文档库 最新最全的文档下载
当前位置:文档库 › 线性系统的频域分析报告

线性系统的频域分析报告

线性系统的频域分析报告
线性系统的频域分析报告

1

γ

=

50 20-

=s

K0

原系统的伯德图:

num/den =

1.2347 s + 1 ------------- 0.20154 s + 1

校正之后的系统开环传递函数为:

num/den =

6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s

alpha =6.1261;

P h a s e (d e g )

Bode Diagram

Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec)

-200204060

80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1];

[num,den]=series(num0,den0,numc,denc);

[gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc)

disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.');

grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2);

semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)');

title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0';

'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']);

10-110

10

1

10

2

-60

-40-20020

40幅值(d b )

--Go,-Gc,GoGc

10

-110

10

1

10

2

-300

-200-1000

100相位(0)

频率(rad/sec)

矫正后系统的伯德图

矫正之前系统单位阶跃响应

矫正之后系统的单位阶跃响应:

比较矫正前后系统的响应情况:可以看出超前矫正使系统的调节时间变短,响应更加迅速,但是超调量偏大,对改善系统的动态性能起到了巨大的作用。 2.某单位负反馈控制系统的开环传递函数为3

)1()(+=

s k

s G ,试设计一个合适的滞后校正

网络,使系统阶跃响应的稳态误差约为0.04,相角裕量约为045。 原系统的伯德图: ans =

0.3200 -30.0045 1.7322 2.7477

num0=25; den0=conv([1,1],conv([1,1],[1,1])); w=logspace(-1,1.2);

[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]

margin(num0,den0) grid;

由此可以看出,相位裕量小于0,系统不稳定。

-40-20

20

40

M a g n i t u d e (d B )10

10

10

-270

-180

-90

P h a s e (d e g )

Bode Diagram

Gm = -9.9 dB (at 1.73 rad/sec) , P m = -30 deg (at 2.75 rad/sec)

Frequency (rad/sec)

num0=25; den0=conv([1,0],conv([1,0],[1,0])); w=logspace(-1,1.2); [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]

margin(num0,den0) grid;

e=10; r=45; r0=pm1; phi=(-180+r+e);

[il,ii]=min(abs(phase1-phi));

wc=w( ii); beit=mag1(ii); T=10/wc; numc=[ T,1]; denc=[ beit*T,1]; [num,den]=series(num0,den0,numc,denc);

[gm,pm,wcg,wcp]=margin(num,den);printsys(numc,denc)

disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:'printsys(num,den) [mag2,phase2]=bode(numc,denc,w);[mag,phase]=bode(num,den,w);

),'-.');

grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc');

subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)');

title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm 1),'0';

'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2str(pm),'0']);

1010

10

10

2

-150

-100-50050

100幅值(d b )

--Go,-Gc,GoGc

10

10

10

10

2

-200

-100

100

相位(0)

频率(rad/sec)

矫正后系的伯德图统

矫正前系统的单位阶跃响应

矫正后系统的单位阶跃响应

由矫正前后系统的单位阶跃响应比较可以看出,系统进过矫正之后由不稳定变为稳定。

3.某单位负反馈控制系统的开环传递函数为)

2)(1()(++=

s s s K

s G ,试设计一滞后-超

前校正装置,使校正后系统的静态速度误差系数110-=s K v ,相位裕量050=γ,增益裕量

dB K g 10lg 20≥。

原系统伯德图及程序:

-150-100

-50

50

M a g n i t u d e (d B )

10

10

10

10

-270

-225-180-135

-90P h a s e (d e g )

Bode Diagram

Gm = 1.58 dB (at 1.41 rad/sec) , P m = 5.02 deg (at 1.29 rad/sec)

Frequency (rad/sec)

程序:num0=5; den0=conv([1,0],conv([1,1],[1,2]));

w=logspace(-1,1.2);

[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]

margin(num0,den0) grid; ans =

1.2000 5.0239 1.4142 1.2885

系统稳定裕量过小,临界稳定。

矫正后系统伯德图

矫正程序及结果:

num/den =

14.9975 s^2 + 9.1921 s + 1 ---------------------------

10

10

10

10

2

-100

-50

50幅值(d b )

--Go,-Gc,GoGc

10

-110

10

1

10

2

-300

-200-1000100相位(0)

频率(rad/sec)

