文档库 最新最全的文档下载
当前位置:文档库 › 不同覆盖方式对底泥内源营养盐释放的控制效果

不同覆盖方式对底泥内源营养盐释放的控制效果

不同覆盖方式对底泥内源营养盐释放的控制效果
不同覆盖方式对底泥内源营养盐释放的控制效果

大型浅水湖泊内源营养盐释放的概念性模式探讨

中国环境科学 2002,22(2):150~153 China Environmental Science 大型浅水湖泊内源营养盐释放的概念性模式探讨  秦伯强,范成新(中国科学院南京地理与湖泊研究所,江苏南京210008) 摘要:通过在太湖开展的风浪与底泥悬浮的野外观测,结合分层采取水样并分析水体中溶解性营养盐的浓度随深度的变化结果,发现在水土界面的上覆水中营养盐浓度有突然增加的现象,指示着沉积物对上覆水营养盐浓度有影响.对沉积物中孔隙水营养盐浓度随深度的变化分析,表明了沉积物孔隙水中营养盐浓度变化与氧化还原环境的关系.结合水动力作用,提出了大型浅水湖泊水动力作用导致底泥悬浮,从而使得底泥中的可溶性营养物质释放这一内源释放的概念性模式. 关键词:太湖;水动力;底泥;孔隙水;悬浮释放 中图分类号:X524 文献标识码:A 文章编号:1000-6923(2002)02-0150-04 Exploration of conceptual model of nutrient release from inner source in large shallow lake.QIN Bo-qiang, FAN Cheng-xin (Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China). China Environmental Science. 2002,22(2):150~153 Abstract:Based on the field investigation of the wave and sediment suspension in Taihu Lake, along with sampling water by layer and analyzing the nutrient concentration change with depth, it was found that the nutrient concentration enhanced suddenly on the bottom. layer indicating the influence of sediment. Analysis of change of the nutrient concentration in porewater with depth indicates the relation between the oxidative-reductive conditions and the nutrient concentration. Integrating with dynamic function, the hydrodynamic inclucement of sediment suspension and a conceptual model for nutrient release from sediment in large shallow lake were suggested. Key words:Taihu Lake;hydrodynamic;sediments;porewater;suspension and release 在浅水湖泊的富营养化治理方面,底泥内源负荷量一直是一个有争议的问题.湖泊内源释放问题是由国外学者首先提出来的[1].其后所开展的工作与认识都是基于深水湖泊而言的[2].但在我国长江中下游地区,绝大多数湖泊是浅水湖泊.而且这些湖泊都面临着富营养化.太湖是一个典型的大型浅水湖泊.平均水深不足2m,最大水深不足3m.由于富营养化导致的蓝藻水华问题使得太湖的供水功能正逐步削弱. 目前有关太湖的水环境治理问题,主要是针对太湖富营养化的.治理富营养化,不外乎减少外源负荷和内源负荷.但是浅水湖泊内源释放的问题长久以来一直不清楚.本文基于作者在太湖开展的一系列野外工作为基础,提出了有关大型浅水湖泊内源释放的概念性模式.目的是为湖泊内源释放的估算及内源污染的控制提供科学依据. 1太湖北部梅梁湾的野外调查方法 为了弄清浅水湖泊中的动力作用对底泥内源释放的影响,于1998年2月和1998年7月,在位于太湖北部的梅梁湾湾口(2号点)与湾内(7号点)设点进行不同风速的动力条件下营养盐与悬浮物浓度随深度变化的定点采样与观测,观测内容包括风速与风向、水温、透明度、湖流等.同时分层取水样进行室内分析,(各形态氮与磷、悬浮物浓度与有机质含量等.)为了达到严格分层的目的,取样采用医用手持泵与软胶管相联,将软胶管放入水中指定的深度进行采样.在1998年2月的野外调查中,2月26日、2月24日和3月11日分别代表着小风(风速为2m/s左右)、中等(风速为5m/s)和大风(风速为6m/s).从位于收稿日期:2001-08-24 基金项目:国家自然科学基金资助项目(40071019); 中国科学院知识创新资助项目(KZCX2-311)

