文档库 最新最全的文档下载
当前位置:文档库 › 渗透汽化膜应用

渗透汽化膜应用

渗透汽化膜应用
渗透汽化膜应用

有机汽体渗透分离膜

技术及工业应用

北京清源洁华膜技术有限公司

2015年9月

北京清源洁华膜技术有限公司座落在北京市平谷区兴谷开发区,是平谷区重点工业企业和北京市高新技术企业。公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。

北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。

膜分离技术被认为是21世纪最有发展前途的新技术之一,其中气体膜分离技术由于Prism 中空纤维氮氢分离器的问世,取得了空前的发展。气体膜分离技术与传统的吸附冷冻、冷凝分离相比,具有节能、高效、操作简单、使用方便、不产生二次污染并可回收有机溶剂的优点,已广泛用于空气分离富氧、富氮技术、天然气中脱碳、合成氨中的一氧化碳和氢气的比例调节等领域。

北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4

月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。

有机蒸汽膜法回收技术是上世纪八十年代兴起的新型膜分离技术,是气体分离膜应用的一个分支,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。在化学、石化工业和医药工业中从废气中分离和回收有机蒸汽,炼油领域中分离有机蒸汽等应用越来越广泛。

有机蒸汽膜分离原理示意图:

用烷烃与空气混合气为介质测试有机蒸汽分离膜,分离膜对不同分子量的烃选择分离性能不同:

可以看出:烷烃的渗透选择性大于不凝气N2、O2等,特别是C4以上烷烃汽体,渗透选择性远远大于不凝气体。且碳原子数越大,渗透系数越大,对应说明烃选择分离性能更好。

北京清源洁华膜技术有限公司生产的透有机气体油汽分离膜已经实现规模化工业生产。

有机气体油汽分离膜:

8吋膜组件:

公司与中石化青岛安全工程研究院、北京燕山玉龙石化工程公司合作建设的中石化安徽阜阳油库油汽回收装置,采用我公司技术方案,使用我们加工生产的膜组件及装置,已经通过中石化系统专家认证,阜阳油库现场2015年2月已经完成设备安装, 8月阜阳油库总体改造准备工作完成,9月已经完成现场施工验收,现正在准备试车方案即将进行正常生产调试运行。

2015年6月公司与天津渤海集团签订了二甲苯尾气膜法回收处理合同,对集团现有生产装置提出尾气处理方案,膜装置集中处理生产过程中二甲苯尾气,9月装置已经开始试车,目前装置已投入正常生产运行。

试车检测结果如下,达到了合同规定的回收95%二甲苯的设计指标。

公司已经实现膜的稳定生产,膜分离应用的延伸工业化实验正在进行,更多的膜产品及工业体系即将实现实际应用。

渗透汽化技术

渗透汽化技术(PV)的应用 杨丽琴、阴秋萍 摘要:综述了渗透汽化膜传递理论研究的现状,叙述了渗透汽化膜分离技术的基本原理及传质过程的机理,叙述了渗透汽化过程的进展,叙述了渗透汽化分离水中微量有机物及其在化工生产上的应用进行了介绍. 关键词:渗透汽化;传递理论;原理;膜组件;脱水膜;应用 1 引言 渗透汽化(pervaporation,简称PV)是一种新型膜分离技术。该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸收等传统方法难以完成的分离任务。它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物以及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术上和经济上的优势;还可以同生物及化学反应耦合,将反应生成物不断脱除,使反应转化率明显提高。所以,渗透汽化技术在石油化工、医药、食品、环保等工业领域中具有广阔的应用前景及市场。它是目前处于开发期和发展期的技术,国际学术界的专家们称之为21世纪最有前途的高技术之一。 2 渗透汽化膜分离技术 2. 1 基本原理 渗透汽化是利用致密高聚物膜对液体混合物中组分的溶解扩散性能的不同实现组分分离的一种膜过程(如图1-1所示)。液体混合物原料经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧用抽真空或载气吹扫的方法维持低压。渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。不能透过膜的截留物流出膜分离器。 2. 2 PV膜过程的特点 (1) PV最突出的特点是分离系数大,单级即可达到很高的分离效果; (2) PV分离过程不受组分汽.液平衡的限制,适用于精馏等传统方法难以分离的近沸物和恒沸物的分离;

渗透汽化膜分离技术

蒸汽渗透膜分离技术 清华大学膜技术工程研究中心北京清源洁华膜技术有限公司 2015年10月

1. ,概要 北京清源洁华膜技术有限公司成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。 北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。 2.项目背景 清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果,建立了年生产能力10万平方米的渗透汽化膜生产线,在广东、山东、江苏、浙江、四川等地相继建成了30

渗透汽化膜分离项目简介

膜法有机气体回收项目 XXX技术工程中心 2015年11月

1. ,概要 北京清源洁华膜技术有限公司(以下简称清源洁华)成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 清源洁华主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术。其中膜法有机气体回收是以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。 清源洁华作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法;一种渗透汽化汽油脱硫用互穿网络膜的制备方法;二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法等。 2.项目背景 清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果。在渗透汽化膜制备、膜组件设计、膜工艺等方面申请专利10多项,形成了完整的具有我国自主知识产权的专有技术,代表着我国渗透汽化和汽体渗透膜技术的先进水平。