校正后:幅值裕量=24.4406db 相位裕量=71.5870

校正之后的系统开环传递函数为:

num/den =

74.9877 s^2 + 45.9604 s + 5

-------------------------------------------------------------

14.9975 s^5 + 115.916 s^4 + 243.7654 s^3 + 144.8469 s^2 + 2 s

wc=1.4142; beit=10; T2=10/wc;

lw=20*log10(w/1.58)-9.12;

[il,ii]=min(abs(lw+20)); w1=w(ii);

numc1=[1/w1,1];denc1=[1/ (beit*w1),1];

numc2=[ T2,1];denc2=[ beit*T2,1];

[numc,denc]=series(numc1,denc1,numc2,denc2);

[num,den]=series(num0,den0,numc,denc);

printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');

printsys(num,den)

[mag2,phase2]=bode(numc,denc,w);

[mag,phase]=bode(num,den,w);

[gm,pm,wcg,wcp]=margin(num,den);

subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2 ),'-.');

grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc');

subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)');

title(['D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2str(pm) ,'0']);

矫正前系统的单位阶跃响应:

矫正后的系统单位阶跃响应

由矫正前后系统的阶跃响应可以看出,系统经过超前滞后矫正,系统由不稳定变为稳定,可见矫正对系统的响应起到了关键作用!

三,实验心得与体会

通过MATLAB对系统进行校正,可以清晰明了的显示矫正过程,以及矫正结果,方便快捷。这种基于MATLAB的方法对于系统的设计非常实用。值得以后再学习过程中认真领悟学习!!!!!

要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

第五章 线性系统的频域分析法习题

501 第五章 线性系统的频域分析法 5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为 )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r , 根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 5-2 若系统的单位阶跃响应 t t e e t c 948.08.11)(--+-=, 试确定系统的频率特性。 解:s s s s C 1 361336)(2++= ,36 1336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=; 2 /122/12) 81()16(36 |)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。 或:)(2.7)()(94t t e e t c t g ---== ;36 1336 )]([)(2 ++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号 )452cos()30sin()( --+=t t t r 作用下,系统的稳态误差)(t e ss 。 解:2 1)(++=Φs s s e ; )452sin()30sin()( +-+=t t t r 6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ; 7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。 5-4 典型二阶系统的开环传递函数 ) 2()(2 n n s s s G ωζω+= , 当取t t r sin 2)(=时,系统的稳态输出为 )45sin(2)( -=t t c ss , 试确定系统参数n ω和ζ。 解:2 222)(n n n s s s ωζωω++=Φ; 1] 4)1[(2 2222=+-n n n ωζωω, 451 2arctan 2 -=--n n ωζω; 122 -=n n ωζω, 答案:414.12==n ω,3536.04/2==ζ。

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

实验三 线性系统的频域分析

北京联合大学 实验报告 课程名称:实验三线性系统的频域分析 学院:自动化专业:电气工程与自动化 班级:学号: 姓名:成绩: 2014年11月12日

实验三 线性控制系统的频域分析 3. 1 频率特性测试 一.实验目的 1.了解线性系统频率特性的基本概念。 2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。 二.实验内容及步骤 被测系统是一阶惯性的模拟电路图见图3-1,观测被测系统的幅频特性和相频特性,填入实验报告,並在对数座标纸上画出幅频特性和相频特性曲线。 本实验将正弦波发生器(B5)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。 图3-1 被测系统的模拟电路图 实验步骤: (1)将函数发生器(B5)单元的正弦波输出作为系统输入。 ① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘正弦波’(正弦波指示灯亮)。 ② 量程选择开关S2置下档,调节“设定电位器2”,使之正弦波频率为8Hz (D1单元右显示)。 ③ 调节B5单元的“正弦波调幅”电位器,使之正弦波振幅值输出为2V 左右(D1单元左显示)。 (2)构造模拟电路:按图3-1安置短路套及测孔联线,表如下。 (a )安置短路套 (b )测孔联线 (3)运行、观察、记录:

①运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应 分析实验项目,选择 时域分析,就会弹出虚拟示波器的界面,点击开始,用示波器观察波形,应避免系统进入非线性状态。 ②点击停止键后,可拖动时间量程(在运行过程中,时间量程无法改变),以满 足观察要求。 示波器的截图详见虚拟示波器的使用。 三.实验报告要求: 按下表改变实验被测系统正弦波输入频率:(输入振幅为2V)。 观测幅频特性和相频特性,填入实验报告。並画出幅频特性、相频特性曲线。 频率=1.6Hz 频率=3.2Hz

