文档库 最新最全的文档下载
当前位置:文档库 › 1987~2013武汉大学数学分析考研试题

1987~2013武汉大学数学分析考研试题

1987~2013武汉大学数学分析考研试题
1987~2013武汉大学数学分析考研试题

武汉大学数学分析1992

1.给定数列如下:

}{n x 00>x ,??

????+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。

}{n x (2)求出其极限值。

2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。

3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式:。

)(x g )(x f []x x g a x x f a f a d )(d )()(00∫∫?=4.给定级数∑+∞

=+01

n n

n x 。

(1)求它的和函数。 )(x S (2)证明广义积分x x S d )(1

0∫收敛,交写出它的值。

5.对于函数???

????=+≠++=0,00,),(22222

22y x y x y x y x y x f ,证明:

(1)处处对),(y x f x ,对可导;

y (2)偏导函数,有界;

),(y x f x ′),(y x f y ′(3)在点不可微。

),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。

),(y x f x ′),(y x f y ′)0,0(6.计算下列积分:

(1)

x x x x a b d ln 10?∫,其中为常数,b a ,b a <<0。 (2)

,其中为平面上由直线∫∫?D y y x e d d 2D x y =及曲线31x y =围成的有界闭区域。

武汉大学数学分析1994

1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立),N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。

2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列,极限都存在(有限数)。 )(x f 0x 0U 0x 0U }{n x )(lim n n x f ∞

→(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的,

即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0

U )(lim )(lim n n n n x f x f ′=∞

→∞→。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0

。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

)()()()(00x g x x x f x f ?+=,

又这时还有)()(00x g x f =′。

4.已知有限闭区间上的连续函数在该区间上是可积的。现假设有一函数,

在区间上有定义,有界(存在正数)(x f ],[b a M ,],[b a x ∈?,有M x f <)()

;有唯一间断点(在其余点连续)。试根据函数可积条件证明函数在可积。

a )(x f )(x f ],[

b a 5.给定幂级数""+??++?+?)1(2

31232n n x x x n

(1)确定它的收敛半径和收敛区间;

(2)求它的和函数。

)(x S 6.计算线积分()

y x y e x y xe I x x C d cos d )sin 2(422++?=??∫+,其中是从点到点的半圆+C )0,1(A )0,1(?B 21x y ?=(11≤≤?x )。

武汉大学数学分析1995

1.设上无界,证明存在子序列,使得}{n a }{k n a +∞→k n a (当+∞→k )

2.证明:。 1d lim 10=∫+∞→x e n

x n 3.设在上连续,证明:)(x f ]1,0[[]2

10d )(21d d )()1(x x f y x x f y f D

∫∫∫=?。 其中为三角形区域,,。 D )0,0(O )1,0(A )0,1(B 4.计算下列积分:∫

?+?+?L y z x x y z z x y d )(d )(d )(。其中平面与三坐

标平面的交线,其方向为从看,曲线是逆时针方向。

L 1=++z y x )1,1,1(L 5.判断级数∑+∞=??1)1(n n n n n 是否绝对收敛,条件收敛,为什么?

6.设二元函数???

????=+≠+++=0,00,1cos )(),(22222222y x y x y x y x y x f 。

(1)求,。

)0,0(x f )0,0(y f (2)证明,在不连续。

),(y x f x ),(y x f y )0,0((3)证明:在可微。

),(y x f )0,0(7.设对任意自然数n ,在)(x f n [)+∞,a 上连续,且反常积分x x f n a d )(∫+∞

关于n 一致收敛,

又对任意,在上有(当a M >],[M a )()(x f x f n →

→+∞→n ),证明: (1)反常积分

收敛。 x x f a d )(∫+∞(2)。 x x f x x f a n a n d )(d )(lim ∫

∫+∞+∞+∞→=8.设证,问

)|sin(|),(3y x y y x F +=(1)在附近是否满足)0,0(0),(=y x F 的隐函数存在定理条件?

(2)在附近关于是否严格单调?

