文档库 最新最全的文档下载
当前位置:文档库 › 均值不等式八法

均值不等式八法

均值不等式八法
均值不等式八法

运用均值不等式的八类拼凑方法

利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。

一、 拼凑定和

通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()2

2

2111111y x

x x x x x x =-+++=+-=+-

()()3

11111322241422327

x x x x x x ++??

++- ?++=???-≤=

? ???

。 当且仅当

112x x +=-,即13x =时,上式取“=”。故max 32

27

y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大

值。

例2

求函数)01y x x =<<的最大值。

解:

y ==

因()()3

2222221122122327x x x x x x ??++- ???-≤=

? ? ?

??

, 当且仅当()2212x x =-

,即x =时,上式取“=

”。故max y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3 已知02x <<,求函数()264y x x =-的最大值。

解:()

()()2

2

2

222236418244y x

x x x x =-=?--

()()3

2223

24418818327x x x ??+-+-???≤=????

当且仅当()

22

24x x =-

,即x =

=”。

故max

32

18827y ?=

,又max 0,y y >=。

二、 拼凑定积

通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定

积,创造运用均值不等式的条件

例4 设1x >-,求函数()()521

x x y x ++=

+的最小值。

解:()())

141141515911

1

x x y x x x x ++++????????=

=+++≥+=+++。 当且仅当1x =时,上式取“=”。故min 9y =。

评注:有关分式的最值问题,若分子的次数高于分母的次数,则可考虑裂项,变为和的形式,然后“拼凑定积”,往往是十

分方便的。

例5 已知1x >-,求函数()

()

2

2413x y x +=

+的最大值。

解:

1,10x x >-∴+>,()

()

()()2

24124

24

34

224

1414

141

x y x x x x +∴=

=

=?+++++++

++。

当且仅当1x =时,上式取“=”。故max 3y =。

评注:有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母“拼凑定

积”。

例6 已知0x π<<,求函数2cos sin x

y x -=

的最小值。

解:因为0x π<<,所以022x π<<,令tan 2

x

t =,则0t >。

所以211cos 1133sin

sin 2222

x t t y t x x t t t -+

=+=+=+≥=。

当且仅当

1322t t =,即3

t x π==时,上式取“=”。故min y = 评注:通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。

三、 拼凑常数降幂

例7 若332,,a b a b R ++=∈,求证:2a b +≤。

分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供

信息,开辟捷径。本题已知与要求证的条件是1a b ==,为解题提供了信息,发现应拼凑项,巧妙降次,迅速促成“等”

与“不等”的辩证转化。

证明:

33333333333333113113,113113a a a b b b ++≥=++≥=。

()33463, 2.a b a b a b ∴++=≥+∴+≤当且仅当1a b ==时,上述各式取“=”, 故原不等式得证。

评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。

例8 若332,,x y x y R ++=∈,求225x y xy ++的最大值。

解:

333333311,311,311,x x x x y y y y x y x y ???≤++???≤++???≤++

()

()

3333333322115177573

3

x x y y x y x y x y xy ++++++++++∴++≤

=

=。

当且仅当1a b ==时,上述各式取“=”,故225x y xy ++的最大值为7。

例9 已知,,0,1a b c abc >=,求证:333a b c ab bc ca ++≥++。

证明:333333131,131,131a b a b b c b c c a c a ++≥???++≥???++≥???,

()

()333323a b c ab bc ca ∴+++≥++,又3ab bc ca ++≥=, ()()3333333223,a b c ab bc ca a b c ab bc ca ∴+++≥+++∴++≥++。

当且仅当1a b c ===时,上述各式取“=”,故原不等式得证。

四、 拼凑常数升幂

例10 若,,a b c R +∈,且1a b c ++=。

分析:已知与要求证的不等式都是关于,,a b c 的轮换对称式,容易发现等号成立的条件是13a b c ===

,巧妙升次,迅速促成“等”与“不等”的辩证转化。

证明:

()()()16

16161616

16

2

55,255,255333

33

3

a a

b b

c c +≤

+++≤

+++≤

++, (

()16

2

3132.3

a a

b

c ∴+≤+++=≤。

当且仅当1

3

a b c ===

时,上述各式取“=”,故原不等式得证。 例11 若2,,,a b a b R ++=∈,求证:332a b +≥。

证明:

33333331111,31111,a a b b ??≤++??≤++()3334a b a b ∴+≤++。

332,2a b a b +=∴+≥。当且仅当1a b ==时,上述各式取“=”

,故原不等式得证。 五、 约分配凑

通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。

例12 已知28

,,0,1x y x y

>+=,求xy 的最小值。

解:2

2

28464

4

64

13223264y x y x x y x y

x y x y x y x y

??==+=++≥+= ???

当且仅当

281

2

x y ==时,即 4.16x y ==,上式取“=”

,故()min 64xy =。 例13 已知01x <<,求函数411y x x

=

+-的最小值。 解:因为01x <<,所以10x ->。

所以()()41414

1159111x x y x x x x x x x x -??=

+=+-+=++≥?? ???---??

。 当且仅当

()411x x

x x

-=-时,即23x =,上式取“=”,故min 9y =。

例14 若,,a b c R +

∈,求证

()2221

2

a b c a b c b c c a a b ++≥+++++。 分析:注意结构特征:要求证的不等式是关于,,a b c 的轮换对称式,当a b c ==时,等式成立。

此时

22

a a

b c =+, 设()2a m b c +=,解得14m =,所以2

a b c

+应拼凑辅助式4b c +为拼凑的需要而添,经此一添,解题可见眉目。

证明:2222222,2,2444444

a b c a b c b c a b c a c a b c a b

a b c b c b c c a c a a b a b +++++++≥=+≥=+≥=++++++。

()22212

a b c a b c b c c a a b ∴++≥+++++。当且仅当a b c ==时,上述各式取“=”,故原不等式得证。 六、 引入参数拼凑

某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。

例15 已知,,x y z R +∈,且1x y z ++=,求149

x y z

++的最小值。

解:设0λ>,故有()10x y z λ++-=。

()1491491491x y z x x x x y z x y z x y z λλλλλ??????

∴++=+++++-=+++++- ? ? ???????

λλ≥=。当且仅当

149

,,x y z x y z

λλλ===同时成立时上述不等式取“=”,

即x y z

=

=

=

,代入1x y z ++=,解得36λ=,此时36λ=,故1

49x y z

++的最小值为36。

七、 引入对偶式拼凑

根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。

例16 设12,,,n a a a ???为互不相等的正整数,求证

31222221111

123123n a a a a n n

+++???+≥+++???+。 证明:记3122222123n n a a a a b n =

+++???+,构造对偶式1231111

n n

d a a a a =+++???+, 则3122

2221231111111

12123123n n n n a a a a b d a a a n a n ??????????+=++++++???++≥+++???+ ? ?

? ? ???????????

, 当且仅当()

,i a i i N i n +

=∈≤时,等号成立。又因为12,,,n a a a ???为互不相等的正整数,

所以1111123n d n ≤+

++???+,因此1111

123n b n

≥+++???+。 评注:本题通过对式中的某些元素取倒数来构造对偶式。

八、 确立主元拼凑

在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,

恰当拼凑,可创造性地使用均值不等式。

例17 在ABC ?中,证明1cos cos cos 8

A B C ≤

。 分析:cos cos cos A B C 为轮换对称式,即,,A B C 的地位相同,因此可选一个变元为主元,将其它变元看作常量(固定),

减少变元个数,化陌生为熟悉。

证明:当cos 0A ≤时,原不等式显然成立。

当cos 0A >时,()()1

cos cos cos cos cos cos 2A B C A B C B C =

++-???? ()1

cos cos cos 2

A B C A =--???? []()2

cos 1cos 111cos 1cos 2228A A A A +-??≤-≤=????

