文档库 最新最全的文档下载
当前位置:文档库 › 原子吸收光谱法测定饼干中铅含量的分析

原子吸收光谱法测定饼干中铅含量的分析

原子吸收光谱法测定饼干中铅含量的分析
原子吸收光谱法测定饼干中铅含量的分析

钦州学院

本科毕业论文(设计)

原子吸收光谱法测定饼干中铅含量的分析

院系

专业

学生班级

姓名

学号

指导教师单位

指导教师姓名

指导教师职称

2017 年 4 月

原子吸收光谱法测定饼干中铅含量的分析

摘要

饼干作为一种人们日常生活中最喜爱的休闲食品,其原料、加工过程、运输过程等都有可能带来重金属铅的污染。重金属铅元素对于人体的大部分器官具有严重的危害,随着人们对于食品安全问题的日益重视,对于饼干中的铅元素含量进行测定具有重要的意义。

文章采用硝酸、高氯酸电热板加热消解,石墨炉原子吸收光谱法测定饼干中铅元素含量。实验中选择用0.5%硝酸钯10μL作为基体改进剂;加热程序为:干燥温度为80℃~110℃,时间为20s;灰化温度为400℃,时间为30s;原子化温度为2000℃,时间为3s。

结果表明:在0~40μg/L的浓度范围内,校准曲线线性关系式为y=0.0098x+0.0056,相关系数为R2=0.9991;检出限为0.024mg/kg;精密度结果在1.98%~8.20%之间;准确度结果在92.6%~98.2%之间。分别对奥利奥、嘉士利、好吃点、徐福记、旺旺雪饼五个品牌的饼干中铅含量进行测定,结果分别为0.42 mg/kg、0.22 mg/kg、0.10 mg/kg、0.16 mg/kg、0.33mg/kg。

说明该方法是一种准确、快速、实验成本低、操作简单的测定饼干中铅含量的方法。

关键词原子吸收光谱法;饼干;铅;研究进展;结果与讨论

Determination of lead content in biscuits by atomic absorption

spectrometry

Abstract

Biscuit, as one of the most popular leisure food in people's daily life, may lead to the pollution of heavy metal lead. Heavy metal lead has serious harm to most of human organs. With the increasing attention to food safety, it is important to determine the content of lead in biscuits.

In this paper, the content of lead in biscuit was determined by graphite furnace atomic absorption spectrometry (AAS). In the experiment with 0.5% 10 L palladium nitrate as matrix modifier; heating procedures for drying temperature is 80 DEG to 110 DEG C, time is 20s; the ashing temperature is 400 DEG C, time is 30s; the atomization temperature is 2000 DEG C, time is 3s.

The results showed that: in the 0 ~ 40 g/L in the concentration range of the calibration curve, linear equation is y=0.0098x+0.0056, correlation coefficient is R2=0.9991; the detection limit is 0.024mg/kg; the precision of the results in 1.98% ~ 8.20%; the accuracy of the results in 92.6% ~ 98.2%. Respectively lead content on Oreo, Jiashili, good point, Xu Fuji, want snow cake five brands of biscuits were determined, the results were 0.42 mg/kg, 0.22 mg/kg, 0.10 mg/kg, 0.16 mg/kg, 0.33mg/kg.

It is proved that this method is accurate, rapid, low cost and easy to operate.

Keywords Atomic absorption spectrometry,Biscuits,Lead,Research progress,Results and discussion

目录

第一部分文献综述 (1)

1.1 研究背景及意义 (1)

1.1.1研究背景 (1)

1.1.2研究意义 (1)

1.2 样品预处理方法研究进展 (1)

1.2.1 湿法消解 (1)

1.2.2 灰化消解 (2)

1.2.3 微波消解法 (2)

1.3 铅测定方法研究进展 (2)

1.3.1 紫外分光度法 (2)

1.3.2原子吸收光谱法 (2)

1.3.3 原子荧光光谱法 (3)

1.3.4 其他测试方法 (3)

1.4 研究内容 (3)

第二章实验部分 (4)