)0,0(),(y x F y (3)在附近,是否存在过在的唯一连续隐函数?为什么?

)0,0()0,0(

(3)若存在隐函数过点,问其导函数为何?

)0,0(武汉大学数学分析1996

1.设)(+∞→→n a a n ,令

?

??≤>=+0,00,n n n n

a a a a , ???≤>=0,00,a a a a 证明:。 )(+∞→→++n a a n 2.设,在可微,且A y x f y x y x =→),(lim ),(),(00),(y x g ),(00y x 0),(00=y x g 。证明:

(1)α+=A y x f ),(,()

20200)()()(y y x x o x x ?+?=?α,(); ),(),(00y x y x →(2)在可微。

),(),(y x g y x f z =),(00y x 3.设当,,],[b a x ∈0)(≥x f 0/)(≡

x f ,且在上连续,证明:。 )(x f ],[b a 0d )(>∫x x f b a 4.给定级数

n n x n n )(!)!2(!)!12(1

??∑∞=,证明: (1)1

21!)!2(!)!12(+

]1,1?(3)在是此级数不一致收敛。

(]1,1?5.设)(x ?,是连续函数,且有,当时)(x f 0>R R x ≥||0)(=x ?,证明:

(1)当时有∞→n )0()()(f x n x f x ??→→??????,+∞<<∞?x 。 (2)若还有,则1d )(=∫+∞∞?x x ?)0(d )()(lim f x x f nx n n =∫+∞

∞?+∞→?。 5.计算积分,其中是椭球面y x xyz S d d ∫∫S 122

2222=++c

z b y a x 在,部分并取其外侧,()

0≥x 0≥y 0,0,0>>>c b a

武汉大学数学分析1997

1.设且不趋于,证明数列中存在子序列是收敛的子序列。

0>n a n a ∞+}{n a }{k n a 2.设为连续函数,且)(x f {}

],[0)(b a x f x ?≠,+∞<|||,|b a ,证明: 0d )(1lim

=????????????

?+∫+∞

∞?+∞→y y f n y f n 。 3.设为连续函数,且当),(y x f )0,0(),(≠y x 时,,及满足,。证明存在0),(>y x f ),(),(y x cf cy cx f =0>?c 0,>βα,使得2222),(y x y x f y x +≤≤+βα。

4.设有二阶连续偏导数,),,,(z y x t u u =?为空间的一有界闭集,它有光滑边界,处的单位外法向矢量为,证明:

),,(z y x ????νz y x u t S u t u z y x u t u d d d d d 21d d d d 2(∫∫∫∫∫∫∫∫???????????=????ν外侧) 其中222222z u y u x u u ??+??+??=?,???

???????????=?z u y u x u u ,, 5.设{}在上有定义,满足一致Lipschitz 条件: )(x f n ],[b a

2013年全国研究生数学建模竞赛A题

2013年(第十届)全国研究生数学建模竞赛A题 变循环发动机部件法建模及优化 由飞机/发动机设计原理可知,对于持续高马赫数飞行任务,需要高单位推力的涡喷循环,反之,如果任务强调低马赫数和长航程,就需要低耗油率的涡扇循环。双涵道变循环发动机可以同时具备高速时的大推力与低速时的低油耗。变循环发动机的内在性能优势,受到了各航空强国的重视,是目前航空发动机的重要研究方向。 1 变循环发动机的构`造及基本原理 1.1 基本构造 双涵道变循环发动机的基本构造见图1、图2,其主要部件有:进气道、风扇、副外涵道、CDFS涵道、核心驱动风扇级(CDFS)、主外涵道、前混合器、高压压气机、主燃烧室、高压涡轮、低压涡轮、后混合器、加力燃烧室、尾喷管。双涵道模式下,选择活门和后混合器(后VABI)全部打开;单涵道模式下,选择活 前混合器主外涵道主燃烧室加力燃烧室

