文档库 最新最全的文档下载
当前位置:文档库 › 氧化试剂(硝酸钙)控制黑臭底泥营养盐释放的效果研究

氧化试剂(硝酸钙)控制黑臭底泥营养盐释放的效果研究

氧化试剂(硝酸钙)控制黑臭底泥营养盐释放的效果研究
氧化试剂(硝酸钙)控制黑臭底泥营养盐释放的效果研究

大型浅水湖泊内源营养盐释放的概念性模式探讨

中国环境科学 2002,22(2):150~153 China Environmental Science 大型浅水湖泊内源营养盐释放的概念性模式探讨  秦伯强,范成新(中国科学院南京地理与湖泊研究所,江苏南京210008) 摘要:通过在太湖开展的风浪与底泥悬浮的野外观测,结合分层采取水样并分析水体中溶解性营养盐的浓度随深度的变化结果,发现在水土界面的上覆水中营养盐浓度有突然增加的现象,指示着沉积物对上覆水营养盐浓度有影响.对沉积物中孔隙水营养盐浓度随深度的变化分析,表明了沉积物孔隙水中营养盐浓度变化与氧化还原环境的关系.结合水动力作用,提出了大型浅水湖泊水动力作用导致底泥悬浮,从而使得底泥中的可溶性营养物质释放这一内源释放的概念性模式. 关键词:太湖;水动力;底泥;孔隙水;悬浮释放 中图分类号:X524 文献标识码:A 文章编号:1000-6923(2002)02-0150-04 Exploration of conceptual model of nutrient release from inner source in large shallow lake.QIN Bo-qiang, FAN Cheng-xin (Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China). China Environmental Science. 2002,22(2):150~153 Abstract:Based on the field investigation of the wave and sediment suspension in Taihu Lake, along with sampling water by layer and analyzing the nutrient concentration change with depth, it was found that the nutrient concentration enhanced suddenly on the bottom. layer indicating the influence of sediment. Analysis of change of the nutrient concentration in porewater with depth indicates the relation between the oxidative-reductive conditions and the nutrient concentration. Integrating with dynamic function, the hydrodynamic inclucement of sediment suspension and a conceptual model for nutrient release from sediment in large shallow lake were suggested. Key words:Taihu Lake;hydrodynamic;sediments;porewater;suspension and release 在浅水湖泊的富营养化治理方面,底泥内源负荷量一直是一个有争议的问题.湖泊内源释放问题是由国外学者首先提出来的[1].其后所开展的工作与认识都是基于深水湖泊而言的[2].但在我国长江中下游地区,绝大多数湖泊是浅水湖泊.而且这些湖泊都面临着富营养化.太湖是一个典型的大型浅水湖泊.平均水深不足2m,最大水深不足3m.由于富营养化导致的蓝藻水华问题使得太湖的供水功能正逐步削弱. 目前有关太湖的水环境治理问题,主要是针对太湖富营养化的.治理富营养化,不外乎减少外源负荷和内源负荷.但是浅水湖泊内源释放的问题长久以来一直不清楚.本文基于作者在太湖开展的一系列野外工作为基础,提出了有关大型浅水湖泊内源释放的概念性模式.目的是为湖泊内源释放的估算及内源污染的控制提供科学依据. 1太湖北部梅梁湾的野外调查方法 为了弄清浅水湖泊中的动力作用对底泥内源释放的影响,于1998年2月和1998年7月,在位于太湖北部的梅梁湾湾口(2号点)与湾内(7号点)设点进行不同风速的动力条件下营养盐与悬浮物浓度随深度变化的定点采样与观测,观测内容包括风速与风向、水温、透明度、湖流等.同时分层取水样进行室内分析,(各形态氮与磷、悬浮物浓度与有机质含量等.)为了达到严格分层的目的,取样采用医用手持泵与软胶管相联,将软胶管放入水中指定的深度进行采样.在1998年2月的野外调查中,2月26日、2月24日和3月11日分别代表着小风(风速为2m/s左右)、中等(风速为5m/s)和大风(风速为6m/s).从位于收稿日期:2001-08-24 基金项目:国家自然科学基金资助项目(40071019); 中国科学院知识创新资助项目(KZCX2-311)

