉淀分离富集技术与在线流动注射分析(FIA)[8]

1975年丹麦的Ruzieka等提出了一种新型的连续流动分析法——流动注射法(FIA).由于它具有分析速度快、分析精度高、试样与试剂消耗少、结构简单等优点.在短短的20年闻,已成为分析化学最为活跃的领域之一。另一方面通过预分离富集以提高仪器分析方法的灵敏度、选择性以及消除干扰是一种行之有效的手段。但一般来说,预分离操作较复杂、耗时较多,与快速的检测不相匹配,最近几年发展起来的流动注射预富集技术将两者结合起来,为懈决上述矛盾迈出了有效的一步。继溶剂萃取预富集FIA分析和离子交换预富集FIA分析相继问世后,在进入90年代后共沉淀预富集FIA分析也日趋成熟并得到广泛应用。

2.2.1 用于金属离子的分析

Pei S Q 等在流动注射系统上以Fe(II)一DDTC为捕集剂在线共沉淀地球样品消解液中的痕量银,沉淀不经过滤直接收集在一球型反应器中并溶于甲基异丁基酮,再引入火焰原子吸收(FAAS)雾化燃烧器系统测定,沉淀时间为45s,富集倍数为26,进样频数为62h-1,样品溶液检出限为0.5μg.L-1,相对偏差为2.1% 。董立平、方肇伦对痕量钴、镍相镉的流动注射在线共沉淀预富集进行了研究。此外共沉淀预富集FIA法还被应用于Cu(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)和Pb(Ⅱ) 的分离富集与测定。

2.2.2 用于非金属元素或阴离子的分析

Nielsen S 等用氢氧化镧或氢氧化锆在线共沉淀预富集流动注射氢化物发生原子吸收光谱法测定了超痕量As(Ⅲ)。此外还用于磷酸盐以及氯化物和碳酸盐的富集测定。

3 共沉淀分离富集法的应用[1]

3.1 在高纯材料和其它特殊材料分析中应用

共沉淀不但以其高富集率而广泛应用于各种海水、湖水和其它水样中痕量元素的分离富

集.而且以其优异的分离功能越来越多地应用于高纯材料和其它特殊材料中痕量元素的分离富集。

3 1.1 铜和铜合金的分析

共沉淀在铜和铜台金的痕量杂质的分离富集中用得较多。石玉明等用Fe(OH)3分离富集高纯铜中的硒,用催化极谱法测定。Nakamura Y 等用La(OH)3,在pH 9~10时共沉淀高纯铜中砷,锑、铋、锡和铅,再用ICP—AES测定。Kurata N 等用MnO2共沉淀铜中锡、锑和铋,再用AAS测定。李斯江等用碲金共沉淀分离富集铜精矿和铁矿石中的金,再用AAS测定。另外还有铜锡合金中银、金等17种痕量元素的共沉淀分离富集和测定。

3.1.2 铝和铝合金的分析

由于Al3+易水解,所以共沉淀铝中的痕量元素有相当难度,尽管如此,至今已有一些共沉淀体系成功用于此。Veda J 等用Hf(OH)4在pH 9.5下共沉淀铝中镀.然后将溶液pH值用NaOH调至13~13.5以消除大量铝的干扰,再用GFAAS测定,而且锆的存在使镀的原子吸收增强1 5倍,检出限为6.25ng.L -1。苏耀东等用APDC为沉淀剂.Cu(Ⅱ)为载俸离子,在pH 2.5时共沉淀铝盐中的痕量铅.再用FAAS测定,消除了基体干扰。

3.1.3 高纯锌和锌合金的分析

用共沉淀法分离富集高纯锌和锌合金中的痕量元素亦屡有报道。Ashino T等用Fe(OH)3共沉淀分离高纯锌中的镉.再用ETAAS测定.校正曲线线性范围0~0.007μg.mL-1。Alexandrov S 等用硫代乙酰胺处理pH 5试样溶液,以生成的ZnS共沉淀高纯锌化物中的银、汞、金、铜、铅等l 3绅痕量杂质.继以直流电弧AES测定,相对标准偏差为5.6 ~25.3 。Tsukada K等用MnO2共沉淀分离富集锌及锌合金中的铅.沉淀用HNO3-H2O2溶解.再用ICP-AES测定。

3.1.4 其它高纯材料的分析

Harada Y 等用La(OH)3共沉淀高纯氧化硅中的钡、钙、铁、镁、锰、镍、锶、钛、锌、铅和铬等杂质,用ICP—AES测定,检出限为0.1~0.6μg.g-1。Kujlrai O等在pH 11下用La(OH)3共沉淀高纯钼及三氧化钼中的痕量钴、镉、铜、铁、锰、镍、钛、钒、锌和锆,用ICP-AES 测定。罗淑梅等用APDC在0.3tmol.L-1HNO3介质中共沉淀高纯氧化镧、氧化钇中痕量钴和镍.其检出限分别为9.6x10-10 g和