渗透汽化论文(渗透汽化膜分离技术的进展及应用)

渗透汽化膜分离技术的进展及应用 摘要: 综述了渗透汽化膜传递理论研究的现状, 分析了各种模型的特点, 并就渗透汽化膜传递理论的研究方向提出了建议。叙述了渗透汽化过程的新进展,并着重介绍了它在石化中的四方面应用,即(1) 有机溶剂及混合溶剂的脱水;(2) 废水处理及溶剂回收;(3) 有机混合物的分离;(4) 化学反应过程中溶剂的脱水。 关键词:渗透汽化;传递理论;模型;膜组件;脱水膜 前言 渗透汽化(Pervaporation, 简称PV ) 是用于液体混合物分离的一种新型膜技术。自80年代以来, 渗透汽化技术得到了很大的发展, 目前世界范围内有100 多套工业装置。然而, 渗透汽化膜分离的机理由于涉及到渗透物和膜的结构和性质, 渗透物组分之间、渗透物与膜之间复杂的相互作用, 涉及到化学、化工、材料、非晶态物理、统计学等学科的交叉, 研究工作的难度较大, 认识也不够深入。也提出了几种描述渗透汽化膜传递机理的模型, 其中主要有溶解扩散膜型和孔流模型[1]。膜技术作为一种高新技术,近30 多年来获得了极为迅速的发展,已在石油化工、海运、冶金、电子、轻工、纺织、食品、医疗卫生、生化制药、环保、航天等领域内广泛应用,形成了独立的新兴技术产业。据专家断言:“今后,谁掌握了膜技术,谁就掌握了石油化工技术的未来”。 1 渗透汽化过程传递机理 1.1溶解扩散模型 溶解扩散模型认为PV 传质过程分为三步: 渗透物小分子在进料侧膜面溶解(吸 附) ; 在活度梯度的作用下扩散过膜; 在透过侧膜面解吸(汽化)。 在PV 的典型操作条件下, 第三步速度很快, 对整个传质过程影响不大。而第一步的溶解过程和第二步的扩散过程不仅取决于高聚物膜的性质和状态, 还和渗透物分子的性质、渗透物分子之间及渗透物分子和高聚物材料之间的相互作用密切相关。因而溶解扩散模型最终归结到对第一步和第二步, 即渗透物小分子在膜中的溶解过程和扩散过程的描述。一般研究者都认为PV 过程的溶解过程达到了平衡[2]。对于这种考虑, 可以通过Henry 定律(对渗透物小分子和膜材料之间无相互作用力的理想情形) 或双方吸收模型(对渗透物小分子和膜材料之间存在较弱相互作用力的情形)或Flory-Huggins 模型(对渗透物小分子和膜材料之间存在较强相互作用力的情形) 计算得到渗透物小分子在膜表面的溶解度。近年来,Doong 等考虑到组分在膜中混合焓变、自由体积焓变、相互作用焓变和弹性焓变对总溶解焓变的影响, 提出了一个更为复杂的计算进料侧膜面组份活度的方法。 但实验发现, PV 过程的溶解过程并非总能达到平衡, 而是取决于溶解速度和扩散速度的相对大小[3]。余立新等通过实验发现了非平衡溶解过程的存在, 并提出了非平衡溶解扩散

渗透汽化膜应用

有机汽体渗透分离膜 技术及工业应用 北京清源洁华膜技术有限公司 2015年9月

北京清源洁华膜技术有限公司座落在北京市平谷区兴谷开发区,是平谷区重点工业企业和北京市高新技术企业。公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 膜分离技术被认为是21世纪最有发展前途的新技术之一,其中气体膜分离技术由于Prism 中空纤维氮氢分离器的问世,取得了空前的发展。气体膜分离技术与传统的吸附冷冻、冷凝分离相比,具有节能、高效、操作简单、使用方便、不产生二次污染并可回收有机溶剂的优点,已广泛用于空气分离富氧、富氮技术、天然气中脱碳、合成氨中的一氧化碳和氢气的比例调节等领域。 北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4

月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。 有机蒸汽膜法回收技术是上世纪八十年代兴起的新型膜分离技术,是气体分离膜应用的一个分支,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。在化学、石化工业和医药工业中从废气中分离和回收有机蒸汽,炼油领域中分离有机蒸汽等应用越来越广泛。 有机蒸汽膜分离原理示意图: 用烷烃与空气混合气为介质测试有机蒸汽分离膜,分离膜对不同分子量的烃选择分离性能不同:

渗透汽化膜分离法脱除汽油中有机硫化物的应用

渗透汽化膜分离法在脱除汽油中有机硫化物的应用 王雪1013207077 化学工艺13级博 渗透汽化技术又称渗透蒸发(Pervaporation,简称PV)技术作为一项新兴膜分离技术,以其高效、经济、安全、清洁等优点,在石油化工、医药、食品、环保等领域广泛应用,成为目前膜分离研究领域的热点之一。该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸附等传统方法难于完成的分离任务。它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术和经济优势。 一、基本原理 渗透汽化是利用膜对液体混合物中各组分的溶解扩散性能的不同,实现组分分离的一种膜过程,见图1(a)。在渗透汽化过程中,料液侧(膜上游侧)通过加热提高待分离组分的分压,膜下游侧通常与真空泵相连,维持很低的组分分压,在膜两侧组分分压差的推动下,各组分选择性地通过膜表面进行扩散,并在膜下游侧汽化,最后通过冷凝的方式移出1。有机溶剂脱水渗透汽化分离的原理见图1(b)。 图1(a)Schematic diagram of pervaporation process2 图1 (b)有机溶剂脱水渗透汽化分离的原理

二、渗透汽化膜 1.有机膜 渗透汽化的主要作用元件是渗透汽化膜,膜的性能对渗透汽化过程有决定性的影响。渗透汽化膜按照功能可分为亲水膜、亲有机物膜和有机物分离膜3种。亲水膜又称为优先透水膜,其活性分离层又含有一定亲水性基团的高分子材料制成,具有一定的亲水性。目前应用最广泛的亲水性商品膜是GFT膜,其分离层是聚乙烯醇。在全球商业化的渗透汽化装置中,约90%的GFT膜都是由德国预案GFT公司及其相关单位开发的。目前已有相关学者开始研究亲水性膜在火箭燃料肼、不对称二甲肼和甲肼脱水过程中的应用3456。亲有机物膜又称优先透有机物膜,通常由低极性、地比表面积和溶解度参数小的聚合物(如聚乙烯、聚丙烯、有机硅聚合物、含氟聚合物、纤维素衍生物和聚苯醚等材料)制成。尽管亲有机物膜在渗透汽化膜分离过程中具有非常高的潜在应用价值,且世界范围内对该膜已有广泛研究,但目前能实现工业化应用的还很少。有机物分离膜可适用的分离体系多且性质差异大,膜材料的选择没有普遍规律,必须针对分离体系的物理化学性质进行选择和设计,主要有芳烃-烷烃分离膜、醇-醚分离膜以及同分异构体分离膜。 2.无机膜 相对于有机膜,无机膜具有优良的热稳定性、化学稳定性、机械稳定性、耐酸碱、微生物侵蚀和耐氧化性等优点。这些优点使无机膜的发展备受科技界的重视,具有非常广阔的应用前景7。无机膜按材料可分为陶瓷膜、合金膜、高分子金属配合物膜、分子筛膜和玻璃膜等。多孔无机膜的制备方法主要有:固态粒子烧结法、溶胶-凝胶(Sol-Gel)法、阳极氧化法、薄膜沉积法、分相法和水热合成法等。已经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和Sol-Gel法为主。粒子烧结法制备的膜孔径范围一般在0.1~10μm,适应于微孔过滤。目前已开发的商品化微滤膜主要有氧化铝膜、氧化钛膜和氧化锆膜。 Sol-Gel技术可以制备超滤范围的小孔径膜,目前采用该技术制备的已经商品化的超滤膜有氧化铝膜、氧化钛膜、氧化硅膜和氧化锆膜8。近年来,有关Sol-Gel 技术的研究主要集中在制备孔径小于2 nm的纳滤膜和气体分离膜。分子筛膜作为无机膜的一种,具有良好的热稳定性、化学稳定性和分离选择性。通过调节硅铝比可以调节分子筛膜的亲疏水性,如高硅铝比的MFI分子筛膜具有很强的疏水性,而低硅铝比的A分子筛膜具有很强的亲水性。另外,分子筛本身具有催化活性,通过分子筛膜可以从分子水平上实现分离和催化一体化;同时由于分子筛的孔径尺寸一定,所以在催化反应中具有择形性。这些优越性使得分子筛膜具有良好的应用前景。分子筛膜的种类很多,根据不同的应用目的选择不同的制备方法,其制备方法主要有原位水热合成法910、二次生长法1112131415、嵌入法1617和