图2 双涵道变循环发动机结构示意图 图中数字序号表示发动机各截面参数的下脚标 各部件之间的联系如图3所示,变循环发动机为双转子发动机,风扇与低压涡轮相连,CDFS、高压压气机与高压涡轮相连,如图3下方褐色的线所示。蓝色的线表示有部件之间的气体流动连接(图3中高压压气机后不经主燃烧室的分流气流为冷却气流,在本题中忽略不计)。 图3 变循环发动机工作原理图 1.2工作原理 变循环发动机有两种工作模式,分别为涡喷模式和涡扇模式。 发动机在亚音速巡航的低功率工作状态,风扇后的模式转换活门因为副外涵与风扇后的压差打开,使更多空气进入副外涵,同时前混合器面积开大,打开后混合器,增大涵道比,降低油耗,此时为发动机的涡扇模式。 发动机在超音速巡航、加速、爬升状态时,前混合器面积关小,副外涵压力增大,选择活门关闭,迫使绝大部分气体进入核心机,产生高的推力,此时为发

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

2013年考研管理类联考数学真题及答案解析

2013年考研管理类联考数学真题及答案解析 2013-01-05 08:49 未知点击:574 次好学教育 字号:T|T 好学考研网校提示:2013年考研考试即将在1月5日至7日进行,为了方便考生能在考后第一时间内获得2013年考研管理类联考真题,我们将会在考后第一时间发布2013年考研管理类联考数学真题及答案,供大家参考。欢迎各位考生进入"2013年考研管理类联考数学真题及答案交流"进行交流。请您加入收藏 2013年全国硕士研究生入学统一考试管理类专业硕士学位联考 一、问题求解:第1-15小题,每小题3分,共45分,下列每题给出的A.B.C.D.E五个选项中,只有一项是符合试题要求的,请在答题卡上将所选的字母涂黑。 1.某工厂生产一批零件,计划10天完成任务,实际提前2天完成,则每天的产量比计划平均提高了( ) A.15% B.20% C.25% D.30% E.35% 2. 甲乙两人同时从A点出发,沿400米跑道同向均匀行走,25分钟后乙比甲少走了一圈,若乙行走圈需要8分钟,甲的速度是( )(单位:米/分钟) A.62 B.65 C.66 D.67 E.69 3. 甲班共有30名学生,在一次满分为100分的测试中,全班平均成绩为90分,则成绩低于60分的学生至多有()个。 A.8 B.7 C.6 D.5 E.4 4.某公司有甲工程60天完成,由甲、乙两公司共同承包需要28天完成,由乙、丙两公司共同承包需要35天完成,则有丙公司承包完成该工程需要的天数为( ) A.85 B.90 C.95 D.100 E.105

6.甲乙两商店同时购进了一批某品牌电视机,当甲店售出15台时乙售出了10台,此时两店的库存比为8:7,库存差为5,甲乙两店总进货量为( ) A.75 B.80 C.85 D.100 E.125 7.如图1,在直角三角形ABC中,AC=4,BC=3,DE∥BC,已知梯形BCDE的面积为3,则DE长为( ) A. B. +1 C.4 -4 D. E. +1 8.点(0,4)关于2x+y+1=0的对称点为( ) A.(2,0) B.(-3,0) C.(-6,1) D.(4,2) E.(-4,2)

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

2015武汉大学数学分析考研真题

2015武汉大学数学分析 一、(40分) 1、.) 1()1)(1()1()1)(1(lim 2111------+--→k k n n n x x x x x x x 2、.sin cos cos lim 20x bx ax m n x -→ 3、).11(lim 132 n -+∑=∞→n k n k 4、已知 2 110n a a n n +≤<+,证明数列{}n a 极限存在。 二、已知曲面0)))((,))(((11=------c z y b c z x a F ,且),(t s F 二阶偏导连续,梯度处处不为零,(1)证明,曲面的切平面必过一定点;(2)()y x z z ,=,证明 .02 22222=??? ? ?????-?????y x z y z x z 三、0>n a ,01lim 1n >=??? ? ??-+∞→λa a n n n ,证明,()∑∞=--111n n n a 收敛. 四、求?????????????? ??--??-∞→t t y x t dxdy y x e e e 00t lim 的极限,或证明它不存在。 五、(1)、求积分()??+ππ 00cos dxdy y x 的值,(2)、10<<α,求积分()d t t f ?1 α的上确界,其中)t (f 是连续函数, ().110 ≤?dt t f 六、已知()dt x tx f ?∞+=0 21cos t ,证明, (1)、()x f 在()∞+∞, -上一致收敛; (2)()0lim =∞→t f t (3)()x f 在()∞+∞, -上一致连续; (4)()0dt sin 0 ≤?∞ t t f ;