水体富营养化的生物治理

水体富营养的生物治理 0408210026 许方迪水体富营养化作用是指含大量氮、磷(含N>0.2—0.3mg/L,P>0.01—0.02mg/L)的工业污水或生活废水排入江河、湖泊或海域中时,水体出现的富营养状态。当富营养水体有适当的生物、水文、气象条件时.水体中的藻类等浮游生物发生暴发性增殖,使大面积的水域被藻类所覆盖.阻碍了水体与大气的接触,导致水中溶解氧的降低,而且某些藻类还会产生毒素。而藻类的代谢死亡,微生物分解藻体及其它有机物也要耗去水中大量的溶解氧。从而使水域产生大面积缺氧导致水体腐败发臭造成灾害,有的已成为公害.引起全球关注。水体呈现富营养化形成赤潮等灾害的主要原因是水中氮、磷等污染物质含量的增加,所以国家对污水排放中氨、磷量有较严格的要求.污水综合排放标准GB8978-96中规定:NH3一N<15mg/L。磷酸盐(以磷计)<0.5 mg/L. 我国地表水体富营养化状况及其原因 20世纪90年代以前我国水体富营养化并不十分明显,但是90年代以后情况就比较严重。东海、南海多次大面积出现赤潮,全国湖泊约有75%的水域受到N、P的严重污染,部分河流水域也出现富营养化,最为严重的是滇池,可以说是成了一个久治不愈的顽症。该湖自出现富营养化以来,采用了许多种防治措施,已花费巨额资金,但仍然没有明显好转。最近几年,江苏的太湖也出现了严重的富营养化。 目前,我国地表水体富营养化的地理分布,主要集中在经济比较发达、人1:1比较集中的城市附近,但随着经济发展,水体富营养化存在向农村扩展的趋势。引起这些地区地表水体富营养化的污染源主要可分为两大类:外源和内源。外源也叫外部污染源,所谓外部污染源是指污染水体的污染物来自水体以外的其他环境中的污染源,如大气降水进入地表水体、废污水的排放等。内源,主要是指那些引起地表水体富营养化的污染物质来自水体内部的污染源。 富营养化水体的脱氮除磷 水体富营养化防治的关键是控制水中氮、磷的含量。 1.生物硝化一反硝化脱氨这一方法是利用硝化和反硝化细菌的作用,通过人工控制条件,在常规污水好氧生化处理系统基础上增加缺氧段,达到去除水中氮的目的,此法主要用于工业废水的处理.全过程可分为两个阶段,第一阶段是硝化阶段,其目的是在人工强力曝气条件下,使污水中有机氮、磷、NH4+等转化为NO3—或NO2—.该过程可由一般好氧处理设施来完成.第二阶段是反硝化阶段,即兼性厌氧的反硝化细菌在厌氧条件下,将NO3—和NO2—转化为N2,并从水中逸出,从而达到脱氮的目的.其处理流程如图1所示: 第一阶段中,由于微生物的同化作用使部分氮、磷转化为细胞物质,可在沉淀中经污泥沉淀 —,将在第二阶段去除.由于反硝化细菌为化能异作用从水中去除;大部分氮被氧化为NO 3 养菌,必须以有机化合物为能源,以NO3—为代谢中的电子受体,将NO3—转化为N2。而由于第一阶段处理后出水中有机碳含量很低,因此要在第二阶段加入有机碳来满足反硝化细菌的需要.据报道,当污水中C/N<3:1时,反硝化作用受到抑制.一般应考虑用成本低的简单有机化合物为补充碳源.以甲醇为碳源时,反硝化作用过程为:

水体富营养化及其防治措施

水体富营养化及其防治措施 应化0902班田亚丽 案例:2007年,浙江全省海域共发生赤潮40次,发生面积累计近8500平方千米。其中有毒赤潮生物引发赤潮3次,累计面积约315平方千米。浙江省海洋与渔业局日前发布的2007年度浙江省海洋环境公报指出,2007年,舟山海域和渔山列岛—韭山列岛海域是赤潮高发区。上述两个海域发生赤潮的次数和面积分别占全省的65%和79%。 1、前言 近些年来,环境问题日益严重。酸雨危害加剧,南极臭氧层空洞越来越大,患皮肤癌及其他皮肤病的人数越来越多,全球变暖趋势不改甚至加快,导致很多低于海平面的国家面临被淹没的威胁,会使全球降水量重新分配,冰川和冻土消融,海平面上升等。资源、能源短缺当前,世界上资源和能源短缺问题已经在大多数国家甚至全球范围内出现。森林面积锐减,土地沙漠化,更是早就出现但是一直没有得到解决的问题。我只取一方面加以讨论,就是我们地球上面积最大的海洋,最为严重的水体富营养化的问题,并提出几点防治措施,希望能为环境保护尽一些绵薄之力。 2、水体富营养化的定义及产生 水体富营养化是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。这种现象在河流湖泊中出现称为水华,在海洋中出现称为赤潮。 国际经济合作与开发组织对水体富营养化开展了一系列的研究工作,最后确定氮、磷等营养物质的输入和富集是水体发生富营养化的最主要原因,大约80%的湖泊富营养化是受磷元素的制约,大约10%的湖泊与氮元素有关, 余下10%的湖泊与其他因素有关。 水体富营养化主要是由于工业废水、生活污水、化肥农药的使用和其他一些污染物中富含氮和磷的污染物进入湖泊海洋中,造成藻类疯狂生长。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主,蓝藻是一种细菌,繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从而使水质恶化,造成鱼类和其他水生生物大

底泥中磷释放的影响因素

底泥中磷释放的影响因素 罗玉兰,徐颖 河海大学环境科学与工程学院 (210098) E-mail :loulan0624@https://www.wendangku.net/doc/f56532474.html, 摘 要:综述了水体底泥中磷的化学形态以及磷素释放的影响因素。化学形态有水溶性磷、铝磷、铁磷、钙磷、还原态可溶性磷、闭蓄磷、有机磷等。磷素释放的影响因素有:溶解氧、温度、pH 值、磷存在的形态、微生物作用、沉积物-水界面磷的浓度梯度、盐度以及扰动。这些因素具有关联性。 关键词:底泥 化学形态 磷释放 影响因素 1 引言 P 是造成湖泊水质富营养化的关键性的限制性因素之一[1]。一般认为当水体中磷浓度在0.02 mg ·L - 1以上时,对水体的富营养化就起明显的促进作用[2 ] 。由于近年来大量未经处理的生活污水加上农业面源氮磷的大量流失,造成河流尤其是河口富营养化趋势的逐年加剧 [3 -4 ]。大量的磷在河流等水体中沉积下来,其在适宜的条件下会重新释放进入水体,从而延 续水体的富营养化过程并加剧了水体的恶化[5 - 8 ] 。 沉积物-水界面是水体和沉积物之间物质交换和输送的重要途径,沉积物中的磷可能通过有机质的矿化分解作用、铁氧化物解吸作用和沉积物扰动等形式向水体释放。本文根据国内外研究富营养化水体磷释放的有关资料,综述了水体底泥中磷的化学形态以及底泥中磷释放的影响因素,对于今后研究水体中磷行为、抑制水体富营养化、改善水质具有深远的意义及参考价值。 2 沉积物中磷的含量和存在形态 沉积物中磷形态通常分为水溶性磷( P sol ) 、铝磷(P Al ) 、铁磷(P Fe ) 、钙磷(P Ca ) 、还原态可溶性磷、闭蓄磷(P o-p ) 、有机磷(P org ) 等7 种化学形态[9 ] 。闭蓄磷表面有一层不溶性的 Fe (OH) 3 或Al (OH) 3 胶膜,包括一部分P Al 和P Fe ,溶解度极小,含量较小,这部分磷被认为 是生物不能利用的。水溶性磷和还原态可溶性磷可以通过物理溶解作用进入水体,在沉积物中的含量也不会太高,但它们是最先被释放出来的,可以很方便地被水生生物吸收利用[10 ]。 沉积物中P 的结合态及形态之间的相互转化是控制沉积物P 迁移和释放的主要因素。P 释放量是由不同的迁移和转化过程决定的,控制沉积物P 迁移(释放和形态转化)的环境参数的相对重要性首先取决于沉积物中P 的化学形态[11]。沉积物释P 量的多少并不与沉积物中的总 P 量成比例关系,释放进入间隙水中的P 大部分是无机可溶性P [12,13]。在厌氧释放过程中,