水体富营养化的生物治理

水体富营养的生物治理 0408210026 许方迪水体富营养化作用是指含大量氮、磷(含N>0.2—0.3mg/L,P>0.01—0.02mg/L)的工业污水或生活废水排入江河、湖泊或海域中时,水体出现的富营养状态。当富营养水体有适当的生物、水文、气象条件时.水体中的藻类等浮游生物发生暴发性增殖,使大面积的水域被藻类所覆盖.阻碍了水体与大气的接触,导致水中溶解氧的降低,而且某些藻类还会产生毒素。而藻类的代谢死亡,微生物分解藻体及其它有机物也要耗去水中大量的溶解氧。从而使水域产生大面积缺氧导致水体腐败发臭造成灾害,有的已成为公害.引起全球关注。水体呈现富营养化形成赤潮等灾害的主要原因是水中氮、磷等污染物质含量的增加,所以国家对污水排放中氨、磷量有较严格的要求.污水综合排放标准GB8978-96中规定:NH3一N<15mg/L。磷酸盐(以磷计)<0.5 mg/L. 我国地表水体富营养化状况及其原因 20世纪90年代以前我国水体富营养化并不十分明显,但是90年代以后情况就比较严重。东海、南海多次大面积出现赤潮,全国湖泊约有75%的水域受到N、P的严重污染,部分河流水域也出现富营养化,最为严重的是滇池,可以说是成了一个久治不愈的顽症。该湖自出现富营养化以来,采用了许多种防治措施,已花费巨额资金,但仍然没有明显好转。最近几年,江苏的太湖也出现了严重的富营养化。 目前,我国地表水体富营养化的地理分布,主要集中在经济比较发达、人1:1比较集中的城市附近,但随着经济发展,水体富营养化存在向农村扩展的趋势。引起这些地区地表水体富营养化的污染源主要可分为两大类:外源和内源。外源也叫外部污染源,所谓外部污染源是指污染水体的污染物来自水体以外的其他环境中的污染源,如大气降水进入地表水体、废污水的排放等。内源,主要是指那些引起地表水体富营养化的污染物质来自水体内部的污染源。 富营养化水体的脱氮除磷 水体富营养化防治的关键是控制水中氮、磷的含量。 1.生物硝化一反硝化脱氨这一方法是利用硝化和反硝化细菌的作用,通过人工控制条件,在常规污水好氧生化处理系统基础上增加缺氧段,达到去除水中氮的目的,此法主要用于工业废水的处理.全过程可分为两个阶段,第一阶段是硝化阶段,其目的是在人工强力曝气条件下,使污水中有机氮、磷、NH4+等转化为NO3—或NO2—.该过程可由一般好氧处理设施来完成.第二阶段是反硝化阶段,即兼性厌氧的反硝化细菌在厌氧条件下,将NO3—和NO2—转化为N2,并从水中逸出,从而达到脱氮的目的.其处理流程如图1所示: 第一阶段中,由于微生物的同化作用使部分氮、磷转化为细胞物质,可在沉淀中经污泥沉淀 —,将在第二阶段去除.由于反硝化细菌为化能异作用从水中去除;大部分氮被氧化为NO 3 养菌,必须以有机化合物为能源,以NO3—为代谢中的电子受体,将NO3—转化为N2。而由于第一阶段处理后出水中有机碳含量很低,因此要在第二阶段加入有机碳来满足反硝化细菌的需要.据报道,当污水中C/N<3:1时,反硝化作用受到抑制.一般应考虑用成本低的简单有机化合物为补充碳源.以甲醇为碳源时,反硝化作用过程为:

黑臭水体底泥原位治理技术研究

黑臭水体底泥原位治理技术研究 摘要:在我国现阶段的城市中,污染非常严重,经常会有黑臭水体出现。随着 外源污染逐步得到有效控制,治理底泥内源污染已成为改善黑臭水体水质的关键,直接影响河道治理效果。为了从根本上治理黑臭水体,必须控制河道底泥污染, 防止水体返黑、水质反复恶化。异地处理技术(如疏浚底泥)应用较广,但存在 工程量大、治理费用较高、处置过程中存在二次污染、底泥后续处理困难等问题,而底泥原位治理技术具有治理费用低,对河道水体二次污染和河道治理效果好等 优点,受到广泛关注,并逐渐成为底泥污染治理的研究热点。针对城市黑臭水体 处理现状,介绍了原位覆盖处理、化学处理以及生物修复3种黑臭水体底泥原位 治理方法的机理和修复效果,以期为治理城市黑臭水体提供借鉴。 关键词:黑臭水体;底泥污染;原位治理;生物修复 引言 黑臭水体不仅严重影响了城市的水景观,给人带来不愉悦的观感;丧失水体 功能性,抑制了人们的亲水和取水需求,同时还影响周围居民的身体健康,对人 们的呼吸系统、循环系统、消化系统都有不良影响。因此,解决城市河流的污染 问题、恢复河流的生态和社会功能不仅关乎城市整体形象的提升,更是与居民健 康和生活息息相关,是十分必要且迫切的。 1城市黑臭水体危害分析 在探讨城市黑臭水体治理问题和相关技术前,我们首先需要明确黑臭水体的 来源、构成,并且分析其造成的极大危害。城市黑臭水体之所以会产生,其根源 在于大量城市生活污水和工业废水被肆意排放,未经过相应处理。这些水体中存 在过量污染物质,而微生物在这些污染物中肆意繁殖,消耗大量氧气,水体逐渐 呈现缺氧状态。在这种条件下会进一步导致各种厌氧微生物的繁殖,这会使得水 体中有机物迅速腐烂随之发酵,这就会产生很多氨气,硫化氢及甲烷等具备恶臭 的有毒有害气体,这也是水体臭味的来源。而水体中的金属离子又会进一步和水 体中存在的硫离子发生反应,生成FeS或MnS这些黑色物质,这便是我们看到水体呈黑色的造成原因。城市黑臭水体无论是对自然环境还是人们的生活环境都具 备极大危害。首先,黑臭水体的存在会严重影响自然生态环境,在污染空气,破 坏市容的同时也会对于其他生物的生存构成恶劣影响。另一方面,城市黑臭水体 中会产生大量挥发性有毒气体,比如硫化氢就是其中一种。这种气体对于人体有 严重毒害作用,达到一定剂量后甚至会有致命危险。因此,城市黑臭水体必须得 到尽快治理,并且要得到积极有效治理,这才会营造良好的社会环境和城市生活 环境,才不会影响到城市居民的生活质量。 2黑臭水体治理技术 2.1原位覆盖技术的应用 目前,原位覆盖技术的施工方式主要有以下几种:机械设备表层倾倒法、移 动驳船表层撒布法、水力喷射表层覆盖法、驳船管道水下覆盖法。国外运用覆盖 技术进行底泥污染释放的控制工程很多。此技术在我国研究开展较晚,应用并不 广泛,大多停留在实验室阶段,存在巨大前景。目前,我国已有学者在研究新的 覆盖材料,如李杨等将芦竹茎、芦苇茎、花生壳及玉米芯利用限氧升温炭化法烧 制成的生物炭可以提高底泥的硝化作用强度,对底泥NH4+-N、COD及PO34--P的释放有削减作用,具有应用到污染水体底泥修复的潜力。 2.2清淤疏浚