2013年考研数三真题及答案解析(完整版)

2013年考研数三真题及答案解析 一、选择题 1—8小题.每小题4分,共32分.、 1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( ) (A ))()(3 2 x o x o x =? (B ))()()(3 2 x o x o x o = (C ))()()(2 2 2 x o x o x o =+ (D ))()()(2 2 x o x o x o =+ 【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2 3 3 2 x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是 )(2x o 故应该选(D ). 2.函数x x x x x f x ln )1(1)(+-= 的可去间断点的个数为( ) (A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x e x x x x ln ~11ln -=-, 1ln ln lim ln )1(1lim )(lim 0 ==+-=→→→x x x x x x x x x f x x x x ,所以0=x 是函数)(x f 的可去间断点. 2 1 ln 2ln lim ln )1(1lim )(lim 0 1 1 = =+-=→→→x x x x x x x x x f x x x x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→x x x x x x x x x f x x x x ln )1(ln lim ln )1(1lim )(lim 1 1 1 ,所以所以1-=x 不是函数)(x f 的 可去间断点. 故应该选(C ). 3.设k D 是圆域{ } 1|),(2 2≤+=y x y x D 的第k 象限的部分,记??-=k D k dxdy x y I )(,则 ( ) (A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

13年考研数学三真题

2013硕士研究生入学考试数学三真题 1. 当x →0时,用“o (x )”表示比x 高阶的无穷小,则下列式子中错误的是 A. x ·o (x 2)=o(x 3) B.o(x )·o(x 2)=o(x 3) C.o(x 2)+o(x 2)= o(x 2) D.o(x )+ o(x 2)= o(x 2) 2. 函数f (x )=1 (1)ln x x x x x -+的可去间断点的个数为 A.0 B.1 C.2 D.3 3. 设D k 是圆域D ={(x ,y )|x 2+y 2≤1}位于第k 象限的部分,记I k = ()k D y x dxdy -??(k =1,2,3,4) ,则 A.I 1>0, B. I 2>0, C. I 3>0, B. I 4>0 4. 设{a n }为正项数列,下列选项正确的是 A. 若a n > a n+1, 则 1 1 (1) n n n a ∞ -=-∑收敛 B. 若 1 1(1) n n n a ∞ -=-∑收敛,则a n >a n+1 C. 若 1 n n a ∞ =∑收敛,则存在常数p >1,使lim n →∞ n p a n 存在 D. 若存在常数p >1,使lim n →∞ n p a n 存在,则 1 n n a ∞ =∑收敛 5. 设A,B,C 均为n 阶短阵,若AB=C,且B 可逆,则 A. 矩阵C 的行向量组与矩阵A 的行向量组等价 B. 矩阵C 的列向量组与矩阵A 的列向量组等价 C. 矩阵C 的行向量组与矩阵B 的行向量组等价 D. 矩阵C 的列向量组与矩阵B 的列向量组等价 6. 矩阵1111a a b a a ?? ? ? ???与20000000b ?? ? ? ??? 相似的充分必要条件为( ) A. a =0,b =2 B. a =0,b 为任意常数 C. a =2,b =0 D. a =2,b 为任意常数 7. 设x 1, x 2, x 3是随机变量,且x 1~N (0,1),x 2~N (0,22),x 3~N (5,32),P j =P {-2≤x j ≤2}(j =1,2,3),则A.P 1>P 2>P 3 B.P 2>P 1>P 3 C.P 3>P 1>P 2 D.P 1>P 3>P 2 8. 设随机变量X 和Y 相互独立,且X 和Y 的概率分布分别为 X 0 1 2 3