藻类生长所需营养盐的研究进展-芭灵儿珊

藻类生长所需营养盐的研究进展 1、藻类生长所需常量营养盐的研究 1.1氮磷含量 以往大量的研究资料表明,磷通常是淡水浮游植物增长的限制性营养因子,而氮通常是海洋浮游植物的限制营养因子。一般认为TN>1.2mg/L、TP>0.11mg/L时,水体即开始富营养化。 在淡水水体中,当TP<0.10mg/L,藻的生长最终发展为磷限制。而过高磷含量的输入,当TP=1.65mg/L,并没有进一步促进藻类的生长。 1.2氮磷比 氮磷是通过数量和组合来影响藻类生长的。因此氮磷比也是影响藻类生长的一个重要条件。当营养盐总量满足时,氮磷浓度比值11:l。当N/P<11时,氮相对不足;当N/P>11时,磷相对不足(淡水)。高盐情况下浮游植物生长的最适N、 P比(7∶1)。 研究不同氮磷比对铜绿微囊藻生长的影响。结果表明,氮磷营养盐在藻类生长过程中是重要的影响因子。在不同磷质量浓度条件下,藻类生长的最佳条件是ρp=0.07 mg·L-1,且在磷质量浓度大于0.07 mg·L-1时,藻类生长状况要优于磷质量浓度小于0.07 mg·L-1时。在不同氮磷比条件下,藻类最佳生长条件为氮磷比等于40:1,藻类生长取决于氮的质量浓度。铜绿微囊藻属于非固氮藻,需要高氮磷比。 在不同的N/P比值污水中,藻类的种类组成不同,绿藻大量增值时需要氮相对丰富的营养水体,而蓝藻大量增值时需要磷相对丰富的营养水体。 1.3不同的氮源 N是藻类生长的必需元素.一般来说,藻类只吸收利用无机态氮,主要有NH4+-N、NO3--N和NO2--N.由于NO2--N在自然水体中含量很少,因此NH4+-N和NO3--N是藻类利用的主要形态.不少研究证实,藻类优先利用NH4+-N,而且NH4+-N的存在还会抑制NO3--N的吸收。 利用水族箱微宇宙研究了水体中2种氮源,铵态氮(NH4+-N)和硝态氮(NO3--N)对藻类生长的影响。结果显示:试验初期以NH4+-N为主要氮源的水体中藻类生长明显好于以NO3--N为主要氮源的水体.试验后期则以NO3--N为主要氮源的藻类生

水体富营养化的原因、危害及其防治措施

水体富营养化的原因、危害及其防治措施 摘要:由于人类活动的影响,氮磷等营养物质大量排入水体并在其中不断积累,引起部分藻类和水生生物过度繁殖,造成水体的富营养化。本文对水体富营养化的形成原因、危害作了简要概述,着重从控制外源输入、降低内源负荷、去除营养物等三个方面,对现有的水体富营养化防治。从工程、化学和生物三个角度提出来了一些治理富营养化水体的措施,并进行了概括和比较。 关键词:富营养化危害防治 1.水体富营养化的定义 由于人类的活动,使得水体中营养物质富集,引起藻类以及其它水生生物过量繁殖,水呈绿色或混浊呈褐色,水体透明度下降,溶解氧降低,造成水质恶化,严重时发生“水华”,使整个水体生态平衡发生改变而造成危害的一种污染现象。池塘、水库、湖泊等多发。一般认为水体含氮量大于0.2mg/L、含磷量大于0.02mg/L时属于富营养化水体。 美国环境保护局(EPA)提出:水体总磷大于20~259g/L,叶绿素a大于10g/L,透明度小于2.0m,深水的饱合溶解氧量小于10%的湖泊可判断为富营养化水体。 2.我国水体富营养化现状 据国家环保总局有关部门公布的资料,我国的河流、河段已有近四分之一因污染不能满足灌溉用水的应用要求(这是我国最低一类的水质要求);全国湖泊约有75%的水域受到显著富营养化污染,主要淡水湖泊如滇池、巢湖、太湖等富营养化非常严重,有些水域已经丧失水体功能;我国近海海域受到严重陆源污染,赤潮的爆发频率不断增加;城市水体污染也很严重,我国10%的城市地下水水质日趋恶化,在118座接受调查的大城市中,97%的城市浅层地下水受到污染,其中40%的城市受到严重污染。 近年来由于污染造成的环境恶化逐步加重,水体藻类污染的程度也逐年加深。赤潮或水华在全球范围内频繁出现是藻类污染程度加深的直接反映。我国在1933年到1979年的 46 年中仅发生过12次赤潮,而1990年到1994年的5年中就发生了139次赤潮,藻类污染灾害日趋严重,主要湖泊富营养化问题突出。 3.水体富营养化的主要原因 3.1自然因素 数千年前或者更远年代,自然界的许多湖泊处于贫营养状态。然而,随着时间的推移和环境的变化,湖泊一方面从天然降水中吸收氮、磷等营养物质;另一方面因地表土壤的侵蚀和淋溶,使大量的营养元素进入湖内,湖泊水体的肥力增加,大量的浮游植物和其他水生植物生长繁殖,为草食性的甲壳纲动物、昆虫和鱼类提供了丰富的食料。当这些动植物死亡后,它们的机体沉积在湖底,积累形成底泥沉积物。残存的动植物残体不断分解,由此释放出的营养物质又被新的生物体所吸收。 因此,富营养化是天然水体普遍存在的现象。但是在没有人为因素影响的水体中,富营养化的进程是非常缓慢的,即使生态系统不够完善,仍需至少几百年才能出现。一旦水体出现 →→→ 富营养化现象,要恢复往往是极其困难的。这一结果往往导致湖泊沼泽草原森林的变迁过程。 3.2人为因素