线性系统的频域分析

线性系统的频域分析 1.实验目的 1. 掌握用MATLAB语句绘制各种各样频域曲线。 2. 掌握控制系统的频域分析方法。 二.练习: 1.典型二阶系统 绘制出,,0.3,0.5,0.8,2的bode图,记录并分析对系统bode图的影响。 解:MATLAB编程如下: >> num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; >> den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; >> w=logspace(-2,3,100); >> bode(num,den1,w) >> grid >> hold Current plot held >> bode(num,den2,w) >> bode(num,den3,w) >> bode(num,den4,w) >> bode(num,den5,w)

(2)系统的开环传递函数为 绘制系统的Nyquist曲线Bode图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解:(1)MATLAB如下 >> num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); >> w=logspace(-1,1,100); >> nyquist(num1,den1,w)

(2)MATLAB编程如下: >> num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); >> w=logspace(-1,1,100); >> nyquist(num2,den2)

最新用MATLAB实现线性系统的频域分析

实验二用MATLAB实现线性系统的频域分析 [实验目的] 1.掌握MATLAB平台下绘制典型环节及系统开环传递函数的Bode图和Nyquist图(极坐标图)绘制方法; 2.掌握利用Bode图和Nyquist图对系统性能进行分析的理论和方法。 [实验指导] 一、绘制Bode图和Nyquist图 1.Bode图绘制 采用bode()函数,调用格式: ①bode(sys);bode(num,den); 系统自动地选择一个合适的频率范围。 ②bode(sys,w); 其中w(即ω)是需要人工给出频率范围,一般由语句w=logspace(a,b,n)给出。logspace(a,b,n):表示在10a到10b之间的 n个点,得到对数等分的w值。 ③bode(sys,{wmin,wmax}); 其中{wmin,wmax}是在命令中直接给定的频率w的区间。 以上这两种格式可直接画出规范化的图形。 ④[mag,phase,ω]=bode(sys)或[m,p]=bode(sys) 这种格式只计算Bode图的幅值向量和相位向量,不画出图形。 m为频率特性G(jω )的幅值向量; p为频率特性G(jω )的幅角向量,单位为角度(°)。 w为频率向量,单位为[弧度]/秒。 在此基础上再画图,可用: subplot(211);semilogx(w,20*log10(m) %对数幅频曲线 subplot(212);semilogx(w,p) %对数相频曲线 ⑤bode(sys1,sys2,…,sysN) ; ⑥bode((sys1,sys2,…,sysN,w); 这两种格式可在一个图形窗口同时绘多个系统的bode图。 2. Nyquist曲线的绘制

实验四线性系统的频域分析 -

武汉工程大学实验报告 专业 电气自动化03班 班号 1104150318 组别 指导教师 陈艳菲 姓名 彭雪君 同组者 个人 实验名称 实验四 线性系统的频域分析 实验日期 2014-04-16 第 4 次实验 一、 实验目的 1. 掌握用MATLAB 语句绘制各种频域曲线。 2. 掌握控制系统的控制方法。 二、 实验内容 1. 典型二阶系统 2222)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 )5)(15(10)(2+-= s s s s G )106)(15()1(8)(22++++=s s s s s s G )11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为) 11.0(1)(2++=s s s s G 。求系统的开环截止频率、穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。

三、实验结果分析 1.6=n ω,ζ分别取1.0=ζ,0.3,0.5,0.8,2时,系统的bode 图绘制: 源程序代码及图形: >> num=[0 0 36]; >> den1=[1 1.2 36];>> den2=[1 3.6 36]; >> den3=[1 6 36];>> den4=[1 9.6 36]; >> den5=[1 24 36]; >> bode(num,den1) >> grid >> text(4.2,-15,'Zeta=0.1'); >> hold >> bode(num,den2) >> text(3,-22,'0.3');>> bode(num,den3) >> text(2,-32,'0.5');>> bode(num,den4) >> text(3,-45,'0.8');>> bode(num,den5) >> text(1.8,-50,'2'); 结果分析:从图中可看出ζ越小,中频段振荡越剧烈。该二阶系统是典型的振荡环节,谐 振频率)220(21222≤<*-*=ζζωωn r ,谐振峰值)220(121222≤<-**=ζζζr M ,当2 202<<ζ时,r ω,r M 均为ζ的减函数,ζ越小,r M ,r ω越大,振荡幅度越大,超调量越大,过程越不平 稳且系统响应速度越慢,当 12 22 <<ζ时。)(ωA 单调减小,此时无谐振峰值和谐振频率,过程较平稳。