9.9 x 10-10g。罗淑梅等叉报道了用有机物共沉淀高纯稀土氧化物中痕量铅、镉、镍、铁、铜,再用FAAS测定的方法。

3.2 非金属元素和有机物的分离富集

随着共沉淀分离富集技术的不断发展,其应用已从痕量金属元素的分离富集扩展到非金属元素甚至有机物。

3.2.1 磷的分离富集

磷是共沉淀技术应用得最多的非金属元素。在海洋和湖泊的生态系统中,磷是一种基本

营养素.因此磷的分离富集和测定日益受到重视。Kubota T 等用氢氧化锆在pH 8时共沉淀井以AAS测定自来水和井水中的磷,其结果与钼蓝法很好吻合。Kawamoto H 等用CaCO3共沉淀预富集磷。此外高纯金属中痕量磷的测定亦有报道。Leagaki T 等用氧氧化镀共沉淀分离磷钼蓝光度法测定高纯铬、镍,铜及铬铁合金中的痕量磷,检出限为0.5ug.g-1。Doepke T 等用Fe(OH)3共沉淀捕集高纯难熔金属钨和铝中痕量磷。Tahaka T 等在铜试液中加入铝及氨溶液,铜生成氨络离子,磷与氢氧化铝共沉淀,用油酸钠及十二烷基苯磺酸钠浮选,经处理后用光度法测定铜中磷含量。

3.2.2 砷和硒的分离富集

Kurata N 等用MnO2共沉淀铁,铜和镍中的砷,再用金属炉AAS测定的方法。Park S W 等于pH 8.5将水样中的砷与La(OH)3共沉淀经处理后用吸光光度法'删总砷。La(OH)3还用于环境水佯中砷的分离。Hosoya M 等在氯性介质中用Be(0H)2共沉淀分离氢化物发生砷钼酸还原吸光光度法测高纯铁中砷.检出限为0.3μg.g-1,30倍量磷不干扰测定。王克波等用Fe(OH)3共沉淀水中痕量砷,然后用Ag-DDC比色法定.回收率90~98.5,检出限0.5μg.L-1。

3.2.3 腐殖酸及其它有机物的分离富集

腐殖物是河水、湖水和池水中的主要有机成分.是由土壤中的生物组织经化学或生物过程降解而形成的,它通常由三部分组成:(1)腐殖酸;(2)灰黄酶酸;(3)腐黑物。其中腐殖酸常与金属离子、水台金属离子等形成有毒化合物。Hiraide M 等报道了用Fe(OH)3在pH 7时从灰黄酶酸中共沉淀分离μg.L-1级腐殖酸,然后用阴离子表面活性剂浮选的方法。他们又用氢氧化铟共沉淀河水中Cu(Ⅱ)-腐殖酸络合物,其回收率为98%~99%。PSPS(C10H18N7O8S)是一种剧毒的有麻痹作用的甲壳类毒物,Saxitoxin是PSPS中最重要的毒性基团。Quigley M N等用水合氧化铁从水溶液中共沉淀Saxitoxin,此法比传统的弱阴离子交换树酯法具有简单省时的优点。

3.3 水样中超痕量元素的分析

由于共沉淀方法具有富集倍数高的优点,所以它特别适用干大体积水样中痕量元素的富集。近年来由于性能优良的共沉淀捕集剂的出现,以及后继测定方法灵敏度的提高,自然水样中超痕量元素的测定已成为现实。Eckert J M 等用Co(Ⅱ)-PDC共沉淀海水中的痕量锰,检出限为50ng.L-1。Akatsuka K 等用8-羟基喹啉共沉淀天然水中的镉,铅和锌.检出限分别为0.6,2.3和1.9ng.L-1。

3.4 元素的价态分析

3.4.1 铬的价态分析

由于Cr(Ⅲ)和Cr(Ⅵ)对生物体的毒性差别很大,因此分别测定环境水样中两种价态的铬一直令人关注.在这方面共沉淀法一直表现活跃。Ian G R 等用APDC-Pb(Ⅱ)为共沉淀捕集剂在

pH 4时共沉淀Cr (Ⅵ),然后将Cr(Ⅵ)还原成Cr(Ⅲ)在pH 9时共沉淀总铬。能够分别共沉淀Cr(Ⅲ)和Cr(Ⅵ)的捕集剂还有DDTC—Mn(Ⅱ)、Fe(OH)3和磷酸镓。Qi W 等专门研究了各种金属离子和螯合利作为共沉淀载体分别富集Cr(Ⅲ)和Cr(Ⅵ).并用于尿和天然水中两种价态铬离子的富集,取得了满意的效果。

3.4.2 其它元素的价态分析

Cy L等用氢氧化锆共沉淀AAS测定环境水佯中的As(Ⅱ)和As(Ⅲ)。谈炳美等把氟化镧沉淀载代法用于低浓度镎的价态分析。而Salbu B 则对天然水中痕量元素及其物理一化学形式的分析进行了综述。

4共沉淀分离富集法的新进展

共沉淀法是富集痕量元素常用的有效方法之一,它为分析化学提供了可以和色层、离子交换、溶剂萃取等相媲美的有效分离方法。与其它分离富集法相比,共沉淀的优点在于除碱金属和碱土金属外,大多数元素都能用此法有效地分离富集,可以获得较高的富集倍数。方法简便,实验条件易于满足;能同时实现多元素的分离测定等。由于新共沉淀剂的出现以及共沉淀技术与其他分离富集法的联用,更由于共沉淀技术与现代分析仪器相结合,使共沉淀这种古老的分离富集方法重换生机,在高纯材料分析,环境分析及生物样品分析中发挥着日益重要的作用,共沉淀分离方法和富集方法正在被广泛使用。

参考文献

[1] 李静.新型快速共沉淀分离富集痕量元素的研究[J].分析化学,2005.