藻类生长所需营养盐的研究进展-芭灵儿珊

藻类生长所需营养盐的研究进展 1、藻类生长所需常量营养盐的研究 1.1氮磷含量 以往大量的研究资料表明,磷通常是淡水浮游植物增长的限制性营养因子,而氮通常是海洋浮游植物的限制营养因子。一般认为TN>1.2mg/L、TP>0.11mg/L时,水体即开始富营养化。 在淡水水体中,当TP<0.10mg/L,藻的生长最终发展为磷限制。而过高磷含量的输入,当TP=1.65mg/L,并没有进一步促进藻类的生长。 1.2氮磷比 氮磷是通过数量和组合来影响藻类生长的。因此氮磷比也是影响藻类生长的一个重要条件。当营养盐总量满足时,氮磷浓度比值11:l。当N/P<11时,氮相对不足;当N/P>11时,磷相对不足(淡水)。高盐情况下浮游植物生长的最适N、 P比(7∶1)。 研究不同氮磷比对铜绿微囊藻生长的影响。结果表明,氮磷营养盐在藻类生长过程中是重要的影响因子。在不同磷质量浓度条件下,藻类生长的最佳条件是ρp=0.07 mg·L-1,且在磷质量浓度大于0.07 mg·L-1时,藻类生长状况要优于磷质量浓度小于0.07 mg·L-1时。在不同氮磷比条件下,藻类最佳生长条件为氮磷比等于40:1,藻类生长取决于氮的质量浓度。铜绿微囊藻属于非固氮藻,需要高氮磷比。 在不同的N/P比值污水中,藻类的种类组成不同,绿藻大量增值时需要氮相对丰富的营养水体,而蓝藻大量增值时需要磷相对丰富的营养水体。 1.3不同的氮源 N是藻类生长的必需元素.一般来说,藻类只吸收利用无机态氮,主要有NH4+-N、NO3--N和NO2--N.由于NO2--N在自然水体中含量很少,因此NH4+-N和NO3--N是藻类利用的主要形态.不少研究证实,藻类优先利用NH4+-N,而且NH4+-N的存在还会抑制NO3--N的吸收。 利用水族箱微宇宙研究了水体中2种氮源,铵态氮(NH4+-N)和硝态氮(NO3--N)对藻类生长的影响。结果显示:试验初期以NH4+-N为主要氮源的水体中藻类生长明显好于以NO3--N为主要氮源的水体.试验后期则以NO3--N为主要氮源的藻类生

水体富营养化程度评价

水体富营养化程度评价 一、实验目的与要求 (1)掌握总磷、叶绿素-a及初级生产率的测定原理及方法。(2)评价水体的富营养化状况。 二、实验方案 1、样品处理 2 、工作曲线绘制 取7支消解管,分别加入磷的标准使用液0.00、0.25、0.50、1.50、2.50、5.00、7.50mL以比色管中,加水至15ml。然后按测定步聚进行测定,扣除空白试验的吸光度后,和对应磷的含量绘制工作曲线。 3、计算 总磷含量以C(mg/L)表示,按下式计算: 式中: M 试样测得含磷量,μg V 测定用水样体积,ml

注意:每个小组做空白2-3个,标线5个,样品3-4个。 图1 采样布点分布 三、实验结果与数据处理 1、工作曲线绘制 根据上表数据,绘制工作曲线如图2所示: 图2 标准工作曲线 从标准工作曲线图可以看出,其相关系数R2 = 0.9969,高于实验室最低要求R2=0.995,可见其相关度较好,可用以求解水样中总磷的浓度。

2、八个水样数据结果与处理 根据上表数据作水中磷质量浓度柱形图,如图2所示: 图2 各组水中总磷质量柱形图 四、实验结果 1、实验结果分析 从实验数据和图2可以看出,第一、三、四、五、八组数据比较准确,因为