阅读材料:水体富营养化的概念及原因

水体富营养化 1.水体富营养化概念 水体富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 2.水体富营养化的机理 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质的来源,水体也很难自净和恢复到正常状态。

水体富营养化的现状与防治

水体富营养化的现状与防治 摘要:由于大量使用化肥及排放各类污水,已造成许多湖泊,河流水体氮磷严重污染造成水体富营养化,导致了水质恶化,严重影响了周边居民饮用水安全。水体的富营养化是当今社会面临的重大环境问题之一[1],已成为经济社会发展的重要影响因素,经济而有效的控制水体富营养化已经成为当代亟待解决的环境问题。本文通过对水库水体富营养化现状和原因分析表明,氮、磷是引起水库富营养化的主要因素。指出预防水库水体富营养化,应对水源保护区内的污染源进行综合治理,严格控制入库污染物排放。同时提出了对已经形成富营养化的水体进行有效治理的措施。 关键词:水体富营养化;环境问题;防治对策 1.水体富营养化及其危害 随着社会发展进程的加快,人类生产、生活污水排放的日益增多,水体的富营养化问题也越来越严重。水体富营养化是指水体中生物所需的氮、磷等无机营养物质含量过剩的现象。氮、磷是导致湖泊、水库、海湾等缓流水体富营养化的主要原因[2]。磷是藻类等的细胞合成所必需的,也是构成核酸、脂肪、蛋白质的重要成分,在能量代谢种起着十分重要的作用。水体富营养化的结果会导致以藻类为主体的水生植物大量的繁殖,影响水体的透明度和水中植物正常的光合作用。藻类的呼吸作用,和藻类死亡被需氧微生物分解都需要氧气,导致水体中的溶解氧含量大大降低,使水体长期处于缺氧状态中,造成鱼类等水生生物的死亡,水质浑浊发臭等最终破坏湖泊生态系统[3]。对人类工业,生活,灌溉用水都有不利影响。因富营养化水中含有硝酸盐和亚硝酸盐,人畜长期饮用这些物质含量超过一定标准的水,也会中毒致病[4]。 富营养化本身是一个自然过程[5],但因为人类社会的发展,将大量污水在未经处理的状况下直接排入水体,就加速了富营养化这一过程。则这样的富营养化称为人为富营养化。 2.我国的水体富营养化污染现状 第1页(共5页)

湖泊富营养化与氮磷等营养盐之间的关系

湖泊富营养化与氮磷等营养盐之间的关系 姓名:冯涛学号:5802112013 班级:环工121 摘要:本文主要通过对湖泊氮磷的时空特征和富营养化的关系进行分析。主要包括氮磷的时间动态和空间动态,并且对氮磷等营养盐的来源进行详细的分析,探讨富营养化水体中氮磷的去除机理。 关键字: 富营养化氮磷来源和去除时空特征 湖泊富营养化是一个缓慢的自然过程,但人类活动加速了这一过程。人类活动被认为是富营养化频发的诱发主因。湖泊富营养化过程复杂,影响湖泊富营养化的因素很多, LauandLane(2002)认为水体富营养化是非生物和生物相互作用的复杂过程。湖泊富营养化不仅与氮磷含量有关, 而且氮磷比也是一个重要的影响因子, 氮磷比可影响藻类等浮游植物的生长。有关研究发现不同的营养盐比例可以控制藻类的生长, 生物量以及种群结构。因此, 本文将对我国湖泊氮磷的时空特征和湖泊富营养化的关系进行综合分析。一般说来,当天然水体中总磷大于20毫克每立方米,无机氮大于300毫克每立方米时,就可认为水体处于富营养化状态。富营养化水体中的氮、磷促使水中的藻类急剧生长,大量藻类的生长消耗了水中的氧, 使鱼类、浮游生物因缺氧而死亡,他们的尸体腐烂造成了水质污染。因此去除水体中大量的氮磷是治理富营养化污水的根本。我们通过对氮磷的来源的分析来更好的控制源头,对氮磷的去除机理的探讨来缓解富营养化严重的现状。 一、氮磷等营养盐来源分析 1. 营养盐来源按进入途径可分为外源和内源。外源污染又可分为