渗透蒸馏、渗透汽化、分子蒸馏的异同

渗透蒸馏、渗透汽化、分子蒸馏的异同 渗透蒸馏,又称为等温膜蒸馏,是基于渗透与蒸馏概念而开发的一种渗透过程与蒸馏过程耦合的新型膜分离技术,它具有一般膜分离技术投资省、能耗低的优点,同时又能在常温常压下使被处理物料实现高倍浓缩,克服常规分离技术所引起的被处理物料的热损失与机械损失,特别适合处理热敏性物料及对剪应力敏感性物料,从而使渗透蒸馏在食品、医药及生化领域展示出广阔的应用前景。 分子蒸馏亦称短程蒸馏,其应用能解决大量常规蒸馏技术所不能解决的问题。分子蒸馏是一种特殊的液—液分离技术,依据分子运动平均自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物质的分离。分子蒸馏进行时,液体混合物被加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子的平均自由程较小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,轻分子达到冷凝面后被冷凝,从而使其不断逸出;重分子达不到冷凝面,很快趋于动态平衡,这样就将混合物分离了。分子蒸馏技术的主要特点是其操作是在远低于沸点温度和很低的压强下进行操作的。 渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。 从诞生时间上说,渗透蒸馏、渗透汽化、分子蒸馏这三种技术均是新型的蒸馏分离技术,其中的分子蒸馏技术甚至是一项较新的尚未广泛应用于工业化生产的分离技术。其基本原理都是将沸点不同的液体气化从而达到液-液分离的目的,并利用了表面化学的原理,利用膜分离技术,增大了蒸馏分离的效率和分离出物质的纯度,节约了能源,提高了生产效率。 但是,这三种蒸馏技术也是有其独特特点和适用范围的。 一、渗透蒸馏过程及其特点 渗透蒸馏是指被处理物料中易挥发性组分选择性的透过疏水性的膜,在膜的另一侧被脱除剂吸收的膜分离操作,在通常情况下,被处理物料与脱除剂均为水溶液,渗透蒸馏过程能够 顺利进行是由于被处理物料中的易挥发组分在疏水膜的两侧存在渗透活度差,被处理液中的易挥发组分在疏水膜两侧的渗透活度相等,即蒸汽压力差不再存在时,则渗透蒸馏过程将停止进行。渗透蒸馏包括三个连续的过程:被处理物料中易挥发组分的汽化;易挥发组分选择的通过疏水性膜;透过疏水性膜的易挥发性组分被脱除剂所吸收。渗透蒸馏除了一般膜分离技术所具有的投资省、能耗低的特点以外,还具有优良的导热性能、适宜高倍浓缩及良好的选择性等。 二、分子蒸馏技术的特点: 分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点: 1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离; 2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质; 3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质; 4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。 三、渗透汽化过程特点。 渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将产生

渗透汽化膜分离研究的新进展

综 述 渗透汽化膜分离研究的新进展 夏德万1,2,张 强1,2,施艳荞23,赵 芸1,矫庆泽1,陈观文2 (11北京理工大学化工与环境学院,北京 100081; 2.中国科学院化学研究所,北京 100080) 摘要:渗透汽化膜分离技术是当前分离膜研究领域的前沿课题之一。作为化学分离中的重要组成部分,近年来受到高度重视。本文按渗透汽化膜分离的三大类混合液体系有机液脱水、从水相中分离有机物和有机混合液的分离,综述了近几年渗透汽化膜分离技术研究的新进展。其中,又重点报道了有机混合液分离的最新研究成果,将其分为:极性Π非极性化合物、芳香烃Π脂肪烃体系、芳香烃Π脂环烃体系、同分异构体、多元体系和汽油脱硫等六部分进行了详细叙述。文章最后还对渗透汽化膜分离研究进行了展望。 关键词:渗透汽化;膜;分离 渗透汽化(Pervaporation,简称PV)是在液体混合物中组分蒸汽压差推动下,利用组分通过膜的溶解与扩散速率的不同来实现分离的过程。自上世纪八十年代渗透汽化实现产业化以来,在世界范围内,已有320套渗透汽化工业装置在运行,成为膜分离技术的前沿领域之一。 渗透汽化特别适于蒸馏法难以分离或不能分离的近沸或共沸混合液的分离;对有机溶剂中微量水的脱除或废水中少量有机物的分离,以及水溶液中高价值有机组分的回收,具有相变质量小、效率高、能耗低、设备简单、工艺放大效应小等优点。与蒸馏法相比,PV用于从工业酒精生产无水乙醇节能75%;用于从含水15%的异丙醇生产无水异丙醇节能65%;用于酯化反应生产乙酸乙酯节能58%。PV分离效果突出,已经显示出可喜的应用前景,被学术界认为是21世纪化工领域最有前途的高新技术之一。本文基于近几年来报道的最新研究结果,综述了渗透汽化膜分离技术的研究进展。 1 用于有机液脱水的渗透汽化膜 长期以来渗透汽化的研究工作基本集中在水Π醇体系的分离,特别是水Π乙醇体系的分离。原德国G FT公司(现属瑞士Sulzer Chemtech)以聚乙烯醇(PVA)为膜材质,对水优先透过渗透汽化膜首先进行了系列产业化。至今各国仍然有很多水Π乙醇体系分离方面的研究,研究者们希望获得性能更好的水Π乙醇体系分离膜。 水Π醇体系的分离中另一重要部分是水Π异丙醇的分离。Anjali等[1]用与2,42二异氰酸甲苯酯交联的脱乙酰度84%的壳聚糖膜PV分离异丙醇中的水,并对未交联的和交联的膜进行动态热力学分析,评价了其热力学稳定性。这种膜能很好地打破共沸平衡,膜厚为10μm时,水Π异丙醇选择分离系数达472,水渗透通量为0139kgΠ(m2h)。Vijaya等[2]将纳米尺度(30~100nm)的聚苯胺(PANI)粒子分散在PVA中,制得纳米复合膜,并用其在30℃下PV分离含水10%~50%的水Π异丙醇混合物,实验发现纳米复合膜的渗透通量低于均质PVA膜,而选择分离性则大大提高了。K ittur等[3]在壳聚糖中混入NaY沸石而制得一种有 基金项目:国家重点基础研究发展计划资助项目(2003C B615701); 作者简介:夏德万(19832),男,湖北省通山县人,硕士研究生,主要从事分离膜的研究。 3通信联系人:施艳荞,E2mail:g wchen@https://www.wendangku.net/doc/461480218.html,