[2] 苏耀东,程祥圣,肖红玺.硫酸锰中痕蛋铅的不加载体离子共沉淀分离富集及原子吸收光谱

测定[J].光谱学与光谱分析,2003,23(5):984-986.

[3] 仲金虎,王洪彬.磷酸钕共沉淀选择性分离富集-原子吸收测定环境水样中痕量铅[J].环境污

染与防治,2006,28(4):305-307.

[4] 王洪彬.碳酸钙共沉淀-火焰原子吸收光谱法测定卤水中的痕量钴[J].光谱实验

室,2006,23(4):769-771.

[5] 苏耀东,朱文颖,马红梅,等.磷酸亿共沉淀分离富集原子吸收光谱测定氯化镍和硫酸锰中的

痕量铅和铁[J].光谱学与光谱分析,2006,26(9):1732-1734.

[6] 李树贵,张久春,陈志强.有机共沉淀-原子吸收法测定黄酒中铅[J].食品科

学,2000,21(11):48-50.

[7] 彭义华,吴燕凌.共沉淀富集原子吸收法测定水中5种重金属元素[J].上海环境科

学,2004,23(5):221-223.

[8] 史建波,董纪珍,谭春华,汤志勇.流动注射在线共沉淀分离富集HG-AFS测定痕量锗[J].理化

检验-化学分册,2001, 37(8):357-359.

分析化学中常用的分离和富集方法教案

第8章 分析化学中常用的分离和富集方法 教学目的:学习各种常用分离和富集方法的原理、特点及应用,掌握复杂体系的 分离与分析;分离法的选择、无机和有机成分的分离与分析。 教学重点:掌握各种常用分离和富集方法的原理、特点及应用。 教学难点:萃取分离的基本原理、实验方法和有关计算。 8.1 概述 干扰组分指样品中原有杂质(溶解)或加入试剂引入的杂质,当杂质量少时可加掩蔽剂消除干扰,量大或无合适掩蔽剂时可采用分离的方法。 分离完全的含义:(1)干扰组分少到不干扰;(2)被测组分损失可忽略不计。 完全与否用回收率表示 100?分离后测得的量回收率=%原始含量 对回收率的要求随组分含量的不同而不同: 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物 蒸馏法:N -NH 4+-NH 3↑(酸吸收) 利用沸点不同,进行有机物的分离和提纯。 8.2 液-液萃取分离法 8.2.1萃取分离法的基本原理 萃取:把某组分从一个液相(水相)转移到互不相溶的另一个液相(有机相)的过程。 反萃取:有机相→水相

常用的分离和富集方法

第十章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

分离富集思考题

第10章分析化学中常用的分离和富集方法 【思考题解答】 1. 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a. 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b. 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c. 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+, Fe3+,Ti(IV)等的分离。 d. ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3. 某矿样溶液含有等离子,加入NH4Cl和氨水后,哪些离子以什么形式存在于沉淀中?哪些离子以什么形式存在于溶液中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+, Mg2+,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-

化学分离与富集实验讲义

化学分离与富集实验讲义 昆明理工大学基础化学实验中心 2012-12

实验一表面活性剂增溶增敏的应用 实验目的 1、了解不同性质的表面活性剂在溶液的作用原理; 2、了解表面活性剂的增溶、增敏在光度法中的应用; 3、熟悉分光光度计的使用。 实验原理 表面活性剂,包括阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂、两性离子表面活性剂。(I)阴离子表面活性剂:此类表面活性剂在水溶液中会离解为带负电荷的离子(阴离子)和带正电荷的离子(阳离子),而阴离子是其表面活性的载体。(2)阳离子表面活性剂:此类表面活性物质在水溶液中亦会离解成阴、阳离子,而阳离子是其表面活性的载体。(3)非离子表面活性剂:此类表面活性物质在水溶液中不会离解成离子.在水中的溶解度主要靠它的极性基团提供的,其表面活性的载体是它的极性基团。(4)两性表面活性剂:此类表面活性物质在水溶液中,于同一分子内不但含有正电荷,而且还含有负电荷,它是根据组成和介质的pH 值来决定它的阴离子或阳离子的性质。尽管表面活性剂有不同的结构和极性基团,在不同的介质中表现出不同的特性,但对大多数的表面活性剂而言,仍有其共同的特征。表面活性剂最重要的两个特征是在界面上吸附的趋向性和在各种条件下形成具有各种结构的分子聚集体,如:胶束、反胶束。表面活性剂分子溶于水后会不停地旋转,最终找到亲水基与憎水基的恰当位置而基本固定下来,相互靠在一起,形成形状、大小不一的胶束或胶团(如图3所示)。 这种情况容易在逐渐提高表面活性剂浓度而达到某一个浓度数值以上时发生。该浓度称为临界胶束浓度(用CMC表示)。 1、增溶作用 当水溶液中表面活性剂的浓度大于临界胶束浓度时生成胶团或胶束,通过加热与搅拌,体系中难容性成分(显色剂、显色化合物)分散为很小的微粒,被包裹在大量的胶束与胶团之中而间接溶入了体系。表面活性剂的这种能增大不溶物溶解度的作用就叫增溶作用。 2、增敏作用 显色化合物在有表面活性剂胶束存在或不存在时的吸收光谱,往往有明显的不同。通常