自动控制原理实验报告线性系统的频域分析讲述

武汉工程大学实验报告 专业 自动化 班号 组别 指导教师 姓名 同组者 实验名称 线性系统的频域分析 实验日期 2016/4/4 第 5 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w)

bode(num,den3,w) bode(num,den4,w) bode(num,den5,w) -100-80-60-40-200 20M a g n i t u d e (d B )10 10 10 10 10 10 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(2 2++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100);

线性系统的频域分析法

第五章线性系统的频域分析法 5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性? 答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。 图5-1 问5-1图 称为系统的幅频特性,它是频率的函数;称为 系统的相频特性,它是频率的函数:称为系统的频率特性。 稳定系统的频率特性可通过实验的方法确定。 5-2 频率特性与传递函数的关系是什么?试证明之。 证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。证明如下。 假设系统传递函数为: 输入时, 经拉氏反变换,有: 稳态后,则有: 其中:

将与写成指数形式: 则: 与输入比较得: 幅频特性相频特性 所以是频率特性函数。 5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。 答频率特性的几何表示一般有3种方法。 ⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。它以频率为参变量,以复平面上 的矢量来表示的一种方法。由于与对称于实轴,所以一般仅画 出的频率特性即可。 ⑵对数频率特性曲线(伯德图)。此方法以幅频特性和相频特性两条曲线来表示系统的 频率特性。横坐标为,但常用对数分度。对数幅频特性的纵坐标为 ,单位为dB。对数相频特性的纵坐标为,单位为“。”(度)。 和都是线性分度。横坐标按分度可以扩大频率的表示范围,幅频特性采用 可给作图带来很大方便。 ⑶对数幅相频率特性曲线(尼柯尔斯曲线)。这种方法以为参变量,为横坐标, 为纵坐标。 5-4 什么是典型环节? 答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为 典型环节。①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节; ⑤一阶微分环节

线性系统的频域分析总结

五.线性系统的频域分析法 5-1 频率特性 1. 频率特性的基本概念 理论依据 定理:设稳定线性定常系统)(s G 的输入信号是正弦信号t X t x ωsin )(=,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率ω的函数,表示为 )](sin[)()(ωφωω+=t Y t c 。 幅频特性:|)(|ωj G ,输出信号与输入信号幅度的比值。描述幅度增益与频率的关系; 相频特性:)(ωj G ∠,输出信号的相角与输入信号相角的差值。描述相移角与频率的关系; 频率特性:)(ωj G ,幅频特性和相频特性的统称。 传递函数)(s G ? 频率特性)(ωj G ?? ?∠) (|)(|ωωj G j G 。 1. 幅频特性 A(ω) G(j ω) 相频特性 ψ(ω) G(j ω) 指数表达式G(j ω)= A(ω)e j φ(ω) 频率特性的物理意义是: 当一频率为ω的正弦信号加到电路的输入端后,在稳态时,电路的输出与输入之比; 或者说输出与输入的幅值之比和相位之差。 2.频率特性的几何表示法(图形表示方法) 图形表示的优点是,直观,易于了解整体情况。 a) 幅相频率特性曲线 幅相频率特性曲线简称为幅相曲线或极坐标图、奈氏曲线等。横轴为实轴,纵轴为虚轴,当频率ω从零变到无穷大时,)(ωj G 点在复平面上留下频率曲线。曲线上的箭头表示频率增大的方向; 极坐标形式: 直角坐标: 实轴正方向为相角零度线,逆时针方向为角度的正角度,顺时针为负角 度。 幅相频率特性曲线的缺点:不易观察频率与幅值和相角的对应关系。

b) 对数频率特性曲线 对数频率特性曲线又称伯德)(Bode 图。伯德图将幅频特性和相频特性分别绘制在上下对应的两幅图中;横轴为频率轴,单位是弧度,对数刻度;幅频特性的纵轴为对数幅度增益轴,|)(|log 20 j G , 单位是分贝db ,均匀刻度;相频特性的纵坐标为相移轴,单位是度(也可以用弧度),均匀刻度。 对数幅频特性图 对数相频特性图 采用对数分度优越性:1把串联环节的幅值由相乘变为和的形式。 2。可以展宽低频率段,压缩高频率段。 对数幅相曲线 对数幅相曲线又称尼科尔斯图。将幅频特性和相频特性绘制在同一幅图中,纵轴为对数幅度增益轴,单位是分贝db ,均匀刻度;横轴为相移轴,单位是度,均匀刻度。 5-3 开环系统的典型环节分解和开环频率特性曲线绘制 反馈控制系统的开环传递函数通常易于分解成若干典型环节串联,了解典型环节的频率特