精馏-渗透汽化膜技术回收乙腈的应用实例

头孢曲松钠是瑞士Roche 公司1982 年上市的广谱长效抗菌素,其使用剂量小、毒副作用小,具有很大市场份额,是第三代具有广谱抗菌活性的头孢菌素。在实际生产中,由原料7-ACA制取头孢曲松钠粗品时,乙腈作反应用溶剂,反应结束后,产生的乙腈母液经过分离得到一定质量指标的回收乙腈再次作为反应溶剂循环使用。 传统工艺:在生产过程中,乙腈不可避免地与水及其它杂质混在一起,产生乙腈废液。由于乙腈会与水会形成恒沸物(常压下乙腈-水恒沸物含水量约16 wt.%),采用常规精馏方法无法将乙腈废液直接分离精制成可再次使用的反应溶剂(溶剂乙腈含水量通常≤0.05wt.%)。而从此工艺路线来看,回收乙腈的质量对头孢曲松钠粗品的质量起着决定性的影响。 而采用精馏-渗透汽化膜技术可以有效解决以上问题。 新工艺:将头孢曲松钠合成中的乙腈废液进入提浓塔,采用精馏方式脱除部分水与重组分;提浓后得到乙腈馏液送入中和罐调节酸碱度;将中和后的乙腈馏液送入除杂塔进一步除杂,乙腈馏液在除杂塔中脱除杂质后,进入渗透汽化膜分离机组,釜残液返回前级提浓塔回收其中的乙腈;经渗透汽化膜分离机组分离后得到粗品乙腈,料液侧溶液中的水以及少量乙腈以蒸汽形式透过渗透汽化膜得到渗透液,渗透液冷凝后返回中和罐后再次回收其中的乙腈;

渗透汽化分离机组得到的粗品乙腈送入精制塔进行精制,得到成品乙腈,精制塔馏出的乙腈-水恒沸物返回至除杂塔回收其中的乙腈。 新工艺流程图: 1是预热器,2是提浓塔,3是中和罐,4是除杂塔,5是过热器,6是渗透汽化分离机组,7是渗透液冷凝器,8是真空泵,9是精制塔。 江苏九天高科技股份有限公司是集研发、生产、销售、服务于一体的国家高新技术企业,致力于提供溶剂分离整体解决方案和优质服务,可用于生物医药、石油化工、精细化工、新能源等领域的有机溶剂分离和提纯。公司自主开发出针对不同应用领域和应用体系的溶剂分离及脱水工艺,通过成套化、标准化的系统研究与开发,实现了预处理系统、分离及脱水系统、节能系统、加热制冷系统和控制系统的模块化集成和全自动化控制。公司提供从技术研发、工艺设计、设备制造、工程实施、项目运营在内的定制化溶剂分离整体解决方案,欢迎新老客户来电垂询,莅临考察。