这几组平行样数据比较接近,而且跟稀释后所测的浓度也大约呈5倍关系,可以保留作为水中磷质量浓度评价,而其他组数据误差较大,故舍去。根据各组原水样总磷质量浓度求评均整理下表。 从上表数据可以看出,第五组所测的水中总磷浓度较高,根据图1可知第五组采样点为第四饭堂附近,可能是由于饭堂平时清洁所用的洗涤剂含磷较高,排放入河涌的污水导致河水受污染。 2、污染程度分析 表4 总磷与水体富营养化程度的关系 本实验是以水体磷平均浓度平均参数,本次实验所得的监测采样点数据的平均浓度是0.205mg/L,测得的最小浓度为0.142mg/L,测得的最高浓度为0.311mg/L,由表1可知超过0.1mg/L就为水体富营养化,本次实验测得的最低浓度也超出0.1mg/L,本次实验所得数据均说明该水体富营养化。 3、解决措施 该河涌地处大学城内,不受工业排放污染,所以造成该河涌富营养化的主要原因是生活污染,比如饭堂、学生公寓、商业区等,要治理河涌首先还是得从源头抓起,特别是饭堂、学生公寓和商业区,必须监控从这三个地方流出的污水,须进行处理达标后才能排入河涌;其次就是要严格审查各类洗涤剂等,含磷超标的不能进入市场;最后就是要树立环保意识,大家环保觉悟高了,从自己做起,自然就有绿水青山。 五、思考题 (1)查资料说明评价水体富营养化程度的指标有哪些? 答:水体富营养化程度的评价指标分为物理指标、化学指标和生物学指标。物理指标主要是透明度,化学指标包括溶解氧和氮、磷等营养物质浓度等,生物

阅读材料:水体富营养化的概念及原因

水体富营养化 1.水体富营养化概念 水体富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 2.水体富营养化的机理 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质的来源,水体也很难自净和恢复到正常状态。

清华大学:城市水环境整治水体修复技术的发展与实践培训资料

清华大学:城市水环境整治水体修复技术的发展与实践 清华大学环境学院刘翔 我国城市河流有90%左右受到污染,出现水体滞流、多处于厌氧状态、复氧能力差、淤积严重、透明度低、甚至发生黑臭等现象。由于城市水体污染负荷远远超过城市有限受纳水 —N等污染物严重超标,水生生态系统结构体的环境容量和自净能力,导致河水中COD、NH 3 破坏,生物多样性锐减,城市水体的生态功能和使用功能日益衰退,水体修复和水生态功能恢复的难度明显加大,城市河流水环境生态系统处于失衡状态。同时,城市污水中氮磷污染物未经有效去除,又成为城市水体发生富营养化的重要诱因,造成水体生态功能的衰退甚至丧失,水生生态环境的破坏已经成为城市生态文明建设的主要障碍。“有水皆污”、“河道黑臭”已经成为许多城市面临亟待解决的环境顽疾。城市水环境综合整治和水体修复技术是破解上述难题的有效方法,国家重大水专项城市主题在“十一五”期间重点针对城市水体修复技术开展了研究集成和示范应用,突破了44项关键技术,建立了25项示范工程,取得了良好的效果,为我国水体修复积累了技术集成方案和工程实践经验。 1城市水体修复的科学原理与技术思路 城市水体修复技术是指根据生态学和环境学的原理,综合运用水生生物和微生物的方法,使污染水体得到改善或恢复所采用的技术。其特点是充分发挥现有水环境工程的作用,综合利用流域内的湿地、滩涂、水塘、堤坡及水生生物等自然资源及人工合成材料,对城市水域自恢复能力和自净能力进行强化恢复或提升。 生态修复是相对于生态破坏而言的,生态破坏就是生态系统结构和功能的破坏,因而生态修复就是恢复生态系统合理的结构、高效的功能和协调的关系,就是重建受损生态系统的功能以及相关的物理、化学和生物特性。其本质是恢复系统的必要功能并使系统达到自我维持的状态。修复的目的就是要再现一个自然的、能自我调节的生态系统,使它与它所在的生态景观形成一个完整的统一体。但要将一个受损的生态系统的结构与功能恢复到受损前的水平是一项艰巨、困难和漫长的工作。从一定意义上讲,修复又可定义为使受损的生态系统的结构与功能最大限度地接近受损前的水平。就是针对具体受损的生态系统,找出目前环境条件的限制性因素,根据生态工程学原理,对该系统实施种群组建或重建,恢复其原有的生物多样性,使其达到具备自我维持与自我调节的能力。因此,要从生态、社会需求出发,实现

浅论湖泊富营养化预测及评价的模型的研究

目录 摘要 1 引言…………………………………………………… 2 绪论………………………………………… 2.1 湖泊富营养化的概念及分类………………………… 2.2 国内外水体富营养化污染概况…………………… 3 湖泊富营养化的研究内容……………………………… 3.1 富营养化预测………………………… 3.1.1 预测的目的及内容……………… 3.1.2 预测模型进展概况……………… 3.2 富营养化评价…………………… 3.2.1 评价的目的及意义……………………… 3.2.2 评价的基本步骤………………………… 3.2.3 评价模型进展概况…………………… 3.3 湖泊富营养化模型………………………… 3.3.1 评分模型………… 3.3.2 营养状态指数模型………… 3.3.3 改进的营养状态指数模型……………… 3.3.4 生物多样性评价………… 3.3.5 灰色理论评价模型…………………… 3.3.6 浮游植物与营养盐相关模型………………………… 3.3.7 生态动力学模型……………… 4 结论及展望…………………………………… 4.1 结论………………………… 4.2 展望……………………………… 参考文献…………………………