。 当且仅当cos()1

cos 1cos B C A A

-=??

=-?,即ABC ?为正三角形时,原不等式等号成立。

综上所述,原不等式成立。

评注:变形后选择A 为主元,先把A 看作常量,B 、C 看作变量,把B 、C 这两个变量集中到cos()B C -,然后利用cos()

B C -的最大值为1将其整体消元,最后再回到A 这个主元,变中求定。

综上可见,许多貌似繁难的最值问题或不等式证明问题,运用均值不等式等号成立条件,恰当拼凑,可

创造性地使用均值不等式,轻松获解。这种运用等号成立条件的拼凑方法,既开拓了学生的思路,又活跃了学生的思维,培养了学生的数学能力。

【新教材】新人教A版必修一 均值不等式及其应用 教案

均值不等式及其应用 课程目标 知识提要 均值不等式及其应用 均值不等式及其应用的知识主要包含:均值不等式的含义和均值不等式的应用及实际应用.均值不等式是指:若a,b >0,则 2 1a +1b ?√ab ?a +√ab +b ?a +b ?2(a 2+ab +b 2)?√a 2+b 2?a 2+b 2 . 其中21a + 1b 称为调和平均数,√ab 称为几何平均数, a+√ab+b 3 称为希罗平均数, a+b 2 称为代数平均数, 2(a 2+ab+b 2)3(a+b) 称为形心平均数,√ a 2+ b 2 2 称为平方平均数, a 2+ b 2a+b 称为反调和平均数. 其中常用的是: 2 1a +1b ?√ab ?a +b 2?√a 2+b 2 2.

想要利用均值不等式求代数式的最值,就必须构造出积为定值的若干式子的和的形式或者和为定值的若干式子的积的形式.在利用均值不等式的时候,还需要注意考虑等号取到的条件,对式子进行系数的调整. 均值不等式的含义 ?均值定理如果a,b∈R+,那么a+b 2 ?√ab.当且仅当a=b时,等号成立.对任意两个正 实数a,b,数a+b 2 叫做a,b的算术平均值,数√ab叫做a,b的几何平均值.均值不等式可以表达为:两个正实数的算术平均值大于或等于它的几何平均值.均值不等式也称为基本不等式.两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值. 均值不等式的应用 基本不等式的应用非常广泛,如求函数最值,证明不等式,比较大小,求取值范围,解决实际问题等.其中,求最值是其最重要的应用.利用均值不等式求最值时应注意“一正,二定,三相等”,三者缺一不可. 均值不等式的实际应用 ?利用基本不等式解决实际问题的一般步骤: ①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数; ②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题; ③在定义域内,求出函数的最大值或最小值; ④正确写出答案. 精选例题 均值不等式及其应用 1. 已知x>0,则f(x)=x+2 x 的最小值为. 【答案】2√2 【分析】因为x>0,所以x+2 x ?2√x?2 x =2√2,当且仅当x=√2时取等号.

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

高中数学_均值不等式教学设计学情分析教材分析课后反思

必修5 第三章 不等式 3.2 均值不等式(新授课) 一、教学目标确立依据 1.课程标准要求 (,0)2 a b a b +≤ ≥ ①探索并了解基本不等式的证明过程; ②会用基本不等式解决简单的最大(小)问题. 2.课程标准解读 对上述①的解读:首先给学生创设探索的平台得到基本不等式,同时给学生机会让学生用所学方法证明基本不等式; 对上述②的解读:首先教师用问题的方式搭建平台让学生发现基本不等式的限制条件,同时教师由浅入深给学生探究最值的平台,由理论到实践操作将最值问题与实际问题挂钩,让学生在探究和实践过程中学会用基本不等式解决简单的最大(小)问题. 3.学情分析与教材分析 学生已经学习“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.知晓不等式证明以及函数求最值的某些方法. “均值不等式” 是必修5的重点内容,在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了分类讨论、化归等重要数学思想,有利于培养学生良好的思维品质. 为了帮助学生构建知识体系,教科书分三个层面来展现:第一层面,从简单的不等式证明入手,在降低难度的基础上让学生体会基本不等式在证明不等式总中的作用;第二层面,通过应用题,体现基本不等式在实际问题的应用,以及让学生体会简单的基本不等式的应用;第三层面,通过分母是一次函数,分子是二次函数的分式形式,循序渐进的增加难度,让学生学会判断条件学会拼凑或者添项转化为公式所需要的条件.本课正处于第一、第二个层面以及第三层面的初级阶段. 本节内容体现了数学的工具性、应用性,同时也渗透了转化与化归、数形结