渗透汽化膜分离技术及其在石油化工中的应用

科技论坛在当前我国石油化工行业发展的过程中,由于渗透汽化膜分离技术有着高效、经济等方面的特点,因此得到了人们的广泛应用。这不仅使得石油化工产品的生产质量的效率得到进一步的提高,还很好的满足了现代化石油化工行业经济发展的相关要求。而且随着社 会的不断发展,人们将一些先进的科学技术应用到其中,这就使得渗透汽化膜分离技术的各方面应用效果得到有效的提高。下面我们就对渗透汽化膜分离技术以及在石油化工中的实际应用进行简要的介绍。1渗透汽化膜分离技术的基本原理 所谓的渗透汽化膜也就是根据液体混合物中各个组成成分的溶解扩散性的不同,利用膜来对其进行分离的一种过程。而在此过程中,人们则是通过渗透汽化的方式,在对其溶液进行加入,使得组分中的分压提升,使其膜在分压的推动下,来将溶液中存在的物质进行有效的处理,这就使得溶液的汽化分离效果得到有效的提升。2渗透汽化膜 2.1有机膜。我们在对溶液进行渗透汽化的过程中,渗透汽化膜在其中有着十分重要的意义,它的质量问题直接对整个渗透汽化分离的效果有着严重的影响。因此我们对渗透汽化膜的选着有着十分重要的意义。目前我们在对容易进行渗透汽化时,所采用的膜有很多种,我们可以根据其功能的不同将其划分成亲水膜、亲有机膜以及有机分离膜这三种。这三种不同的渗透汽化膜在不同的环境下,其自身的应用效果也就存在着一定的差异,因此为了保障其自身的应用效果,我们就需要采用相应的技术手段来对其进行选取,从而 满足人们的相关要求。 目前在我国工业生产的过程中,主要是采用有机膜,这样不仅使得工业生产的质量得到了有效的保障,还节约了工程使得施工成本,从而使其经济效益得到了进一步的提高。而且随着科学技术的不断进步,人们也将许多先进的技术手段应用到其中,这就使得渗透汽化膜分离技术的应用效果得到进一步的提高。 2.2无机膜。在渗透汽化分离技术应用的过程中,无机膜由于有着量额稳定性和耐氧性,因此子啊当前我国工业生产的过程中,也得到了人们的广泛应用。其中我们可以根据使用的材料不同将其划分成陶瓷膜、合金膜以及玻璃膜等,这种不同材料的无机膜在实际应用的过程中,其效果也不一样,为此我们在对其进行施工的过程中,就要根据其实际情况,来对其进行选取,从而使其应用效果得到有效的保障。2.3有机-无机复合膜。有机-无机复合膜兼顾了有机膜和无机膜的优点,其制备方法通常为Sol-Gel 法。将有机-无机复合膜用于渗透蒸发还处于研究阶段,目前已商品化的有机-无机复合膜是一种交联的聚二甲基硅氧烷-硅酸盐/聚丙烯腈复合膜,可用于高度水溶性有机物的去除。3渗透汽化膜组件 渗透汽化过程使用的膜组件可根据不同的膜材料和膜形状进 行选择,膜组件可以分为板框式、螺旋卷式、圆管式和中空纤维式4种。有机膜主要采用板框式膜组件,便于分离器内物料的加热并减小渗透侧气体的流动阻力。而管状无机膜主要采用圆管式膜组件。为了降低温度极化和浓度极化效应导致膜分离性能降低的影响,阐述了一种新型恒温管式膜组件,原料液在由管状膜与加热腔形成的 环形夹层中进行换热和分离,原料液通过加热腔中的加热介质直接加热, 供给混合物分离所需的热量。该膜组件可用于渗透汽化和蒸汽渗透膜分离过程, 也可用于膜分离与催化反应相结合以强化酯化反应、 酯交换反应等的催化膜反应器。4渗透汽化在石化中的应用渗透汽化被开发为工业实用技术,至今已有20多年的历史。国际上相继建成了100多套工业装置,这不仅证明了这一新型膜分离技术的可靠性,而且表明其在技术上具有先进性,充分显示出作为“绿色节能工艺”的优势和竞争力。 4.1有机溶剂脱水。渗透汽化技术在有机溶剂脱水领域的工业化应用得到迅速发展, 广泛应用于醇类、酮类、醚类、酯类、胺类、酸类等有机溶剂的脱水。在膜材料方面, 除了应用范围最广的聚乙烯醇/聚丙烯腈复合膜外, 世界范围内对无机膜(如分子筛膜)的开发和应用也在迅速发展。它是一种在多孔氧化铝载体上制备NaA 分 子筛膜的方法, 所制备的NaA 分子筛膜在乙醇、异丙醇等有机溶剂的渗透汽化脱水过程中表现出优异的分离性能。在此基础上,实现了NaA 分子筛膜的工业化应。 目前,在日本正在运行的NaA 型分子筛膜渗透汽化分离装置已有60多套。 相关学者以液体硅酸钠、铝酸钠和氢氧化钠为原料,在一种流动体系中制备了工业应用规格的 NaA 分子筛膜, 并建立了年生产能力100t 无水乙醇的分子筛膜渗透汽化分离装置, 该装置也可用于乙醇、异丙醇、四氢呋喃等有机溶剂的渗透汽化脱水, 且分离性能优良。采用该装置对乙醇溶剂进行连续脱水100h 的考察, 实验结果表明,该装置具有良好的稳定性。4.2废水中有机物的脱除。工业废水中除含有易挥发性有机物外,往往还含有各种盐类,目前要处理该类工业废水非常困难。如果采用传统的直接燃烧法, 盐类会腐蚀燃烧炉;如果采用普通的废水处理法,其中的有机物又会破坏后续生化处理过程中的生物活性。 采用渗透汽化技术则可以实现盐溶液和有机物的分离, 然后再采用传统方法分别处理盐溶液和有机物。 4.3有机混合物的分离。在石油化工领域,常常有大量的有机混合物需要分离, 如从石脑油中回收甲苯、苯乙烯等芳香烃;降低燃料汽油中芳香烃的含量等。对于相当部分恒沸物、 近沸物或同分异构体且它们含量差别较大的体系, 采用渗透蒸发技术,利用膜的选择性进行该类有机混合物的分离, 相对于传统的精馏法具有明显的优势。在芳烃-脂肪烃混合物的分离中, 苯和环己烷的分离是最典型的 结束语 总而言之,在在我国是由化工行业发展的过程中,渗透汽化膜分离技术的实际应用,不仅使得石油化工技术的应用效果得到进一步的提升,还满足现代化石油化工行业发展的相关要求,从而使其生产质量得到有效的提高。而且随着科学技术的不断进步,人们也将许多先进的科学技术应用其中,这就使得渗透汽化膜分离技术的 应用效果得到进一步的提高。参考文献[1]张小明,吕高孟,雷骞,索继栓.流动体系中NaA 分子筛膜的制备及 渗透汽化分离性能研究[J].膜科学与技术, 2010(1).[2]张雄福,王金渠,刘长厚.ZSM-5型沸石膜的合成及应用于乙苯脱 氢反应研究进展[J].膜科学与技术, 2001(2).渗透汽化膜分离技术及其在石油化工中的应用 李健 (哈尔滨石油化工设计院,黑龙江哈尔滨150000) 摘要:在现代化社会经济发展的过程中,石油化工行业的发展有着十分重要的意义,这不仅有利于社会经济的发展,还有效的提高了人们的生活质量,满足了人们日常生活的进步要求。而且随着时代的不断进步,人们为了使得石油化工生产效率和质量得到有效的保障也将许多先进的科学技术应用到其中,这就很好的满足了现代化石油化工行业发展的相关要求。其中渗透汽化膜分离技术的应用,就使得石油化工技术的应用效果得到进一步的提升。通过对渗透汽化膜分离技术的工作原理进行简要的介绍,讨论了渗透汽化膜分离技术在石油化工生产当中的实际应用,以供参考。 关键词:渗透汽化膜分离技术;石油化工;应用分析 19··