摘要 本文主要讲述了湖泊富营养化的几种模型,分别有:评分模型、营养状态指数模型、改进的营养状态指数模型、生物多样性评价、灰色理论评价模型、浮游植物与营养盐相关模型、生态动力学模型,针对不同模型分别进行相应介绍,并且对国内外水体富营养化污染做出一定概况,对未来湖泊水体进行了一定程度的展望。 1 引言 水资源是人类赖以生存的基础物质,随着人口增长和社会经济飞速发展,水的需求量急剧增加,而水资源污染也日益严重。我国自20世纪80年代以来,由于经济的急速发展和环保的相对滞后,许多湖泊、水库已经进入富营养化,甚至严重富营养化状态,如滇池、太湖、西湖、东湖、南湖、玄武湖、渤海湾、莱州湾、九龙江、黄浦江等。2000年对我国18个主要湖泊调查研究表明,其中14个已经进入富营养化状态。 2 绪论 2.1 湖泊富营养化的概念及分类 通常,湖泊水库等水体的富营养化[1]是指湖泊水库等水体接纳过量的氮、磷等营养物质,使藻类和其它水生生物大量繁殖,水体透明度和溶解氧发生变化,造成水体水质恶化,加速湖泊水库等水体的老化,从而使水体的生态系统和水功能受到损害。严重的会发生水华和赤潮,给水资源的利用如:饮用,工农业供水,水产养殖、旅游等带来巨大的压力。另一种定义方法[2](Cooke等提出)是由于过量的营养物质、有机物质和淤泥的进入,导致的湖泊水库生物产量增加而体积缩小的过程。该定义除了营养盐以外,还强调了有机物质和底泥的输入。因为有机物质也可以导致水体体积缩小,溶解氧消耗,并通过矿化作用从沉积物中释放营养物质;淤泥的输入也可使水体面积缩小,深度降低,并能吸附营养盐和有机物质沉积到水底部,成为潜在污染源。释放后必然会促进水体生物的大量繁殖,当水体内大量的植物(沉水植物和漂浮植物)以及大量藻类死亡后,释放的有机物和营养物会进一步加剧水体的营养程度。 根据水体营养物质的污染程度,通常分成贫营养、中营养和富营养三种水平。实际上,湖泊水库等水体的富营养化自然条件下也是存在的,不过进程非常缓慢,这就是地理学意义上的富营养化。然而一旦水体接受人类活动的影响,这种转变的速度会大大加快,特别是在平原区域,人口密集,工农业发达,大量污水进入水体,带入大量的营养物质,极大的加速水体富营养化进程。人们通常所说的富营养化是指这种在人为条件的影响下,大量营养盐输入湖泊水库,出现水体有生产能力低的贫营养状态向生产能力高的富营养状态转变的现象。这种富营养化通常称为人为富营养化。 水体富营养化的发生也是逐步进行的。水体在营养盐浓度较低,藻类和其它浮游植物的生物量随着营养盐浓度的增加而相应增加的时期,称为响应阶段,这

黑臭水体治理技术路线介绍(定稿)

黑臭河涌治理技术路线介绍

引言 城市内湖泊、河道等景观水体是城市人居环境中重要的组成部分,城市河流作为城市的命脉,不仅有水体循环、水土保持、贮水调洪、水质涵养等功能,而且还能调节温湿度、改善城市小气候,健康的城市水体环境是城市可持续发展的重要保障。但由于其易污染、水环境容量小、水体自净能力差等特点,很容易成为居民生活污水、雨水及垃圾的受纳体,从而导致水体溶解氧的大量消耗,造成了水体缺氧而呈黑臭状态,使整个生态系统出现危机。然而随着经济的快速发展和城市化的加快,我国许多城市河流水质污染和生态退化问题十分突出,甚至出现了季节性和常年性水体黑臭现象。城市河流出现黑臭,已成为我国许多大、中城市共同存在的污染问题,河流黑臭是我国城市河网的一个普遍现象,严重影响居民生活、城市形象和生态环境。因此,解决城市河流的污染、恢复河流的生态和社会功能问题仍然是许多城市可持续发展过程中亟待解决的关键任务之一。 1、河道黑臭原因 城市河道黑臭主要是过量纳污导致水体供氧和耗氧失衡的结果,当河道所接纳的污染负荷远远超过自身净化能力后,就会引起河道黑臭河道黑臭是有机污染的一种极端现象,是由于水体缺氧,有机物腐败而造成的。水体缺氧乃至厌氧条件下污染物转化并产生氨氮、硫化氢、挥发性有机酸等臭恶臭物质以及铁、锰硫化物等黑色物质。 消除城市河道黑臭、改善城市水环境质量,对保障城市人居健康、促进社会和谐与经济持续发展具有极其重要的现实意义。引起河道黑臭的原因主要有以下几种: 大量污染源进入河道大量外源性污染物的进入河道是河道黑臭的主要原因。生活污水是导致城市河道黑臭的最普遍和最主要的污染源,其他污染源还有:生活垃圾、有机工业废水、合流制管网溢流污水、污水厂尾水、畜禽养殖场粪便污水等。大量未经处理的污水直接排入河道,使河水溶解氧几乎为零,导致河道出现黑臭现象。 不利的水动力条件,在感潮河网地区,每天两潮的潮起潮落,使污水受潮流顶托,长时间回荡、停留在河道中无法顺利排出,容易发酵造成反复污染,同时从上游挟带的泥砂及各种垃圾就在内河床中沉淀下来,经过日积月累较易产生淤积黑臭现象。