两大类: 点源,来自流域的城镇生活污水和工业污染源排放;面源,来自流域的农田径流、畜禽养殖、水产养殖及其他面源。随着点源污染排放的不断达标, 面源污染日益成为水体富营养化的主要来源。内源污染是由于湖底沉积物中液态营养盐向上覆水中释放, 在动力作用下营养盐再悬浮造成的, 在这种因素影响下, 即使大幅度削减外源污染负荷, 在特定条件下( 高温少雨) , 仍可能引起藻类暴发, 所以内源污染成为湖体藻类暴发的关键因素。下面就两类主要的营养盐来源—— 面源和内源分别加以论述。 (1)面源污染 面源污染是继城镇生活污水、工业废水之后的第三大污染源, 而且治理难度比点源治理要复杂得多。我国农业大多数地区还是粗放型管理, 没有达到测土施肥、施药和科学管理的程度。特别是为了取得连续稳定的高产, 耕地的复种指数提高, 化肥施用量激增。另外, 集约化的畜禽养殖和水产养殖, 使大量的动物粪便与饵料残渣进入湖体, 加剧了湖泊的富营养化程度。不断的土地开垦使森林覆盖率下降、湿地面积减少, 水土流失严重。例如巢湖非点源入湖TN, TP 总量占全湖输入量超过68% 和74%。 在诸多面源污染中, 降雨径流污染成为最主要的营养盐来源。大量营养盐在暴雨的冲刷下, 从地表向湖区迁移, 导致径流中的污染物浓度远远超过非暴雨期。以滇池为例, 滇池流域的大清河, 暴雨期悬浮物浓度比平时均值高22 倍, NO-2-N 高达163倍; 宝象河暴雨期最大悬浮物浓度是非暴雨期的106倍。研究者们在这方面做了大量工作,

水体富营养化及其防治技术

第38卷第11期辽 宁 化 工V o.l38,N o.11 2009年11月L i aoning Che m ical Industry N ovember,2009水体富营养化及其防治技术 董继红 (吉林建筑工程学院设计院,吉林长春130021) 摘 要: 在介绍了水体富营养化的原因、分类及危害的基础上,对水体富营养化的防治措施进行 了归纳总结。 关 键 词: 富营养化;原因;危害;防治措施 中图分类号: X703 文献标识码: A 文章编号: 1004-0935(2009)11-0817-03 由于人类活动的影响,可能在短期内会使大量含氮含磷等植物性营养物质进入水体,从而引起藻类和浮游生物的迅速繁殖,使水体溶解氧下降、透明度下降、水质恶化、鱼贝及其他水生生物大量死亡。这种由于植物性营养元素大量排入水体,破坏了水体自然生态系统平衡的现象,称之为水体的富营养化。富营养化可分为天然富营养化和人为富营养化。富营养化具有缓慢、难以逆转的特点[1]。因此水体富营养化问题是当今世界的最主要面临的水污染问题之一。 1 水体富营养化的形成及分类 国际经济合作与开发组织对水体富营养化开展了一系列的研究工作,最后确定氮、磷等营养物质的输入和富集是水体发生富营养化的最主要原因,大约80%的湖泊富营养化是受磷元素的制约,大约10%的湖泊与氮元素有关,余下10%的湖泊与其他因素有关。含有氮、磷等植物性营养物质的污染物主要经过下列途径排入水体[2]。 1.1 生活污水 生活污水中含有大量富含氮、磷的有机物。其中的磷主要来自洗涤剂。据 2003年中国环境状况公报统计, 2003年全国工业和城镇生活废水排放总量为460.0亿t,其中工业废水排放量212.4亿t,比上年增加2.5%;城镇生活污水排放量247.6亿t,比上年增加6.6%。废水中化学需氧量(COD)排放总量1333.6万t,比上年减少2. 4%。其中工业废水中COD排放量511.9万t,比上年减少12.3%;城镇生活污水中COD排放量821.7万t,比上年增加5.0%。可见,生活污水已逐渐取代工业废水而成为水体富营养化的最大污染源。 1.2 工业废水 工业废水主要是指工业生产过程中产生的,其中钢铁、化工、制药造纸、印染等行业的废水中氮和磷的含量都相当高。近年来,工业排放的废水逐年递增。据报道, 2003年全国工业废水排放量达212.4亿t。但由于技术与资金的原因,大部分工业废水只经简单处理甚至未经任何处理就直接排入江河等水体中,许多废水中所含的氮、磷等物质也就不断地在水体中累积了下来。 1.3 化肥、农药的使用 现代农业大量使用化肥提高土地收益率,从1950年到1970年,农用化肥由不足10M t上升至80M t,估计2030年将达到135M t,但仅30%~50%能被植物吸收利用,被土壤截留下来的有机物、氮、磷等常因暴雨或刮风进入水体造成外源性富营养化污染。当其周围生态环境恶劣、森林覆盖率低、坡度大、土壤复种指数大、暴雨或洪水频繁时,这种情况就更加突出[3]。据资料统计,农用化肥的全球产量从1950年到1990年,氮量由不足1000!104t 上升到8000!104t。专家预计到2030年将达到13500! 104t[4]。此外,为了增加产量,大量农药、杀虫剂作用于农作物,有相当大一部分残留在农作物上,随雨水的冲刷流入水体中,很大程度上污染了水体环境。 1.4 渔业养殖 目前人工渔业养殖规模集约化,投喂的高蛋白饵料及鱼虾排泄物等这些营养物质造成水体富营养化。这种人工渔业养殖既给经营者带来利益,同时给他们带来损失,原因在于:随着水体中的营养物质的增加,藻类物质的大量繁殖,水体中的溶解氧就会大量的减少,影响鱼虾生长,爆发鱼病。近几年,淡水养殖业已由池塘转向湖泊、水库等大水面,并将池塘精养高产技术与大水面优越的生态条件相结合发展?三网#养殖,虽然提高了水产品的质量和 收稿日期: 2009 07 03 作者简介: 董继红(1963-),女,高级工程师。