渗透汽化膜分离实验

膜分离是一项新兴的高效分离技术。膜分离过程是被分离混合物在一定的推动力(如压差、浓差、电位差等)作用下,通过传递介质——膜,进行分离的过程。渗透汽化(pervaporatioion,PV)是一种新型膜分离技术,它利用膜对液体混合物中组分的溶解扩散性能的不同来实现分离。它过程简单,操作方便,能耗低,在恒沸物、沸点相近混合物和异构体的分离上相对于精馏等传统分离方法具有其独特的优越性;对含有少量水的有机溶剂或混合溶剂脱水以及含有少量有机污染物的废水的处理也有明显的技术、设备和经济方面的优势。作为一项方兴未艾的新技术,渗透汽化技术正受到越来越广泛的关注和研究,它在石化、食品、环保等方面具有的广阔酌应用前景,正得到不断的开发和利用。 渗透蒸发(渗透汽化) 是有相变的膜渗透过程。渗透蒸发是在膜的下游侧减压,组分在膜两侧蒸汽压差的推动下,首先选择性地溶解在膜的料液表面,再扩散透过膜,最后在膜的透过侧表面气化、解吸。渗透蒸发可使含量极低的溶质透过膜,达到与大量溶剂分离的目的。显然,用渗透蒸发技术分离液体混合物,特别是恒沸物、近沸物,具有过程简单、操作方便、效率高、能耗低和无污染等优点。 一、实验目的与内容 1.理解渗透蒸发的分离原理。 2.掌握渗透蒸发分离乙醇——水的操作方法。 3.研究影响渗透蒸发分离性能的主要因素及其影响规律。 二、实验原理 当液体温合物在一张高分子膜的表面流动时,膜在高分子所含官能团的作用下对混合物中各组分产生吸附作用,使得组分进入膜表面(该步骤称为溶解过程)。膜的另一侧抽真空(或者用惰性气体吹扫),在浓度梯度作用下,组分透过膜从料液侧迁移到真空侧(该步骤称为扩散过程),解吸并冷凝后得到透过产品。整个传质过程中液体在膜中的溶解和扩散占重要地位,而透过侧的蒸发传质阻力相对小得多,通常可以忽略不计,因此该过程主要受控于溶解及扩散步骤。 由于不同组分在膜中的溶解和扩散速度不同,使得优先透过组分在真空侧得到富集,而难透过组分在料液侧得到富集。这便是渗透汽化的基本原理,其流程如图12-1所示。