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

武汉大学数学分析考试解答

武汉大学2004年攻读硕士学位研究生入学考试试题 科目名称:数学分析 科目代码:369 一、计算下列各题: 1. 2. 2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a a n a a a a a a →∞→∞+++>-=-=---lim(sin 1sin ) 11lim 2sin()cos 2211lim 2sin cos 22(1) x x x x x x x x x x x x x →∞ →∞→∞+-+-++=++=++= 3. 4. 20 30 220sin()lim sin()lim (')313x x x t dt x x L Hospital x →→==?法则2 1 11 arctan 2arctan(21)arctan(21)244 k k k k k πππ∞ =∞ ==+--=-=∑∑ 5. 4812 4812323 3 1... ()59!13!1()...3!11!15! ()()sin ()4()()()24x x A B e e A x B x x A e e e e B A x B x π π πππππππππππππππππππ---+ +++= ++++-?-=??==?--+= ??!7! 6. " '2"22' 2(,)()(),()(,) (,)()()()() (,)()(23)()(1)()xy x xy y xy x y y xy F x y x yz f z dz f z F x y F x y z f z dz x xy xf xy x x F x y f x y f xy xy y f xy y y =-=-+-= +-+-??设:其中为可微函数,求

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>?=??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤? =? +> ? (3) 已知) 211sin x x ' ?=?+? ,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

武汉大学数学分析1992 1.给定数列如下: }{n x 00>x ,?? ? ???+?=?+11)1(1k n n n x a x k k x ,",2,1,0=n (1)证明数列收敛。 }{n x (2)求出其极限值。 2.设函数定义在区间)(x f I 上,试对“函数在)(x f I 上不一致连续”的含义作一肯定语气的(即不用否定词的)叙述,并且证明:函数在区间x x ln ),0(+∞上不一致连续。 3.设函数在区间上严格递增且连续,)(x f ],0[a 0)0(=f ,为的反函数,试证明成立等式: 。 )(x g )(x f []x x g a x x f a f a d )(d )()(0 0∫ ∫?=4.给定级数∑+∞ =+01 n n n x 。 (1)求它的和函数。 )(x S (2)证明广义积分 x x S d )(10 ∫ 收敛,交写出它的值。 5.对于函数??? ????=+≠++=0,00,),(222 22 22y x y x y x y x y x f ,证明: (1)处处对),(y x f x ,对可导; y (2)偏导函数,有界; ),(y x f x ′),(y x f y ′(3)在点不可微。 ),(y x f )0,0((4)一阶偏导函数,中至少有一个在点不连续。 ),(y x f x ′),(y x f y ′)0,0(6.计算下列积分: (1)x x x x a b d ln 10 ?∫ ,其中为常数,b a ,b a <<0。 (2),其中为平面上由直线∫∫?D y y x e d d 2 D x y =及曲线31 x y =围成的有界闭区域。 武汉大学数学分析1994 1.设正无穷大数列(即对于任意正数}{n x M ,存在自然数,当时,成立), N N n >M x n >E 为的一切项组成的数集。试证必存在自然数}{n x p ,使得E x p inf =。 2.设函数在点的某空心邻域内有定义,对于任意以为极限且含于的数列 ,极限都存在(有限数)。 )(x f 0x 0 U 0x 0 U }{n x )(lim n n x f ∞ →(1)试证:相对于一切满足上述条件的数列来说,数列的极限是唯一确定的, 即如果和是任意两个以为极限且含于的数列,那么总有 }{n x )}({n x f }{n x }{n x ′0x 0 U )(lim )(lim n n n n x f x f ′=∞ →∞ →。 (2)记(1)中的唯一确定的极限为,试证:)}({n x f A A x f x x =→)(lim 0 。 3.设函数在点的邻域)(x f 0x I 内有定义,证明:导数)(0x f ′存在的充要条件是存在这样的函数,它在)(x g I 内有定义,在点连续,且使得在0x I 内成立等式:

396考研数学历年真题

2011年 二、单项选择题(2’*10=20’) 21. 设2 ()arccos ,f x x =则'()().f x = (A ) (B ) (C ) (D ) 22. 不定积分().=? (A C (B )C (C )C (D )13 C - 23. 函数3 2 ()69,f x x x x =++那么( ). (A ) 1x =-为()f x 的极大值点 (B )1x =-为()f x 的极小值点 (C )0x =为()f x 的极大值点 (D )0x =为()f x 的极小值点 24. 设函数()f x 在开区间(,)a b 内有'()0,f x <且''()0,f x <则()y f x =在(,)a b 内( ). (A )单调增加,图像上凸 (B )单调增加,图像下凸 (C )单调减少,图像上凸 (D )单调减少,图像下凸 25. 设函数()y f x =在区间[0,]a 上有连续的导数,则定积分 '()a xf x dx ? 在几何上表示 ( ). (A )曲边梯形的面积 (B )梯形的面积 (C )曲边三角形的面积 (D )三角形的面积 26. 设A 和B 均为n 阶矩阵(1),n m >是大于1的整数,则必有( ). (A ) ()T T T AB A B = (B )()m m m AB A B = (C ) ||||||T T T AB A B =? (D )||||||A B A B +=+ 27. 设线性无关的向量组1234,,,αααα可由向量组12,, ,s βββ线性表示,则必有( ) (A )12,,,s βββ线性相关 (B )12,, ,s βββ线性无关

(最新整理)上海交通大学2003年数学分析考研试题

(完整)上海交通大学2003年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2003年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2003年数学分析考研试题的全部内容。

上海交通大学2003年数学分析考研试题 一 判断以下各题,正确的给出证明,错误的举反例并说明理由。(每小题6分,共24分) 1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。 2. 若()x f ,()x g 连续,则()()()()x g x f x ,m in =?连续。 3. 任意两个周期函数之和仍为周期函数。 4. 若函数()y x f ,在区域D 内关于x ,y 的偏导数均存在,则()y x f ,在D 内必连续。 二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的 δ邻域上无界。 三(12分)设()x f 对任意R x ∈有()()2x f x f =且()x f 在0=x 和1=x 处连续。试证明()x f 在R 上为常数。 四(12分)已知0,...,,21 n a a a ,()2≥n 且()x x n x x n a a a x f 12 1 ...??? ? ? ?+++=,试求()n n x a a a x f ...lim 210=→ 五(12分)若实系数多项式()n n n n n a x a x a x a x P +++=--1110,00≠a 的一切根均为实数。试证明导函数()x P n '也仅有实根。 六(12分)设{}n na 收敛,级数()∑∞ =--2 1n n n a a n 收敛。试证级数∑∞ =1 n n a 收敛。 七(12分)设()x y ?=,0≥x 是严格单调增加的连续函数,()00=?是它的反函数.试证明对 0,0 b a 有()()ab dy y dx x b a ≥+??0 ψ? 八 计算题(每小题12分,共24分) 1. 求函数()4 4 4 ,,z y x z y x f ++=在条件1=xyz 下的极值。 2. 计算积分()dz arctgzdxdy z y I V ??? -= ,其中V 为由曲面()222 2 1R z y x =-+,0=z 和h z =所围成的区域。 九(10分)设()x g 在[)+∞,a 上一致连续,且对任意的a x ≥有()A n x g n =++∞ →lim ,是试证()A x g x =+∞ →lim