底泥磷释放实验报告

实验题目:湖塘底泥磷的释放 姓名:学号: 班级:组别: 指导教师: 1.实验概述 1.1实验目的及要求 ⑴了解湖泊底泥磷释放的过程; ⑵观察湖泊各采样点所采集的底泥的形态特征; ⑶熟练掌握湖泊底泥的最大释磷量的计算; ⑷熟悉总磷的测定原理及操作方法。 1.2实验原理 城市浅水湖泊的富营养化是我国湖泊普遍存在的环境污染问题。各种来源的营养盐进入湖泊,经过一系列物理、化学及生物化学作用,其中一部分或大部分逐渐沉积到湖底,当湖泊外部环境条件发生变化,沉积物中的营养盐又释放出来进入水中,成为湖泊营养盐的内负荷,并延续湖泊的富营养化,因此,控制内负荷对于湖泊治理具有十分重要的意义。 在天然水和废(污)水中,磷主要以各种磷酸盐和有机磷化合物(如磷脂等)的形式存在,也存在与腐殖质颗粒和水生生物中。本实验主要用钼酸铵分光光度法测定10号湖塘水中底泥磷释放量与时间的关系,在酸性条件下,水样中溶解性正磷酸盐与钼酸铵酒石酸锑氧钾反应,生磷钼杂多酸,再被抗坏血酸还原生成蓝色络合物(磷钼蓝),于波长700nm处测量吸光度,用标准曲线法定量。方法测定范围为0.01~0.6mg/L,适用水样类型包括地表水、废(污)水。 1.3实验仪器 (1) 烘干机 (2) DSX-90恒速数显电动搅拌机

(3) 搅拌棒 (4) PHS-3C pH计 (5) JPB-607溶解氧仪 (6) JJ300、AB104-N电子天平 (7) 722光栅分光光度计 (8) 10mm比色皿 (9) 高速离心机 (10) WXJ-Ⅲ微波消解仪 (11) 消解罐 2.实验内容 2.1实验方案设计 湖塘底泥的磷主要为正磷酸盐,但也含有其它价态的磷酸盐,底泥中还含有各种有机物和悬浮物,因此本次实验的设计思路是:对底泥进行搅拌使磷释放 ;进而进行离心,取得上清液;再进行微波消解,破坏有机物,溶解悬浮物,将各种价态的磷元素氧化成单一高价态的磷;接下来是定容显色;最后通过分光光度计测定各时间段的磷的吸光度,得出磷释放量。 2.2实验过程 实验步骤: ⑴采泥:底泥采样点与水样布点一致,采出的底泥应去除树叶,树枝等杂质,底泥装瓶后带回实验室。 ⑵离心:取6支离心管装入底泥,要求管中泥量约2/3即可,对角线上的2支离心管的重量不能超过1g,将装好的离心管放入离心机中进行5000转、5min的离心。最后将离心管取出,倒去上清液,只取底泥装入烧杯混匀(此为湿泥),冷藏备用。 ⑶测量含水率:用AB104-N电子天平称取10-15g湿泥于玻璃皿中,放入烘干机中烘3-4h之后取出,放入干燥器中冷却至室温再称量,记下读数,再将湿泥放入烘干机中烘30min后放入干燥器中冷却至室温再称量,记下读数,直到前后2

底泥营养盐释放及疏浚生态效应研究进展

底泥营养盐释放及疏浚生态效应研究进展1 沈乐操家顺 (河海大学环境科学与工程学院,江苏南京 210098) E-mail:shsh_628@https://www.wendangku.net/doc/f56532474.html, 摘要:本文通过对底泥与上覆水之间关系的分析,主要得出如下结论:(1)上覆水处于高溶解氧水平时,底泥会向上覆水中释放总氮、总磷会受到抑制;而底泥向上覆水体释放COD 不受水体中溶解氧水平的影响。(2)当pH接近中性时,磷的释放会受到抑制,不管水质偏酸还是偏碱,均会有益于磷的释放。(3)温度较高时,沉积物会释放较多的磷量。较高的环境温度对应更高的间隙水相污染物浓度。同时,本文还对污染底泥营养盐释放控制技术-疏浚研究成果进行分析,提出研究最佳疏浚程度的重要性。 关键词:底泥,上覆水,释放,SOD,疏浚 1.引言 底泥一般系指江河湖库的沉积物,是自然水域的重要组成部分。氮、磷能通过颗粒物吸附、沉淀、水生生物死亡沉积等方式蓄存在底泥中;在适当条件下,氮和磷能从底泥中释放出来,为水生生物的生长提供必要的营养元素,进而加剧水体的富营养化。 内河底泥中的污染成分较复杂,主要污染物为重金属和有机污染物等。底泥中的硫和氮含量较高,这也是内河黑臭的主要原因之一。当内河污染较严重时,相对而言,底泥和河水之间存在着一种吸收和释放的动态平衡,污染物释放影响尚不明显,一旦河水污染物含量减少,则底泥中污染物的释放量有可能增加,造成二次污染。因此深入了解内河底泥中各种污染物的转化降解和释放规律,对有效控制内河水体污染具有重要意义。 许多实验已经证明,水体底泥中的营养盐类、有毒化学物及毒性菌种的含量要比其在上层水体中的含量高出许多,受污染的底泥已在世界范围内对人类健康和环境构成了威胁。美国EPA在1998年的调查报告中指出,美国已发生的2100起鱼类消费问题,经多次证实污染来自底泥;在我国,也已发现并证实了水体底泥具有生物毒性,如乐安江的沽口-香屯河段及深圳大沙河的沉积物。此外,水体富营养化的解决关键也与底泥密切相关。因此,污染底泥的治理已刻不容缓,势在必行。 2.底泥对上覆水的影响与影响因子 2.1 沉积物耗氧对上覆水溶解氧的影响 地表水体耗氧过程包括生化需氧(BOD)、底泥耗氧(SOD)、氨的硝化及浮游植物和1动物的呼吸等。SOD约占河流中总耗氧量的40%~50%,因此当城市河道水质得到治理,两旁无污染源时,SOD指标仍将对河流中的DO指标有很大影响[1]。 1.本课题得到国家“863”课题—苏州城市水环境质量改善与综合示范(2003AA601070)的赞助。 作者简介:沈乐(1983-),女,江苏宿迁人,硕士研究生,从事水环境生态修复方面的研究。 EmaiL:shsh_628@https://www.wendangku.net/doc/f56532474.html,。