分离富集技术在岩矿分析中的应用

分离富集技术在岩矿分析中的应用 在岩矿分析过程中,现代仪器分析技术发挥着非常重要的作用,可以说是推动岩矿分析快速发展的主要动力源泉,然而,在岩矿分析过程中,依然有很多问题存在。如岩矿分析中如何对测试样品进行分离富集,便是其中的重要工作内容。在分离富集技术下,能够大大改善样品的检出限,同时,对提高测定的精准度有着非常重要的作用。下文,笔者结合自己的工作实践,对岩矿分析过程中分离富集技术的应用展开详细分析。 标签:离子;分离;富集;岩矿分析;应用 1经典法的改进几新方法的开发应用 随着科学技术的不断发展,在岩矿分析过程中,分离富集技术也有了很大发展,如沉淀、萃取,电沉积以及挥发蒸馏和离子交换吸附等技术发展很快,并在逐步的进行提高,并基于此基础,有许多先进的分离富集技术被逐渐开发出来,同时,分离富集剂的使用也越来越广泛。 1.1沉淀、吸附 1.1.1经典沉淀、吸附的改进 目前为止,沉积分离基体元素(共沉淀富集痕量元素)应用还较为普遍,如样品熔块儿通过水浸,并利用碱熔进行分解的过程中,便可进行沉淀分离。倘若将三乙醇安加入到浸取液内,便可有效提升沉淀的选择性,因此被普遍应用于稀土元素痕量测定过程之中。随着分离富集技术的不断发展,沉淀,吸附技术也有了很大的发展。 1.1.2负载沉淀、吸附 在硅胶,碳粉以及吸附树脂、泡沫塑料、纤维素上进行有机、无机沉淀吸附剂的负载,在吸附某些离子上,发挥着重要的作用。这些负载的沉淀吸附剂,将其本身所具有的作用充分的体现出来,不仅使试剂的剂量大幅减少,同时,其接触面积不断扩大,能够在单体吸附作用的前提下,使得分离富集效果大大增强,促进相关操作工作的开展,有的在色谱法以及柱滤法中有着广泛的应用。 1.1.3沉淀浮选 通过该技术,待测元素是通过胶状沉淀进行吸附,或者将有机试剂和无机试剂在进行pH值调节之后加入其中,待测元素与之发生反应,并形成沉淀,接着将表面活性剂加入其中,将小气泡(惰性气体)加入其中,进而上浮沉淀,使之停留在表面。通过这种技术对样品进行分离富集,不仅应用的试剂非常少,而且效率非常高,对于大体积的试液有着良好的应用效果。

分离与富集

人胎盘组织造血干/祖细胞的分离富集 【摘要】为了探索从胎盘组织中分离富集造血干/祖细胞(HSPC)的标化流程,采用机械法加胶原酶消化法制备人胎盘组织单个细胞悬液,用羟乙基淀粉(6% HES)法从中分离出单个核细胞(MNC),再经免疫磁珠分选法分选出CD34-、CD34+CD38-、CD34+CD38+ 3个细胞亚群,用流式细胞术对各阶段分选细胞进行表型分析并计算分选细胞的富集度和回收率。结果表明:机械法加胶原酶消化法制备的人胎盘组织单个细胞悬液中单个核细胞(MNC)数达(12.30±3.51)×108,与脐血初始样品所含的MNC数(8.86±5.38)×108 比较差异无统计学意义,而其CD34+细胞所占百分率[(3.93±2.31)%]则明显高于脐血[(0.44±0.29)%]。胎盘组织单个细胞悬液经6% HES分离后MNC和CD34+细胞的回收率分别为(45.3±11.7)%和(51.1±9.8)%;MNC经免疫磁珠分选后,其CD34+细胞的纯度和回收率分别为(73.4±14.1)%和(52.7±11.7)%。结论:本实验所建立的"机械法加胶原酶消化法-HES分离MNC-MACS分选目标细胞"的分离纯化方法可从胎盘组织获得高丰度、高富集度、高活性的HSPC,为进一步研究胎盘HSPC提供了比较经济、效果较好的分离富集方案。【关键词】

CD34抗原;造血干细胞;胎盘;免疫磁珠细胞分选;脐血【材料和方法】 造血干/祖细胞(hematopoietic stem/ progenitor cells,HSPC)存在于人骨髓、动员的外周血和脐血等组织中。新近,有学者提出人胎盘组织中含有比脐血更为丰富的造血干细胞;人胎盘组织中CD34+ HSPC的百分率是脐血的8.8倍,并且人胎盘组织中免疫细胞成分较少,极有希望成为今后HSPC 的新来源。从人胎盘组织分离出高活性、高丰度的HSPC是对其进行相关生物学特性等研究的前提,目前尚无有关人胎盘组织HSPC分离的优化方案可循。本研究旨在建立从胎盘组织中分离、 纯化HSPC的标化流程,为今后人胎盘组织HSPC的深入研究打下良好的基础。 主要试剂 胶原酶(collagenase Ⅳ)、羟乙基淀粉(hydroxyethyl starch,HES)为Sigma公司产品。RPMI 1640、新生牛血清(FCS)购自于Gibco公司。荧光标记单克隆抗体 CD38-FITC、CD34-PE及CD34绝对计数试剂盒为Becton Dickinson公司产品。免疫磁珠细胞分选试剂盒购自Miltenyi Biotec公司。