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12n n a a a A n ++???= n Q =它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系: n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n A n =当n=k+1n a ≤≤ 1 111= i k i k a A +==+ +∑∑ 111 111(1)(11).1k i i i i k i i i i k k k a a a a k k a A a k k k k ====++? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ?? ? ? ??? ∑ 1111 1.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

20,n n n n n A G A G =-=≥≥当时,成立。 ++k N ∈k k 1假设:n=2()时成立,当n=2时: ++++1 +1 1 ++ = =.i i i i i i a a a A G ===≥ ≥=∑∑∑k 1 k k 1 k k 1k 12222k k 2k 1 222 2 2 2 +,k N ?∈k 即,对当n=2时,结论成立。 假设1 t t tA G t ++证法三:0.k b = >令: 111)k k k k k k b b b ----+ +≥11 k k k k b b --即:k kb 且:11112211[(1)]n n n k n n k k k n k k k k k A b b b kb k b a G b --===-==≥--== 12n ===.n n G A a a a ∴≤等号成立当且仅当: 上述不等式在数学竞赛中应用极为广泛,好的、难的不等式问题往往只需用它们即可解决,而无需过分追求所谓更“高级”的不等式,这是应该引起我们注意的。 例1:求证下列不等式: (1) ()1 3a a b b + ≥-,(0)a b >>

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

均值不等式求最值的方法

均值不等式求最值的方法 均值不等式是求函数最值的一个重要工具,同时也是高考常考的一个重要知识点。下面谈谈运用均值不等式求解一些函数的最值问题的方法和技巧。 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=” 号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤≤ 2 2 2b a +。 二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+>-的最小值。 解析: 21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1) x x x x --=+++>- 1 ≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是5 2 。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 2、求几个正数积的最大值。 例2、求下列函数的最大值: ①23 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析: ①30,3202x x <<->∴,∴23 (32)(0)(32)2 y x x x x x x =-<<=??-

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =-,即3 x =时,上式取“= ”。故max 9y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。

《基本不等式》教案(1)(1)

基本不等式 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab ∴a +b ≥2ab 即a +b 2 ≥ab 显然,当且仅当a =b 时, a + b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数, 而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P .

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧 一、几个重要的均值不等式 ①,、)(2 22 2 2 2 R b a b a a b ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 33 3 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④) (333 3 +∈? ? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112+ 2a b ab +≤≤≤ 2 2 2 b a +。 一、拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 (1) 当时,求(82)y x x =-的最大值。 (2) 已知01x <<,求函数3 2 1y x x x =--++的最大值。 解:()()()()()()2 22 111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327 x x x x x x ++?? ++- ?++=???-≤= ? ??? 。

当且仅当1 12x x +=-,即13 x =时,上式取“=”。故max 3227 y = 。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y ==。 因 ()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当 ()2 212 x x =-,即3x =时,上式 取“ =”。故max 9 y = 。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()2 64y x x =-的最大值。 解:()()()2 2 2 22 2 2 36418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-?? ?≤=???? 。 当且仅当()2 2 24x x = -,即3x =时,上 式取“=”。