底泥部分

底泥部分 底泥一般系指江河湖库的沉积物,是自然水域的重要组成部分。氮,磷能通过颗粒物吸附、沉淀、水生生物死亡沉积等方式蓄存在底泥中。在适当条件下,氮和磷能从底泥中释放出来,为水生生物的生长提供必要的营养元素,进而加剧水体的富营养化。有研究表明,厌氧条件是促使底泥释放氮磷的主要原因。因此,改善底部水体的溶氧条件,对于修复受污染水体,改善水体的营养状况具有重要的意义。 目前,世界上采用较多的供氧方式是对江河湖库的底部水体曝气充氧,这种供氧方式需要为曝气设备提供机械动力,建设成本和维护费用较高,对于面积大、水力条件复杂的江河湖库,其实际操作难以实现。因此,开发简便易行,成本低廉的供氧技术具有重要的工程意义。H2O2和CaO2均能与水反应产生氧气!具有与曝气类似的供氧效果。 在控制外来污染源之后,影响水库水质的一个重要因素就是底泥释放所产生的二次污染。如果不对底泥进行处置,单纯地净化上覆水无法达到治理水库污染的目的。 底泥是有机物质的重要蓄积库和营养盐再生的主要场所,对水体中的各类污染物质都具有较强的释放和吸附作用,其对上覆水中营养元素的“汇/源”效应,对水体富营养化有着重要的影响。

随着富营养化问题的日益突出,水库外源污染的控制不断得到加强,但是内源污染的释放依旧阻碍着水质恢复的进程,而且水库内源污染物的释出,类似于非点源污染,释放面积大,释放时间、途径和释放量具有不确定性。 底泥是淡水生态系统的重要组分,在水生态系统中充当着“源”与“汇”的角色,它不断地接纳水体中沉积下来的颗粒物质,又不断地向水体中释放营养,在水生态系统的物质循环和能量流动过程中发挥着重要作用。底泥中各种营养物质的不断积累会引起底栖生境的改变,对生存在其中的底栖生物产生重要影响。此外,在某些水动力条件下,沉积的营养物质又会随着表层与底层水的混合而进入上层水体,从而为浮游植物的生存提供必要的营养,因而可能引起或加重水体的富营养化程度。以往对湖泊及海洋中底泥的研究已十分广泛,尤其是一些浅水湖泊更易受风力等外界因素的干扰而导致底泥营养物质向上层水体释放,因而更受关注。目前对水库特别是底泥的研究相对较少。 在外源污染得到有效控制,上游来水氮负荷较低的情况下,底泥内源氮释放是造成总氮超标的主要原因。 目前对污染底泥的修复主要包括物理、化学和生物修复方法,不同方法间

南湖底泥污染物垂直分布及释放潜力初探

第32卷 第8期 2010年4月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol.32 No.8 Apr.2010DOI:10.3963/j.issn.1671-4431.2010.08.018 南湖底泥污染物垂直分布及释放潜力初探 魏明蓉1,2,3,姜应和2,叶 舟2,李翠华2,刘秋雨 3(1.广西环境工程与保护评价重点实验室,桂林541004; 2.武汉理工大学土木与 建筑工程学院,武汉430070;3.桂林工学院资源与环境工程系,桂林541004) 摘 要: 通过对武汉南湖5个柱状底泥样品分析,发现有机质、总氮和总磷垂直分布规律为随泥样深度增加含量下降,上层底泥污染物含量最高,40cm 以下污染物含量渐趋稳定;幸福村排污口附近的柱样各污染物含量要高于其它样点。通过对12个上覆水样和12个间隙水样pH 值、总氮、总磷、氨氮的测定,发现就空间分布而言,上覆水总氮和氨氮各样点之间差别不大而总磷差别较大,间隙水总氮总磷氨氮均呈现排污口附近污染物含量高于其它各样点;间隙水和上覆水相比,总氮和氨氮含量高而总磷含量低,表明底泥中总氮和氨氮有向上覆水中静态释放的潜力,而总磷静态释放的可能性不大。 关键词: 武汉南湖; 柱状底泥; 上覆水; 间隙水 中图分类号: X 52文献标识码: A 文章编号:1671-4431(2010)08-0068-04 Research on Vertical Distribution and Release Potential of Contaminants in Sediment of Nanhu Lake WEI Ming -rong 1,2,3,JIAN G Ying -he 2,YE Zhou 2,LI Cui -hua 2,L I U Qiu -yu 3 (1.T he Guangx i Key L aboratory of Env ironmental Engineer ing ,Pro tection and Assessment,Guilin 541004,China; 2.School of Civil Engineering and Architecture,Wuhan University of T echnology,Wuhan 430070,China; 3.Depar tment of Resources and Env ironmental Engineer ing ,Guilin Institute of T echnology ,Guilin 541004,China) Abstract: Five samples of sediment columns in N anhu L ake of Wuhan were co llected and analy zed,the results show ed that the concentration of Organic M atter (OM )、T otal N itrogen(T N )and T otal Phosphorus(T P)decr eased along depth and stab-i lized gradually under 40cm,w ith the maximum appear ing in the top sediment;the contaminants content in the sediment co-l umn near Xingfucun sewage outlet w er e the highest.T he value o f pH 、T N 、T P and Ammonium -Nitrogen(NH +4-N )in ov er lying water and por e water w ere tested.T he results show ed that in horizontal distribution the concentrations o f T N and N H +4-N w ere similar but T P v ar ied distinctively fo r overlying w ater ,T N 、T P and NH +4-N content in pore w ater near Xingfucun sew ag e outlet are the highest;the concentr at ions of T N and NH +4-N are hig her and T P are less in por e water than that in overlying water ,which mean t hat T N and N H +4-N in sediment could release into water and T P couldn .t.Key words: N anhu Lake o f W uhan; sediment columns; o ver lying w ater; pore water 收稿日期:2009-12-31. 基金项目:广西环境工程与保护评价重点实验室研究基金(桂科能0704K 037)和广西高校人才小高地建设/环境工程0创新团队资助计划项目(桂教人[2007]71号). 作者简介:魏明蓉(1976-),女,博士生,讲师.E -mail:w eimingr ong @g https://www.wendangku.net/doc/f56532474.html, 南湖位于武汉市洪山区,属于武昌汤逊湖水系,水体面积763.96hm 2,汇水面积4470hm 2 ,为武汉重要