线性系统的频域分析MATLAB实验

使 校正后系统的静态速度误差系数,相位裕量,增益裕量 绘制伯德图程序,以及计算穿越频率,相位裕量 ans = 相位 Inf 9.0406 频率 Inf 3.1425 > e=5; r=50; r0=9; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); >> phic=(r-r0+e)*pi/180; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); >> alpha=(1+sin(phic))/(1-sin(phic))[gm1,pm1,wcg1,wcp1]=margin(num0,den0); alpha =6.1261 [gm1,pm1,wcg1,wcp1]=margin(num0,den0);[gm1,pm1,wcg1,wcp1] 1 20-=s K v 0 50=γdB K g 10lg 20=

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

实验四 线性系统的频域分析

武汉工程大学实验报告 专业 **过程自动化**班 班号 ********** 组别 指导教师 陈艳菲 姓名 *** 同组者 个人 实验名称 实验四 线性系统的频域分析 实验日期 2012-03-29 第 4 次实验 一、 实验目的 1. 掌握用MATLAB 语句绘制各种频域曲线。 2. 掌握控制系统的控制方法。 二、 实验内容 1. 典型二阶系统 2 222)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 )5)(15(10 )(2 +-= s s s s G ) 106)(15() 1(8)(2 2++++= s s s s s s G

) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为) 11.0(1 )(2++= s s s s G 。求系统的开环截止频率、穿越频率、幅 值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。 三、实验结果分析 1.6=n ω,ζ分别取1.0=ζ,0.3,0.5,0.8,2时,系统的bode 图绘制: 图形:

源程序代码: 结果分析:从图中可看出ζ越小,中频段振荡越剧烈。该二阶系统是典型的振荡环节,谐 振频率)22 0(212 2 2 ≤ <*-*=ζζωωn r ,谐振峰值)220(1212 22≤<-**=ζζ ζr M ,当2 2 02 < <ζ时,r ω,r M 均为ζ的减函数,ζ越小,r M ,r ω越大,振荡幅度越大,超调量越大,过程越不平稳且系统响应速度越慢,当12 2 2 <<ζ时。)(ωA 单调减小,此时无谐振峰值和谐振频率,过程较平稳。 2.(1)) 5)(15(10 )(2+-= s s s s G 的曲线绘制: ① Bode 图的绘制: 程序源代码: num=[0 0 0 0 10 ]; den=[5 24 -5 0 0]; bode(num,den)

第五章 线性系统的频域分析法

第五章 线性系统的频域分析法 思考题 5-1 已知系统如图5-1 ])2)(1(/[1,221K s s s G s G +++=+= 试用奈氏判据确定使系统稳定的K 值范围。 讨论题 5-1 单位反馈系统开环幅相特性如图5-2所示, 当输入2t 2 1t 51)t (r ++=时,系统稳态误差 125.0e ss -=,试确定系统临界稳定时的K 值。 5-2 已知系统结构如图5-3所示,试用奈氏判 据判断闭环系统稳定时,a(a>0)的取值范围。 图5-2 图5-3 作业题 5-1 设系统结构图如图5-4所示,试确定输入信号 r(t)=sin(t+30°)-cos(2t-45°) 作用下,系统的稳态误差ess(t)。 图 5-4 控制系统结构图 1G 2G r c -5 -3 -1 -2 ω j 0 ) a s 2s (s )1s (52-++ R(s) c(s)