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高三数学 第40课时 均值不等式教案

课题:算术平均数与几何平均数 教学目标:1.掌握两个正数的算术平均数不小于它们的的定理,并会简单运用; 2.利用不等式求最值时要注意到“一正” “二定”“三相等”. 教学重点:均值不等式的灵活应用。 (一) 主要知识: 1.两个数的均值不等式:若,a b R +∈,则 2 a b +(等号仅当a b =时成立) 三个数的均值不等式:若,,a b c R +∈,则a b c ++≥a b c ==时成立) 2.几个重要的不等式: ① ab ≤22a b +?? ???≤222a b + ②abc ≤33a b c ++?? ???; ③如果,a b R ∈≥2a b +≥211a b + 3.最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和 有最小值。 (二)主要方法: 1.常见构造条件的变换:加项变换,系数变换,平方变换,拆项变换,常量代换,三角代换等. 2.当使用均值定理时等号不能成立时,应考虑函数的单调性(例如“对号”函数,导数法). (三)典例分析: 问题1.求下列函数的最值: ()113y x x = +-()3x <;()2121y x x =+-()1x >;()3241y x x =+()0x >; ()323 y x x =+()0x >;()4 ()21y x x =-()01x <<;()5 ()21y x x =-()01x << ()6y =()7 已知,,,a b x y R +∈(,a b 为常数),1a b x y +=,求x y +的最小值

问题2.已知0x >,0y >,且1x y +=,求. 问题3.求最小值()1231()1x x f x x -+=+()1x >-;()2 223sin sin y x x =+ 问题4.()1设0x >,0y >,且()1xy x y -+=,则 .A 2x y +≤.B 2x y +≥ .C )21x y +≤ .D )2 1x y +≥ ()2已知x ≥0,y ≥0,且22 12y x +=,求证:≤4 ()3若0a b >>, 求216() a b a b + -的最小值 (四)课后作业: 1.已知1>a 那么1 1-+a a 的最小值是 .A 12-a a .B 15+ .C 3 .D 2

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

均值不等式教案

§ 3.2 均值不等式 本节内容是选自人教版高中数学B 版必修五第三章第二节——均值不等式。它在不等式这一章中占有非常重要的地位,在不等式的证明中尤其突出。 一、教学目标 知识与技能:均值不等式的基本表达式;均值不等式所表达的几何意 义;能够应用均值不等式进行简单的证明 过程与方法:掌握数形结合的数学思想方法 情感态度价值观:数学来源于生活,善于从生活中去探索数学的奥秘 二、重难点 重点:均值不等式的证明与应用;“=”成立的条件 难点:均值不等式的几何意义;在怎样的情况下应用均值不等式 三、教学方法 讲授法 四、教学过程 (一)情境引入 某一届国际数学家大会的会标,我们将其中的几何图形抽象出来得到这样一个图形:已知的是直角三角形的两直角边分别为a ,b ,那我们能否从其中找出一些不等关系? 解答:图中四个直角三角形的面积总和为:1 42 ab

大的正方形的面积为:22a b + 我们可以很直观地得出:22a b +>2ab 问:同学们再想一想,这个“>”可以换成“≥”吗? 当直角三角形变为等腰直角三角形的时候,也即是a b =时,这时,正方形EFGH 变为一点,可以得到222a b ab +=。 (二)得出结论并证明(基础) 一般地,,a b R ∈,则222a b ab +≥. 证明: 2222()a b ab a b +-=- 当a b ≠时,()2 0a b ->;当a b =时,2()0a b -=. 综上所述,可得222a b ab +≥. (三)均值不等式的变式(重点) 若0,0,a b >>则 2 a b ab +≥(当a b =时,“=”取到) 需明确的两个概念:2 a b +表示a 与b 的算术平均数 ; ab 表示a 与b 的几何平均数 。 证明(几何意义): 如图:AC 是圆O 的直径,点D 是AC 上任一点,AD a =,CD b =,过点D 做BD AC ⊥交圆周于B , 连接OB . 则22 AC a b OB += = 又Rt ADB Rt BDC ?? ,则AD AB DB BD BC DC == 所以2BD AD DC ab =?=,也即BD ab = 又OB BD ≥,所以 2 a b ab +≥.