常用的分离和富集方法

第十一章 常用的分离和富集方法 【教学目标】 1.学习各种常用分离和富集方法的原理、特点及应用 2.掌握复杂体系的分离与分析 3.了解分离法的选择、无机和有机成分的分离与分析 【重点难点】 掌握各种常用分离和富集方法的原理、特点及应用 【课时安排】计划4课时 【教学内容】共五节 第一节 概述 一、回收率 100 分离后测得的量回收率=%原始含量 对回收率的要求(随组分含量的不同而不同): 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法 思考题 11-1 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 11-2 常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 11-3 某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 11-4 如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)3,Mg(OH)2和Cu(OH)2和少量Ca(OH)2

分离与富集

分离与富集 读书报告 题名:共沉淀分离富集法的应用与新进展姓名:樊红霞 指导老师:陈建荣 学院:化学与生命科学学院 专业:分析化学 班级:10级 学号:2010210638 成绩:

共沉淀分离富集法的应用与新进展 姓名:樊红霞学号:2010210638 专业:分析化学 摘要:对共沉淀分离富集法的应用与新进展进行了综述。近年来,由于其与固体进样分析仪器的结合而得到了迅速发展,从自然水样到高纯和其它特殊材料曲分析,从空属元素到非空属乃至有机物的测定,越来越多、越来越好的有机和无机的共沉淀体系正被研究和广泛应用。关键词:共沉淀;分离;富集;进展 引言 沉淀法是一种传统的分离富集方法,但共沉淀法能在60年代迅速发展得益于Luke C L 的技能:在溶液中加入沉淀剂和一点点金属(称为载体)离子共沉淀溶液中的痕量金属元素,另一方面得益于其与具有高选择性的固体进样仪器的结合,使富集倍数极大提高而被应用于超痕量分析,近年来又与流动注射分析结合克服了耗时多的缺点。科学技术的发展对共沉淀方法提出了更高要求,新型沉淀剂的研究,两种或数种沉淀剂的联合使用以及传统沉淀剂与其他分离富集技术的联用等方面的研究非常活跃。另外由于其操作相对简便,实验条件容易满足,经济可行,正在被广泛应用于材料物质的改性方面,利用共沉淀合成纳米材料已见报道。因此探索新型高选择性共沉淀剂和将理论与经验规律结合,寻找特定的沉淀剂和与之相配的载体离子以及寻求简单、快速的共沉淀技术是最新的发展动向。 1新共沉淀捕集剂的研究与应用[1] Luke C L等最初使用的沉淀剂主要是金属氢氧化物和二乙基硫代氨基甲酸盐,研究了它们共沉淀痕量金属离子的实验条件。而后30年间,大多数研究致力于开发新的共沉淀捕集剂,以适应各种式样中不同组分的分离富集并达到尽可能高的回收率。 1.1新的金属氢氧化物和其它无机共沉淀捕集剂 金属氢氧化物作为共沉淀剂捕集剂以其不需要有机试剂、易于离心分离以及回收率高等优点而得到广泛应用,最早使用和用的最多的是Fe(OH)3、Al(OH)3、Mg(OH)2,进入80年代以后,新的无机共沉淀捕集剂不断涌现,日本学者在这方面处于领先地位,Yoshimura W等对Zr(OH)4、Harada Y等对La(OH)3、Ueda J等对Hf(OH)4做了较多研究。日本学者还对Be(OH)2、Ga(OH)3、Y(OH)3、Sn(OH)4作为共沉淀捕集剂进行了应用研究。其它的无机共沉淀捕集剂还有GaPO4、碱式碳酸锌、BaSO4、AlPO4等。以上这些新的无机氢氧化物共沉淀捕集剂大多以稀有元素作为载体离子,比起以前的无机捕集剂具有以下优点:

常用的分离和富集方法

第十一章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

第十一章 常用分离富集方法

第八章 分析化学中常用的分离和富集方法 1. 0.020 mol/L Fe 2+溶液,加NaOH 进行沉淀时,要使其沉淀达99.99%以上。试问溶液中的pH 至少应为多少?若考虑溶液中除剩余Fe 2+外,尚有少量FeOH + (β=1×104),溶液的pH 又至少应为多少?已知16sp 108-?=K 。 解: 30.9H mol/L 100.2% 01.0020.0108][OH ]][OH [Fe 1) (516sp 22=??=??=?=--- -+p K () 34 .9H mol/L 1021.22 1044104104][OH 0104-][OH 104][OH 10 8][OH ] [OH 10110.01%0.020]][OH [Fe 2)(510 2 6610-6216 2-4sp 22=??=??+?+ ?= ?=??-??=???+?? =----- ------+p K 2. 若以分子状态存在99%以上时可通过蒸馏分离完全,而允许误差以分子状态存在1%以下,试通过计算说明在什么酸度下可挥发分离甲酸和苯酚? 解: 74 .5H mol/L 1084.1]H [%110 ]H [] H []H []H [%195.7H mol/L 1011.1]H [% 9910]H [] H []H []H [%9995 .974.3674 .3HCOOH a,89.95 OH H C a,OH H C a,HCOOH a,5656=??=?=+=+=??=?=+=+==-+-++++-+-++++p K p K pK pK 以分子状态存在,则甲酸以分子状态存在,则苯酚 因此可挥发分离甲酸和苯酚的酸度为5.74-7.95 3. 某纯的二元有机酸H 2A ,制备为纯的钡盐,称取0.3460 g 盐样,溶于100.0 mL 水中,将溶液通过强酸性阳离子交换树脂,并水洗,流出液以0.09960 mol/L NaOH 溶液20.20 mL 滴至终点,求有机酸的摩尔质量。 解:

化学中常用的分离和富集方法

分析化学中常用的分离和富集方法 1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因

现代分离富集技术的发展

现代分离富集技术的发展 目录 (1) 前言 (2) 第一章气相色谱法(GC) (3) 1.1 气-固吸附色谱柱 (3) 1.2 气-液分配色谱柱 (3) 第二章高效液相色谱法(HPLC) (4) 2.1液固吸附色谱法(LSC) (4) 2.2液液分配色谱法(LLC) (4) 2.3化学键合相色谱法(BPC) (5) 2.4离子交换色谱法(IEC) (6) 2.5空间排阻色谱法(SEC) (6) 2.6手性色谱法 (7) 第三章薄层色谱法(TLC) (10) 结论 (12) 参考文献 (13)

前言 当前,虽然高分辨和可自动的分析测试仪器不断的发展和完善,对各类样品中多元素的快速定量测定起到了巨大的作用。但在实际工作中,由于很多样品组成复杂,待测元素含量低,就不能得到高质量的结果,甚至无法进行测量[1-3]。 多年来,对分离富集技术已进行了大量的研究,开发和应用。目前进展的特点可归纳为: 1.经典的分离富集集数的改进提高,新的分离富集技术的开发应用; 2.新的分析试剂研制和应用,旧的分析试剂开发新的用途; 3.分离富集集数与测量方法相结合形成连用方法; 4.由进样器,分离富集器,检测器和计算机等零部件组成性能良好的,多用途的,自动的心的分析仪器。

第一章气相色谱法(GC) 气相色谱法是进入50年代以后, 在柱层析的基础上发展起来的一种新型的仪器分析方法[4]。气相色谱法是以气体为流动相的柱色谱分离技术。按固定相分为气-固色谱和气-液色谱;按分离原理分为吸附色谱和分配色谱;按柱子粗细分为填充柱色谱和毛细管柱色谱。 气相色谱法的特点有以下四点: 1.高效能:一般填充柱的理论塔板数可达数千,毛细管柱可达一百多万。 2.高选择性:可以使一些分配系数很接近的以及极为复杂、难以分离的物质,获得满意的分离。 3.高灵敏度:可以检测10-11~10-13 g物质,适合于痕量分析。 4.分析速度快:通常一个试样的分析可在几分钟到几十分钟内完成[5]。 气相色谱柱是由柱管和填充剂组成,柱管又分为填充柱和毛细管柱。填充柱多为2-4米柱长,2-6毫米内径;毛细管柱多为几十米到几百米柱长,0.1-0.5毫米内径。填充剂分为两种,气-固吸附色谱柱中使用的固体吸附剂和气-液分配色谱柱中的载体和固定液。 1.1 气-固吸附色谱柱 在气-固吸附色谱柱中固定相分为三种:吸附剂、分子筛和高分子多孔微球。吸附剂如硅胶、碱性Al2O3和活性炭等[6]。 1.2 气-液分配色谱柱[7] 在气-液分配色谱柱中载体的作用是承载固定液,要求其具有比表面积大、无吸附性、化学惰性、热稳定性好且具有一定的机械强度等性质。常见的载体分为硅藻土类和非硅藻土类,硅藻土类是具有一定粒度的多孔性固体微粒,非硅藻土类包括玻璃微球,石英微球,氟塑载体,含氟化合物。对于载体的处理方法主要是钝化以减弱其吸附性,分为酸洗、碱洗和硅烷化。对于固定液有四点要求:(1)操作柱温下固定液呈液态(易于形成均匀液膜)。(2)操作条件下固定液热稳定性和化学稳定性好。(3)固定液的蒸气压要低(柱寿命长,检测本底低)。(4)固定液对样品应有较好的溶解度及选择性。