沈明杰 2111207124渗透汽化膜分离技术介绍及其应用

渗透汽化膜分离技术介绍及其应用 沈明杰 (浙江工业大学药学院,浙江杭州310014) 摘要:膜分离技术是现代化工领域的高新技术,它在解决人类面临的能源、资源、环境等一些重大问题的新技术方面,获得了极为迅速的发展。渗透汽化膜分离技术作为一种新型的膜分离技术,应用于液体混合物的分离,其突出的优点是能够以低能耗,实现蒸馏、萃取、吸附等传统方法难于完成的分离任务。 关键字:膜分离;渗透汽化;应用 渗透汽化(Pervaporation,简称PV)是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。 一、渗透汽化膜分离技术的基本原理 渗透汽化是利用致密高聚物膜按液体混合物中组分的溶解扩散性能不同,来实现其分离的一种膜分离过程,有机混合物原料液经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧,用抽真空或载气吹扫的方法维持低压。这样,渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。不能透过膜的截留物流出膜分离器。因此,渗透汽化过程是依靠不同组分在特定聚合物膜中溶解扩散能力不同,透过速率不同,从而实现不同组分分离的目的。 二、渗透汽化膜分离技术的过程特点 渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将发生相变。因此必须在操作过程中不断加入至少相当于透过物气化吸收的热量,才能维持一定的操作温度。它具有以下特点: 1.分离系数大。针对不同物质的性质,选用适当的膜材料与制膜方法可以制得分

120323渗透汽化介绍

渗透汽化膜分离技术 及其市场应用的分析和展望
苏 州 2012 年 3 月

苏州 welfire
2012
目 录
一、渗透汽化膜分离技术………………………………………………………………2 二、渗透汽化技术优势…………………………………………………………………3 三、渗透汽化技术主要应用……………………………………………………………4 四、渗透汽化膜分类及简介……………………………………………………………4 4.1 有机膜……………………………………………………………………………4 4.2 无机膜……………………………………………………………………………6 五、HybSi 膜介绍及特点…………………………………………………………………8 5.1先进的HybSi膜材料……………………………………………………………8 5.2 HybSi 膜主要特点………………………………………………………………9 5.3 HybSi 膜性能测试……………………………………………………………10 5.4 与有机膜和 NaA 分子筛膜的对比……………………………………………15 六、HybSi 膜应用………………………………………………………………………15 6.1 适用范围………………………………………………………………………15 6.2 膜参数及规格…………………………………………………………………16 6.3 组件规格及参数………………………………………………………………16 6.4 部分组件图片…………………………………………………………………17 6.5 流程示意图……………………………………………………………………18 七、国内渗透汽化市场现状分析及前景展望……………………………………… 18 7.1 渗透汽化市场参与者…………………………………………………………18 7.2 国内渗透汽化市场现状………………………………………………………19 7.3 渗透汽化和 HybSi 膜的市场前景……………………………………………19 八、相关市场工作…………………………………………………………………… 21 8.1 推广 HybSi 膜工业化应用工程………………………………………………21 8.2 开发 HybSi 膜应用新工艺……………………………………………………21 8.3 销售渗透汽化膜产品,并提供渗透汽化膜应用工艺包……………………21 8.4 实现进口先进膜产品国产化…………………………………………………21
-1-

渗透汽化膜

滲析汽化膜技術小節 1.定義:渗透汽化简称PV,又称为渗透蒸发是一种新型膜分离技术。依靠各 组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的新型膜分离技术过程。 2.原理:具有致密皮层的渗透汽化膜将料液和渗透物分离为两股独立的物流, 料液侧(膜上游侧或膜前侧)一般维持常压【所有组分蒸汽分压都处于饱和状态】,渗透物侧(膜下游侧或膜后侧)则通过抽真空或载气吹扫的方式维持很低的组分分压。在膜两侧组分分压差(化学位梯度)的推动下,料液中各组分扩散通过膜,并在膜后侧汽化为渗透物蒸汽。由于料液中各组分的物理化学性质不同,它们在膜中的热力学性质(溶解度)和动力学性质(扩散速度)存在差异,因而料液中各组分渗透通过膜的速度不同,易渗透组分在渗透物蒸汽中的份额增加,难渗透组分在料液中的浓度则得以提高。可见,渗透汽化膜分离过程主要是利用料液中各组分和膜之间化学物理作用的不同来实现分离的。渗透汽化过程中组分有相变发生,相变所需的潜热由原料的显热来提供 3渗透汽化同时包括传质和传热的复杂过程,用于描述其机理的模型很多:溶 解扩散模型、孔流模型、不可逆热力学模型、虚拟相变溶解扩散模型、非平衡溶解扩散模型、等等被普遍认可的是:溶解扩散模型:溶解---扩散----吸收 4过程特点与传统的分离技术相比,渗透汽化过程的特点是: 1.高效,选择合适的膜,单级就能实现很高的分离度; 2.低能耗、运行成本低,一般比恒沸蒸馏法节能1/2~2/3,运行费用大大节省; 3.提高产品质量、环保,过程中不引入其它试剂,产品不会受到任何污染,,也有益于环境保护 4.过程简单,附加的处理少,操作方便; 5.资源利用率高,结构紧凑,占地面积小,便于放大及与其它过程耦合和集成。 交联聚乙烯醇膜上下包覆添加纳米SiO?粉末的丙烯酸\丙丙烯晴共聚膜形成渗透汽化复合膜----纯化甲醇、研究纳米SiO?粉末对共聚膜渗透汽化性能的影响结论:1.随纳米SiO?粉末添加量增加,复合膜的分离因子先增大后减小,当纳米SiO?

相关文档