底泥中营养物质及其他污染物释放机理综述

底泥中营养物质及其他污染物释放机理综述 水体底泥(沉积物)污染,是世界范围内的一个重要环境问题。其污染物主要通过大气沉降、废水排放、水土流失、雨水淋溶与冲刷进入水体,最后沉积到底泥中并逐渐富集,使底泥受到严重污染。欧洲莱茵河流域、美国的大湖地区、荷兰的阿姆斯特丹港口、德国的汉堡港等底泥的污染均十分严重一旦河流湖库水体环境发生变化,沉积在底泥中的氮磷营养元素、重金属和难降解有机物会重新释放出来进入水体,影响上覆水体的水质,形成二次污染。此外,底泥又是底栖生物的主要生活场所和食物来源,污染物质可直接或间接对底栖生物或上覆水生物产生致毒致害作用,并通过生物富集、食物链放大等过程,进一步影响陆地生物和人类健康 1底泥中氨氮、磷释放机理 沉积物中磷和氮化合物的循环主要由3部分组成:①营养盐溶解态和颗粒态之间的转化循环;②溶解态和水生植物之间的交换;③沉积物中营养盐与溶解态、颗粒态以及水生生物之间的吸收、吸附、溶出、上卷再悬浮、生物吸附以及死亡后的回归等。 1.1底泥中磷释放的研究情况 磷的释放与水温、pH值、溶解氧有关。水温升高,沉积物中的微生物活性增强,底栖生物活性加强,提高了生物扰动作用和沉积物有机物的矿化速率,促使有机磷向无机态磷转化,将不溶性磷化物转化为可溶性磷,从而促进沉积物中内源磷的释放;水体中pH值会影响磷的赋存形态。水体呈中性时磷释放最小;偏酸性时,磷主要以H2PO4形态存在,镁盐、硅酸盐、铝硅酸盐以及氢氧化铁胶体都参与对磷的吸附,此时沉积物吸附作用较大,也不利于沉积物内源磷的释放;水体偏碱性时,则以H2PO4的形态存在,pH小于10.07,TP的最大释放量基本没有变化,pH大于10.07,TP的最大释放量急剧增加;一般认为在厌氧状态下,沉积物更容易向水体释放磷。当水体溶解氧下降,出现厌氧状态时,此时水—土界面氧化还原电位低,Fe3+被还原成Fe2+,胶体状的氢氧化铁变成可溶性的氢氧化亚铁,使磷酸根脱离底泥进入间隙水,进而向上覆水扩散。也有学者认为,沉积物富含有机物时,好氧条件可能比厌氧条件更有利于沉积物内源磷的释放。有些市区河段有机污染比较严重,在好氧条件下,有机物的矿化速率远比在厌氧条件下快,因而在快速矿化释磷的作用下,造成沉积物内源磷的大量释放。另外,水体扰动会引起表层沉积物再悬浮,同时也加速了沉积物间隙水中磷的扩散,导致间隙水中高浓度磷释放到上覆水体中,有时会成为一些水体沉积物磷释放的主要动力。 1.2底泥中氨氮释放机理 氨氮的释放与pH值、DO、有机质有关。pH值越低H+离子浓度越大,底泥胶体吸附的NH+4同H+离子竞争吸附位置而被释放出来,并且随H+浓度增大NH+4最大释放量增大,水溶液中TN的浓度也相应地增大。氯离子浓度越高,底泥胶体中吸附的硝酸根及一些带负电荷以有机形式存在的TN,同氯离子竞争吸附位置而从底泥释放到水溶液中的量也越大;pH高水溶液中OH-离子浓度大,底泥胶体释放出来的NH+4同OH-离子发生化学反应。水溶液的pH值在3.98-11.94范围内,TN的最大释放量随pH的升高而减少。有机质高的底泥中, 有机质是影响底泥释放氨氮的最大因子, 丰富的有机物有利于微生物的繁殖, 从而分解大量的有机物, 引起氨氮的大量释放。

相关文档
相关文档 最新文档