第八章分析化中常用的分离和富集方法

第八章分析化学中常用的分离和富集方法 在实际工作中,遇到的样品往往含有多种组分,进行测定时常常发生干扰,不仅影响结果的准确度,甚至无法测定,为了消除干扰,比较简单的方法是控制分析条件或加入掩蔽剂。但很多情况仅此不够,必须把待测组分与干扰组分分离,有时为了测定试样中痕量组分,在进行分离的同时,也进行必要的浓缩和富集。以保证分析结果的准确度。 对于常量组分的分离和痕量组分的富集,总的要求是分离要完全,即:待测组分的回收率要符合一定要求。 待测组分的回收率: 对于常量组分 (>1%) : R T>99% ( 接近 100%) 对于微量组分: R T>90% 常见的分离方法: 1 .沉淀分离 2 .萃取分离 3 .离子交换分离 4 .色谱分离 5 .气浮分离 6 .挥发和蒸馏分离 第一节沉淀分离法 沉淀分离是利用沉淀反应进行分离的方法。根据难溶化合物的溶解度不同,利用沉淀反应进行分离,在试液中加入适当沉淀剂,使待测组分沉淀出来或将干扰组分沉淀除去。从而达到分离的目的。 它主要有:无机沉淀剂沉淀分离法 有机沉淀剂沉淀分离法 共沉淀分离法。 ( 还有均相沉淀法 ) 一、无机沉淀剂沉淀分离法 无机沉淀剂沉淀分离法很多,形成沉淀的类型也很多,本书只对M (OH ) n ↓和硫化物沉淀简单介 绍.

例如: Fe(OH)3,,当 [时,刚析出沉淀时pH ≥ 2.18 ;沉淀完全时pH ≥ 3.51 。因此,氢氧化物是否能沉淀完全,取决于溶液的酸度。 NaOH Fe(OH)3 沉淀剂: NH3·H2O → Mg(OH)2WO3 xH2O 等 ZnO 等 SiO2·xH2O 两种离子是否能借M(OH)n↓ N(OH)n↓ ( 氢氧化物沉淀 ) 完全分离,取决于它们溶解度的相对大小

分离与富集应用方案

方案 一DMF-H2O精馏分离时蒸馏水中二甲基胺的除去 1工作原理及流程1.1工作原理DMF蒸馏回收系统工作原理:主要是利用DMF回收废液中各成分(主要是水与DMF)的沸点也即挥发性的不同(常压下DMF沸点152.8℃、水100℃),通过控制系统各个操作过程的温度,形成气液分离,将水及其他杂质逐一从DMF回收废液中分离出来,从而达到提纯回收DMF的目的。 1.2系统主要构成 (1)脱水塔(2)精馏塔(3)蒸发器(4)再沸器(5)冷凝器(6)脱酸和脱胺装置(7)真空泵等。 1.3工作流程首先是废水的排放收集过程,第二步就是废水的处理过程,第三步是DMF 的回收过程 2废水的产生与排放 塔顶蒸馏冷凝水的产生与排放 如果排放将对环境造成影响,现在大多数的合成革企业,已经采取用罐装回收的办法,将该废水重新利用于湿法生产线作为补充用水,基本防止了污染的发生。 吹脱法去除废水中二甲胺的原理 在碱性条件下,将大量空气与废水接触,使废水中游离的二甲胺被吹出。以达到去除废水中二甲胺的目的。此法也叫二甲胺解析法.解析速率与温度、气液比有关。 二甲胺的水溶液显碱性,其溶解度的大小受溶液的pH值影响(CH3)2NH+H2O—(CH3)2NH2++OH-,如果增加溶液的碱性,左移,溶解度下降。加碱量太小无法彻底脱出二甲胺,太大不仅会对设备造成腐蚀还会使成本上升,且加大废水后续处理的难度。 温度也会影响二甲胺的溶解度,温度上升,气体在水中的溶解度下降。 气液比越小,泛点气速越小。在其他因素一定时,随着液体喷淋量的增大,填料层的持液量增加而空隙率减少,从而使开始发生液泛的空塔气速变小在吹脱过程中适当增大气量以减少二甲胺在液体表面的分压,显著增加二甲胺传质效率,提高二甲胺去除率。 NaOH浓度的影响温度的影响气液比的影响 吹脱出的二甲胺的处理方法和结果 二甲胺极易被水吸收,稳态吸收就能达到很好的效果,吸收率可达95%。 二甲胺极易与盐酸反应生成盐酸二甲胺。 (CH3)2NH+HCl— (CH3)2NH·HCl 因为此吸收属于化学反应,所以吸收速率与吸收率很高。二甲胺的吸收率达到100%。二甲胺-一氧化碳法由二甲胺与一氧化碳在甲醇钠作用下,直接反应而得。反应条件是1.5-2.5MPa 和110-150℃。粗品经精馏制得成品。 二含氟废水处理工艺 处理方法 沉淀法 指投加化学药品形成氟化物沉淀或氟化物被吸附于所形成的沉淀物中而共沉淀,然后分离固

第11章分离和富集方法练习答案 (2)

第11章分析化学中常用的分离和富集方法 思考题 1.分离方法在定量分析中有什么重要性?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.在氢氧化物沉淀分离中,常用的有哪些方法?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有:A.氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元 素则生成氢氧化物胶状沉淀。 B.氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 C.有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 D.Z nO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu (NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)