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

均值不等式教案

均值不等式 廖士哲 (地点: 06文(1)时间:星期二晚第三节课) 一、目的要求: 系统复习均值不等式,熟练使用a 2+b 2≥2ab 和ab b a 2≥+ ,使学生领会其中的三个条件“一正”、“二定”、“三相等”.,特别是“≥”或“≤”中取“=”号的充要条件,掌握相关配凑的技巧,并培养学生的探究精神。 二、教学重点 在运用ab b a 2≥+中要注意“一正”、“二定”、“三相等”. 三.教学难点 ab b a 2≥+的运用. 求函数表达式与最值时的配凑技巧及“≥”或“≤”中“=”成立的条件。 四.教学过程 (一)知识归纳: 1.a 2+b 2≥2ab (a.b )R ∈和ab b a 2≥+(a.b +∈R ) 当且仅当a=b 时取“=” 2.均值不等式的运用条件: “一正”、“二定”、“三相等” 3. 均值不等式的运用----放缩功能: 和定积最大,积定和最小- 4. 均值不等式的变式 (二)、例题解析 例1 若X<45 求y=4x-2+541-x 的 (配凑均值不等式成立的条件:“一正”、“二定”) 例2.设=)(x f x x +150 (1)求当x ∈(0 ∝ )时的最大值 (2)求当x ∈[2 ∝ )时的最大值 (用均值不等式求最值时,要注意检验最值存在的充要条件,即“三相等”,当等号不成立时可用函数的单调性求最值。)

例3若x>0 y>0 且x 1+y 9=1 求x+y 的最小值 (在运用ab b a 2≥+中要注意配凑“一正”、“二定”、“三相等”三个条件. 如果多次运用均值不等式求最值,则要考虑多次“≥”(或者“≤”)中取“=”成立的诸条件的一致性。) (三)课堂练习选做 1 当x ∈(0 1 )时,求= )(x f )21(11x x --的最大值 2求y=3+x + 31 +x 的最小值 3求y=18 -+x x (x>1)的最小值 4 若 x 2 +ax+1≥0对一切x ∈(0 21 ]成立求a 的最小值 5若a>0 b>0且ab=a+b+3 求ab 的取值范围 6若x>0 y>0 且x+y=1 求12+x + 12+y 最大值 (四)课堂小结: .和熟练使用不等式ab b a ab b a 22.12 2≥+≥+ 的条件.注意使用ab b a 2.2≥+ 注意取等号的条件..3 ”. 灵活变换“1.4 5.用均值不等式求最值时,要注意检验最值存在的充要条件,特别地,如果多次运用均值不等式求最值,则要考虑多次“≥”(或者“≤”)中取“=”成立的诸条件是否相容。 (五)课后作业:百汇大课堂中例1、2实战1、3、5、6、7 思考题:(略) (六)板书设计

基本不等式(均值不等式)技巧

基本不等式习专题之基本不等式做题技巧 【基本知识】 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) (4),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; )(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=” 号成立. 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3) 熟悉一个重要的不等式链:b a 112 +2a b +≤≤≤ 2 2 2b a +。

【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于 构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 2. 当时,求(82)y x x =-的最大值。 3:设2 3 0<-的最小值。 5 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值. 6已知x ,y 为正实数,且x 2+ y 2 2 =1,求x 1+y 2 的最大值. 7 若,,0a b c >且()423a a b c bc +++=-,求2a b c ++的最小值 . 技巧一答案: 1解:因450x -<,所以首先要“调整”符号,又1(42)45 x x --g 不是常数,所以对42 x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 2解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。 3、解:∵230<-x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。

相关文档
相关文档 最新文档