湖泊富营养化与氮磷等营养盐之间的关系

湖泊富营养化与氮磷等营养盐之间的关系 姓名:冯涛学号:5802112013 班级:环工121 摘要:本文主要通过对湖泊氮磷的时空特征和富营养化的关系进行分析。主要包括氮磷的时间动态和空间动态,并且对氮磷等营养盐的来源进行详细的分析,探讨富营养化水体中氮磷的去除机理。 关键字: 富营养化氮磷来源和去除时空特征 湖泊富营养化是一个缓慢的自然过程,但人类活动加速了这一过程。人类活动被认为是富营养化频发的诱发主因。湖泊富营养化过程复杂,影响湖泊富营养化的因素很多, LauandLane(2002)认为水体富营养化是非生物和生物相互作用的复杂过程。湖泊富营养化不仅与氮磷含量有关, 而且氮磷比也是一个重要的影响因子, 氮磷比可影响藻类等浮游植物的生长。有关研究发现不同的营养盐比例可以控制藻类的生长, 生物量以及种群结构。因此, 本文将对我国湖泊氮磷的时空特征和湖泊富营养化的关系进行综合分析。一般说来,当天然水体中总磷大于20毫克每立方米,无机氮大于300毫克每立方米时,就可认为水体处于富营养化状态。富营养化水体中的氮、磷促使水中的藻类急剧生长,大量藻类的生长消耗了水中的氧, 使鱼类、浮游生物因缺氧而死亡,他们的尸体腐烂造成了水质污染。因此去除水体中大量的氮磷是治理富营养化污水的根本。我们通过对氮磷的来源的分析来更好的控制源头,对氮磷的去除机理的探讨来缓解富营养化严重的现状。 一、氮磷等营养盐来源分析 1. 营养盐来源按进入途径可分为外源和内源。外源污染又可分为

两大类: 点源,来自流域的城镇生活污水和工业污染源排放;面源,来自流域的农田径流、畜禽养殖、水产养殖及其他面源。随着点源污染排放的不断达标, 面源污染日益成为水体富营养化的主要来源。内源污染是由于湖底沉积物中液态营养盐向上覆水中释放, 在动力作用下营养盐再悬浮造成的, 在这种因素影响下, 即使大幅度削减外源污染负荷, 在特定条件下( 高温少雨) , 仍可能引起藻类暴发, 所以内源污染成为湖体藻类暴发的关键因素。下面就两类主要的营养盐来源—— 面源和内源分别加以论述。 (1)面源污染 面源污染是继城镇生活污水、工业废水之后的第三大污染源, 而且治理难度比点源治理要复杂得多。我国农业大多数地区还是粗放型管理, 没有达到测土施肥、施药和科学管理的程度。特别是为了取得连续稳定的高产, 耕地的复种指数提高, 化肥施用量激增。另外, 集约化的畜禽养殖和水产养殖, 使大量的动物粪便与饵料残渣进入湖体, 加剧了湖泊的富营养化程度。不断的土地开垦使森林覆盖率下降、湿地面积减少, 水土流失严重。例如巢湖非点源入湖TN, TP 总量占全湖输入量超过68% 和74%。 在诸多面源污染中, 降雨径流污染成为最主要的营养盐来源。大量营养盐在暴雨的冲刷下, 从地表向湖区迁移, 导致径流中的污染物浓度远远超过非暴雨期。以滇池为例, 滇池流域的大清河, 暴雨期悬浮物浓度比平时均值高22 倍, NO-2-N 高达163倍; 宝象河暴雨期最大悬浮物浓度是非暴雨期的106倍。研究者们在这方面做了大量工作,

实验1水体富营养化程度的评价

实验五水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标, 常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1 )。

1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 1. 仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 (9) 多功能水质检测仪。 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。

水体富营养化及其防治措施

水体富营养化及其防治措施 应化0902班田亚丽 案例:2007年,浙江全省海域共发生赤潮40次,发生面积累计近8500平方千米。其中有毒赤潮生物引发赤潮3次,累计面积约315平方千米。浙江省海洋与渔业局日前发布的2007年度浙江省海洋环境公报指出,2007年,舟山海域和渔山列岛—韭山列岛海域是赤潮高发区。上述两个海域发生赤潮的次数和面积分别占全省的65%和79%。 1、前言 近些年来,环境问题日益严重。酸雨危害加剧,南极臭氧层空洞越来越大,患皮肤癌及其他皮肤病的人数越来越多,全球变暖趋势不改甚至加快,导致很多低于海平面的国家面临被淹没的威胁,会使全球降水量重新分配,冰川和冻土消融,海平面上升等。资源、能源短缺当前,世界上资源和能源短缺问题已经在大多数国家甚至全球范围内出现。森林面积锐减,土地沙漠化,更是早就出现但是一直没有得到解决的问题。我只取一方面加以讨论,就是我们地球上面积最大的海洋,最为严重的水体富营养化的问题,并提出几点防治措施,希望能为环境保护尽一些绵薄之力。 2、水体富营养化的定义及产生 水体富营养化是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。这种现象在河流湖泊中出现称为水华,在海洋中出现称为赤潮。 国际经济合作与开发组织对水体富营养化开展了一系列的研究工作,最后确定氮、磷等营养物质的输入和富集是水体发生富营养化的最主要原因,大约80%的湖泊富营养化是受磷元素的制约,大约10%的湖泊与氮元素有关, 余下10%的湖泊与其他因素有关。 水体富营养化主要是由于工业废水、生活污水、化肥农药的使用和其他一些污染物中富含氮和磷的污染物进入湖泊海洋中,造成藻类疯狂生长。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主,蓝藻是一种细菌,繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从而使水质恶化,造成鱼类和其他水生生物大