5-2 典型二阶系统的开环传递函数为 )2s (s )s (G n 2n ζω+ω= 当取r(t)=2sint 时,系统的稳态输出为css(t)=2sin(t-45°) 试确定系统参数ωn、ζ。 5-3已知系统开环传递函数 ;)1Ts (s )1s (K )s (H )s (G 2++τ= (K、τ、T>0) 试分析并绘制τ>T和T >τ情况下的概略开环幅相曲线。 5-4 已知系统开环传递函数为 )1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0) 当取ω=1时, o 180)j (G -=ω∠,|G(jω)|=0.5。当输入为单位速度信号时,系统 的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。 5-5 已知系统开环传递函数为 ) 1s 5.0s )(1s 2(s 10)s (H )s (G 2+++= 试分别计算ω=0.5和ω=2时,开环频率特性的幅值A(ω)和相位φ(ω)。 5-6 绘制下列传递函数的对数幅频渐近特性曲线: (1) ) 1s 8)(1s 2(2)s (G ++= (2))12s )(1s s (s )11.0s ( 8)s (G 2++++= 5-7 已知最小相位系统的对数幅频渐近特性曲线如图5-5所示,试确定系统的开环传递函数。

第五章 线性系统的频域分析法

第五章 频率特性法 5-1.已知某些部件的对数幅频特性曲线如图5-51所示,试写出它们的传递函数)(s G ,并计算出各环节参数值。 解:()a .1 ()1 K G s s ω= +,由20lg 20K =,10K =,110ω=,则10 ()0.11 G s s = + ()b .1 ()10.11s G s s ω=+=+ ()c .1 0.1()0.0511 Ks s G s s s ω= =++ ()d .2 2 50 ()(0.011) (1)K G s s s s s ω = = ++ ()e .1 2 100 ()(1001)(0.011)( 1)(1) K G s s s s s s s ωω= =++++ ()f .1 2 100 ()(1)(0.11) ( 1)( 1) K G s s s s s ωω= =++++

()g .2 2 2222 31.6644()2189644n n n K G s s s s s ωξωω?==++++ 其中n ω,ξ 由r ωω= r M = 得0.147ξ=,644n ω= ()h .2 2 222210 3.55()20.852 3.55n n n K G s s s s s ωξωω?==++++ 0.12ξ= 3.55n ω= ()i 2 2 222210050()(2)(3050) n n n K G s s s s s s s ωξωω?==++++由20lg 2 4.85ξ-=, r ωω=得n ω,ξ 0.298 0.3ξ=≈,50n ω=。 5-2.概略画出下列传递函数的幅相频率特性曲线 (1) ) 1()(+=Ts s K s G (2) ) 1()(2+= Ts s K s G (3) ) 1()(3+= Ts s K s G 解 (1)()()(1)K G s G j s Ts ω= ?= +, 1()90G j tg T ωω-∠=-- 取特殊点: 0ω=时,()G j ω=∞,()90G j ω∠=- ω=∞时,()0G j ω=,()180G j ω∠=- (2) 2()()(1)K G s G j s Ts ω= ?=+,1 ()180G j tg T ωω-∠=-- 取特殊点: 0ω=时,()G j ω=∞,()180G j ω∠=-

实验3 线性系统的频域分析方法

实验3 线性系统的频域分析方法 1、主要内容:自动控制系统频域分析上机实验 2、目的与要求 熟悉 MATLAB 软件在频域分析中的基本应用 熟悉 MATLAB 软件绘制 Bode 图、Nyquist 曲线 由 MATLAB 软件绘制的 Bode 图判别闭环系统的稳定性 3、重点与难点: MATLAB 软件绘制 Bode 图、Nyquist 曲线及稳定性判断 MATLAB 软件绘制 Bode 图、Nyquist 曲线 一、实验目的 1、利用 MATLAB 绘制系统的频率特性图; 2、根据 Nyquist 图判断系统的稳定性; 3、根据 Bode 图计算系统的稳定裕度。 二、实验任务 利用 MATLAB 绘制系统的频率特性图,是指绘制 Nyquist 图、Bode 图,所用到的函数主要是 nyquist 、ngrid 、bode 和 margin 等。 1、Nyquist 图的绘制及稳定性判断 nyquist 函数可以计算连续线性定常系统的频率响应,当命令中不包含左端变量时,仅产生 Nyquist 图。 命令 nyquist(num,den)将画出下列传递函数的 Nyquist 图: 1110 1 110()m m m m n n n n b s b s b s b GH s a s a s a s a ----++++=++++ 其中,1 10110[],[]m m n n num b b bb den a a a a --==。 (1) 已知某控制系统的开环传递函数为 50 ()(5)(2) G s s s = +- 用matlab 绘制系统的奈氏图,并判断系统的稳定性。 当K=1时:图取下半部分,由图有Z=P-2N=1-1=0,系统稳定。

相关文档
相关文档 最新文档