9分离富集习题及其答案

第9章 分析化学中的分离与富集方法 思考题答案 1. 分析化学中,为何要进行分离富集如何评价分离效果 答:将被测组分从复杂体系中分离出来后测定;把对测定有干扰的组分分离除去;将性质相近的组分相互分开;把微量或痕量的待测组分通过分离达到富集的目的,提高测定灵敏度。 用回收率(回收因子)和分离率(分离因子)评价分离效果。 2. 某水样溶液中含有Fe 3+、Al 3+、Ca 2+、Mn 2+、Mg 2+、Cr 3+、Zn 2+和Cu 2+等离子,加入NH4Cl 和氨水后,哪些离子以什么形式存在于沉淀中哪些离子以什么形式存在于溶液中如果加入NaOH 溶液呢 答:加入NH4Cl-NH3缓冲液,pH 在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 3. 相对于无机共沉淀剂,有机共沉淀剂有何优点其进行共沉淀分离有哪些方式 答:与无机共沉淀剂相比,有机共沉淀剂可经灼烧而除去,被测组分则被留在残渣中,用适当的溶剂溶解后即可测定;有机共沉淀剂的相对分子质量较大,体积也大,有利于微量组分的共沉淀;与金属离子生成的难溶性化合物表面吸附少,沉淀完全,沉淀较纯净,选择性高,分离效果好。 进行共沉淀分离的方式:利用胶体的凝聚作用进行共沉淀;利用形成离子缔合物进行共沉淀;利用惰性共沉淀剂。 : 4. 试说明分配系数和分配比的物理意义,两者有何关系分配比与萃取率有何联系如何提高萃取率 答:分配系数:是溶质在两相中型体相同组分的浓度比(严格说应为活度比)。而分配比:是溶质在两相中的总浓度之比。在给定的温度下,KD 是一个常数。但D 除了与KD 有关外,还与溶液酸度、溶质浓度等因素有关,它是一个条件常数。 D 与K D 的关系:w ,HA o ,HA D w ,HA w o ,HA o w ,HA o ,HA K ]HA []HA [c c D αα=αα== D 与 E 的关系:%V /V D D E O W 100?+=

第11章 分析化学中常用的分离与富集方法

第11章 分析化学中常用的分离与富集方法 1. 向0.02mol ·L-1Fe3+溶液中加入NaOH ,要使沉淀达到99.99%以上,溶液pH 至少是多少?若溶液中除剩余Fe3+外外,尚有少量FeOH+(β=1*104),溶液的pH 又至少是多少?已知KSP=8*10-10(9.30,9.34) 解:(1)由于剩余的Fe 3+为0.01%,所以[Fe 3+]=0.002×0.0001=2×10-6mol/L K sp =8×10-38=[Fe 3+][OH -]3, [OH -]=10-10.53, PH=3.53 (2) 若为Fe 2+时,则K sp =8×10-16=[ Fe 2+][OH -]2=2×10-6×[OH -]2, [OH -]=10-4.7 PH=9.30 若有FeOH +时,αFe(OH)=c Fe /[ Fe 2+]=1+β[OH -]=1+10-4[OH -] 代入得:K sp =8×10-16=[ Fe 2+][OH -]2= c Fe ×[OH -]2/αFe(OH) 解得 [OH -]=2.21×10-5 ,PH=9.34 2. 某溶液含Fe3+10mg ,用有机溶剂萃取它时,分配比为99。问用等体积溶剂萃取1次和2次后,剩余Fe3+量各是多少?若在萃取2次后,分出有机相,用等体积水洗一次,会损失多少Fe3+? 解:由公式m n =m o [V W /(DV O +V W )]n 计算得: 萃取一次后,m 1=10×[1/(99+1)]=0.1mg 萃取二次后,m 2=0.001mg 转入有机相的质量为:10-0.0001=9.999mg 因为D=99,所以反萃取率为1%,故水洗时Fe 3+的损失为:9.999×1%=0.1mg 3. 250mL 含103.5μg 铅的试液,分取10 mL ,用10 mL 氯仿—双硫腙溶液萃取,萃取率95%,用1cm 比色池,490 nm 测定,测得吸光度0.198,求分配比及吸光物质的摩尔吸光系数。(MPb=207.2 g ·mol-1){19,1.04*10 L ·cm-1·mol-15} 解:由E=D/D+1×100%=95%得:D=19 C(Pb)=m/M Pb V=103.5×10-6/207.2×0.25=1.998×10-6mol/L 5. 用乙烷萃取稻草试样中的残留农药,并浓缩到5.0mL ,加入5ml 的90%的二甲基亚砜,发现83%的农药残留量在乙烷相,它在两相中的分配比是多少?(4.88) 解:由E=D/D+1×100%=0.83 解得:D=4.88 6. 螯合物萃取体系的萃取常数,与螯合物的分配体系K D (ML n ),螯合剂的分配系数K D (HL ),螯合剂的解离常数Ka (HL )和螯合物稳定常数β有密切关系。试根据下列反应,推导出萃取常数与这几个常数的关系式。 (M n+)W +n (HL )O =(ML n )O +n (H +)W 10.现有0.1000 mol.L -1某有机一元弱酸(HA )10 mL ,用25.00mL 苯萃取后,取水相25.00mL ,用0.02000 mol.L -1溶液滴定至终点,消耗20.00mL ,计算一元弱酸在两相中的分配系数K D 。(21.00) 解: [][][][][][][][]()(){}(){} ()(){}(){}1n n n o w w n n n n n n D n D n o o w w n n n n n n n D o w D w w o n n w w H R MR MR MR H K MR Ka HR K MR Ka HR HR K M HR K HR M R HR K HR MR HR ββ +-+ ++-????????????====????????????

相关文档
相关文档 最新文档