黑臭水体治理 如何让水活起来

问渠哪得清如许?为有源头活水来。如何让“黑臭死水”恢复生机,摇身变为“源头活水”? 早些年针对水环境治理政府并非没有行动,一些河道治理后,没多久又反弹。治理易,久清难,问题出在哪儿? 水环境治理是一项投入巨大的工作,历史欠账多,真正治理需要面临的建设投资和运管费用巨大的工程。 “黑臭水体的问题,本质是污水直排环境的问题,再往上追,是城市环境水利设施不配套的问题,包括管网不配套、污水处理厂不配套等问题。”张波曾说过,黑臭水体整治有其复杂性,尤其是在一些老城市,其城市建成区管网欠账较多,建设管网时涉及到拆迁等问题,比较复杂。 大政策、大收益 如今,让专业的人做专业的事,引入全过程治水责任主体对最终效果负责。国家对环境绩效进行相应考核以及吸引社会资本进行环保等基础设施建设,传统模式逐渐被颠覆,转而由专业的大型水务企业对一片区域甚至城市的水环境进行综合治理,正在成为趋势。这种模式在纵向上由企业设计、建设、运管,具有责任可追溯性,同时也能保障机制长效性。横向上,这种模式将打破政府条块分割的壁垒。 引入社会资本参与基础设施和公共服务的PPP(政府与社会资本合作)模式,是十八届三中全会决议上确立的改革政策之一,也是提升国家治理现代化水平的重要举措。 到目前为止,PPP模式已经取得很大的作用,据调查总结:自2017

年初至目前,多家公司捷报频频,纷纷发布公告称获得河流治理大金额订单。 图 谈治理易、实施难 城市河道的黑臭治理应遵循“外源减排、内源清淤、水质净化、清水补给、生态恢复”的技术路线。 外源减排和内源清淤是基础与前提。 水质净化是阶段性手段。 水动力改善技术和生态恢复是长效保障措施。 一是外源阻断技术。包括城市截污纳管和面源控制两种情况。针对缺乏完善污水收集系统的水体,通过建设和改造水体沿岸的污水管道,将污水截流纳入污水收集和处理系统,从源头上削减污染物的直接排放。对尚无条件进行截污纳管的污水,可在原位采用高效一级强化污水处理技术或工艺,避免污水直排对水体的污染。城市面源污染控制技术主要包括各种城市低影响开发(如海绵城市)技术、初期雨水控制技术和生态护岸技术等。水体周边垃圾的清理是面源污染控制的重要措施。 二是内源控制技术。 (1)清淤疏浚技术,通常有两种:一种是抽干湖/河水后清淤;另一种是用挖泥船直接从水中清除淤泥。后者的应用范围较广。清淤疏浚能相对快速地改善水质,但清淤过程因扰动易导致污染物大量进入水体,影响到水体生态系统的稳定,具有一定的生态风险。

湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定 2004-08-11 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: 式中:—综合营养状态指数; Wj—第j种参数的营养状态指数的相关权重。 TLI(j)—代表第j种参数的营养状态指数。 以chla作为基准参数,则第j种参数的归一化的相关权重计算公式为: 式中:rij—第j种参数与基准参数chla的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla与其它参数之间的相关关系rij及rij2见下表。 ※:引自金相灿等著《中国湖泊环境》,表中rij来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl) ⑵ TLI(TP)=10(9.436+1.624lnTP)

⑶ TLI(TN)=10(5.453+1.694lnTN) ⑷ TLI(SD)=10(5.118-1.94lnSD) ⑸ TLI(CODMn)=10(0.109+2.661lnCOD) 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn) 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级: TLI(∑)<30贫营养(Oligotropher) 30≤TLI(∑)≤50中营养(Mesotropher) TLI(∑)>50富营养 (Eutropher) 50<TLI(∑)≤60轻度富营养(light eutropher) 60<TLI(∑)≤70中度富营养(Middle eutropher) TLI(∑)>70重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由中国环境监测总站生态室负责解释