最新2013年考研数学二试题及答案

2013年全国硕士研究生入学统一考试数学二试题答案 1 一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,2 只有一个选项符合 3 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 4 1、设cos 1sin ()x x x α-=?,()2 x π α< ,当0x →时,()x α( ) 5 (A )比x 高阶的无穷小 (B )比x 低阶的无穷小 6 (C )与x 同阶但不等价的无穷小 (D )与x 是等价无穷小 7 【答案】(C ) 8 【考点】同阶无穷小 9 【难易度】★★ 10 【详解】cos 1sin ()x x x α-=?,21cos 12x x -- 11 21 sin () 2 x x x α∴?-,即1sin ()2 x x α- 12 ∴当0x →时,()0x α→,sin ()()x x αα 13 1 () 2 x x α∴-,即()x α与x 同阶但不等价的无穷小,故选(C ). 14 2、已知()y f x =由方程cos()ln 1xy y x -+=确定,则2 lim [()1]n n f n →∞-=( ) 15

(A )2 (B )1 (C )-1 (D )-2 16 【答案】(A ) 17 【考点】导数的概念;隐函数的导数 18 【难易度】★★ 19 【详解】当0x =时,1y =. 20 002 ()1 2(2)1(2)(0) lim [()1]lim lim 2lim 2(0)12n n x x f f x f x f n n f f n x x n →∞→∞→→---'-==== 21 方程cos()ln 1xy y x -+=两边同时对x 求导,得 22 1 sin()()10xy y xy y y ''-++ ?-= 23 将0x =,1y =代入计算,得 (0)(0)1y f ''== 24 所以,2 lim [()1]2n n f n →∞-=,选(A ). 25 3、设sin [0,) ()2[,2]x f x πππ?=?? ,0()()x F x f t dt =?,则( ) 26 (A )x π=为()F x 的跳跃间断点 (B )x π=为()F x 的可去间断点 27 (C )()F x 在x π=处连续不可导 (D )()F x 在x π=处可导 28

武汉大学2005数学分析试题解答.doc

2005 年攻读硕士学位研究生入学考试试题解答(武 汉 大 学) 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 ()||sin ,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:)

2000~2012年苏州大学数学分析考研真题

苏州大学 2012年攻读硕士学位研究生入学考试数学分析试题 一、下列命题中正确的给予证明,错误的举反例或说明理由。共4题,计30分。 1. 设()f x 在[],a b 上连续,且()0b a f x dx =∫,则[],x a b ?∈,()0f x =。 2. 在有界闭区间[],a b 上可导的函数()f x 是一致连续的。 3. 设()f x 的导函数()f x ′在有限区间I 上有界,则()f x 也在I 上有界。 4. 条件收敛的级数1n n a ∞=∑任意交换求和次序得到的新级数也是收敛的。 二、下列4题每题 15分,计60分。 1. 计算下列极限: (1) 111lim 12n n n →∞ +++ ; (2) sin 0lim sin x x x e e x x →??。 2. 求积分2D I x y dxdy =?∫∫,其中(){},:01,11D x y x y =≤≤?≤≤。 3. 设L 为单位圆周221x y +=,方向为逆时针,求积分 ()()22 4L x y dx x y dy I x y ?++=+∫ 。 4. 计算曲面积分 () 42sin z S xdydz e dzdx z dxdy ++∫∫, 其中S 为半球面222 1x y z ++=,0z ≥,定向为上侧。 三、下列3题,计36分。 1. 设()f x 在[],a b 上可微,证明:存在(),a b ξ∈,使成立 ()()()()()222f b f a b a f ξξ′?=?。 2. 设()2sin x f x e x =,求()()20120f 。 3. 设()f x 在闭区间[],a b 上二阶可导且()0f x ′′<,证明不等式 ()()2b a a b f x dx f b a + ≤? ∫。

北京大学数学分析考研试题及解答

判断无穷积分1sin sin( )x dx x +∞?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π-≤≤, 得到 33sin sin 1sin 11|sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+, 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意*m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞→+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞=∑的收敛性。 解 显然当0p ≤时,级数2n n a ∞=∑发散; 由 20011ln(1)1lim lim 2x x x x x x x →→--++=011lim 21x x →=+ 12=, 得221ln(1)4 x x x x ≤-+≤,(x 充分小),

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>?=??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤ ?=? +> ? (3) 已知) 211sin x x ' ?=?+? ,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

相关文档
相关文档 最新文档