底泥营养盐释放及疏浚生态效应研究进展

底泥营养盐释放及疏浚生态效应研究进展1 沈乐操家顺 (河海大学环境科学与工程学院,江苏南京 210098) E-mail:shsh_628@https://www.wendangku.net/doc/4715040269.html, 摘要:本文通过对底泥与上覆水之间关系的分析,主要得出如下结论:(1)上覆水处于高溶解氧水平时,底泥会向上覆水中释放总氮、总磷会受到抑制;而底泥向上覆水体释放COD 不受水体中溶解氧水平的影响。(2)当pH接近中性时,磷的释放会受到抑制,不管水质偏酸还是偏碱,均会有益于磷的释放。(3)温度较高时,沉积物会释放较多的磷量。较高的环境温度对应更高的间隙水相污染物浓度。同时,本文还对污染底泥营养盐释放控制技术-疏浚研究成果进行分析,提出研究最佳疏浚程度的重要性。 关键词:底泥,上覆水,释放,SOD,疏浚 1.引言 底泥一般系指江河湖库的沉积物,是自然水域的重要组成部分。氮、磷能通过颗粒物吸附、沉淀、水生生物死亡沉积等方式蓄存在底泥中;在适当条件下,氮和磷能从底泥中释放出来,为水生生物的生长提供必要的营养元素,进而加剧水体的富营养化。 内河底泥中的污染成分较复杂,主要污染物为重金属和有机污染物等。底泥中的硫和氮含量较高,这也是内河黑臭的主要原因之一。当内河污染较严重时,相对而言,底泥和河水之间存在着一种吸收和释放的动态平衡,污染物释放影响尚不明显,一旦河水污染物含量减少,则底泥中污染物的释放量有可能增加,造成二次污染。因此深入了解内河底泥中各种污染物的转化降解和释放规律,对有效控制内河水体污染具有重要意义。 许多实验已经证明,水体底泥中的营养盐类、有毒化学物及毒性菌种的含量要比其在上层水体中的含量高出许多,受污染的底泥已在世界范围内对人类健康和环境构成了威胁。美国EPA在1998年的调查报告中指出,美国已发生的2100起鱼类消费问题,经多次证实污染来自底泥;在我国,也已发现并证实了水体底泥具有生物毒性,如乐安江的沽口-香屯河段及深圳大沙河的沉积物。此外,水体富营养化的解决关键也与底泥密切相关。因此,污染底泥的治理已刻不容缓,势在必行。 2.底泥对上覆水的影响与影响因子 2.1 沉积物耗氧对上覆水溶解氧的影响 地表水体耗氧过程包括生化需氧(BOD)、底泥耗氧(SOD)、氨的硝化及浮游植物和1动物的呼吸等。SOD约占河流中总耗氧量的40%~50%,因此当城市河道水质得到治理,两旁无污染源时,SOD指标仍将对河流中的DO指标有很大影响[1]。 1.本课题得到国家“863”课题—苏州城市水环境质量改善与综合示范(2003AA601070)的赞助。 作者简介:沈乐(1983-),女,江苏宿迁人,硕士研究生,从事水环境生态修复方面的研究。 EmaiL:shsh_628@https://www.wendangku.net/doc/4715040269.html,。

河道黑臭水体修复技术比选方案

河道黑臭水体修复技术比选方案 按照城市黑臭水体治理基本技术路线,从物理、化学、生物法三个方面分析,物理法中可有效去除水体黑臭的方法分别有河道曝气、底泥疏浚、生态补水等;化学法强化混凝去除水中有机污染物质;生物法包括微生物强化技术、酶制剂法、生物膜法等。 1、物理修复法 1.1、河道曝气 河水自净能力与溶解氧浓度有关,当河流受到污染,过剩的有机物厌氧分解,导致黑臭物质突增。人工曝气利用天然河道就地处理污水,在氧传递、迁移、扩散过程中使河道从单纯的大气复氧过渡到主动复氧,有毒污染物被大量降解,水体黑臭减少,藻类也开始生长,生态系统逐渐恢复。人工曝气是一种投资少、见效快且无二次污染的河流污染治理技术。 气体的转移是人工曝气系统技术的重点,曝气系统通过气体扩散至气液面或溶解气体透过半渗透膜两种方式转移氧到缺氧水体,由机房、空气扩散器和相关管道组成的曝气装置,通常气液面由搅拌或涡流形成,或者分布器和多孔材料释放气体,其中微孔还可以减少挥发性有机物剥离和曝气过程中的热损失,常见的曝气系统装置有纯氧增氧系统、鼓风机-微孔布气管曝气系统、叶轮吸气推流式曝气器、水下射流曝气等。河道人工曝气技术按照建立模式不同有固定式充氧站和移动式充氧平台两种形式。固定式充氧站一般是固定曝气装置,在河段上定点曝气增氧。移动式充氧平台则是在河段上安装类似曝气船的可自由移动的曝气增氧设施。在1980年英国有关部门向河流中放置30t/d曝气船,平均每天有5~7t 的纯氧溶于河水中,高效地解决河流急剧缺氧的现状。 1.2、底泥疏浚 被污染河流河床、湖泊毒害有机物不断积累,有外界影响时,底泥大量溶出污染有机物,河流水质被严重污染。研究表明,底泥的有效治理直接影响河道治理效果,底泥疏浚通过人工机械的方法对底泥负荷较大、污染严重的河段、湖泊进行清淤,快速转移大量营养盐、难降解有害化学品及细菌的表层沉积物,水体自净能力逐渐恢复。

相关文档