2.1 主要实验仪器 (4)

2.2 仪器工作条件 (4)

2.3 实验材料 (4)

2.4 校准曲线溶液配制 (5)

2.5 样品预处理 (5)

第三部分结果与讨论 (6)

3.1 消解酸种类的选择 (6)

3.2 基体改进剂的选择 (6)

3.3 加热程序的选择 (6)

3.3.1 干燥温度及时间的选择 (7)

3.3.2 灰化温度及时间的选择 (7)

3.3.3 原子化温度及时间的选择 (8)

3.4 校准曲线的绘制 (8)

3.5 检出限 (9)

3.6 精密度 (9)

3.7 加标回收率 (9)

第四部分总结 (11)

致谢 (12)

参考文献 (13)

第一部分文献综述

1.1 研究背景及意义

1.1.1研究背景

近年来,食品安全已经成为人们关注的热点问题,世界卫生组织将食品安全问题确定为全球公共卫生领域的研究重点。重金属在人体内具有代谢缓慢、易积累、对人体危害极大等危害,因此,准确测定食品中重金属含量一直是研究的热点。重金属铅是食品中常见的污染物,对人体健康具有潜在的危害性,对人体的大部分器官都具有损害。主要表现在:对儿童的智力发育和骨骼发育具有严重的危害;造成人体消化不良和内分泌系统失调;导致贫血、高血压和心脏功能异常;危害人体肾脏功能和免疫系统正常机能,因此食品中重金属铅的安全问题日益引起人们的关注[1][2]。在此背景下,文章对于饼干中铅元素含量的分析方法进行研究。

1.1.2研究意义

饼干是指用面粉或者糯米粉为主要原材料,以糖、油等做为辅料,经过混合、造型、烘烤等工艺而制备出的水分低于 6.5%的松脆食品。饼干作为一种休闲食品,越来越得到人们的喜爱。目前,我国已成为亚洲最大的饼干市场,饼干的制备原料、制备过程中都可能受到重金属铅的污染[3][4][5]。

我国食品安全国家标准《食品中污染物限量》GB 2762—2012中规定,面制品中铅含量的限量值为0.5m/kg[6]。文章以人们日常生活中一种常见的面制、休闲食品—饼干作为研究对象,采用Z2000型日立原子吸收分光光度计测定市售几种常见的饼干中铅元素的含量,为饼干的制备过程和人们对饼干食用的安全性提供指导意义。1.2 样品预处理方法研究进展

样品预处理是否彻底,是否被污染,将会严重的影响测定结果的准确性,因此如何选择一种合适的消解方法是及其重要的。饼干中铅的样品预处理方法主要有湿法消解、干法灰化消解、微波消解等[7][8]。

1.2.1 湿法消解

湿法消解是指以硝酸、高氯酸等为试剂消耗待测样品中的有机质,在恒温电热加

热器上对样品进行消解的方法。该方法的优点是对样品的消解彻底,且较低消解温度不会造成待测元素的损失;但是该方法是在敞开体系中进行,对试剂的消耗量较大,且会产生大量的对于环境具有危害的气体。

1.2.2 灰化消解

干法灰化消解是指将样品先在电炉上进行碳化后,在马弗炉中将样品进行灰化消解,在600℃左右将样品中大量有机质消耗掉后,用硝酸进行浸提的一种样品消解方法。该方法的优点是可以利用增加样品质量来提高该方法的检出限。

1.2.3 微波消解法

微波消解法是指将样品预消化后,利用微波技术将样品进行消解的一种方法。该方法利用微波消解技术,在密闭系统中将样品进行消化,使得试剂用量较小,产生污染气体量小,且消解的比较彻底。

1.3 铅测定方法研究进展

1.3.1 紫外分光度法

紫外分光度法是指将样品经过复杂的样品预处理过程后,经过消解、干扰掩蔽、显色后,在一定波长条件下,对样品中铅含量测定的一种方法。苗立新[9]等利用二硫腙比色法对食品中的铅含量进行测定,实验中通过干扰掩蔽,pH调节后,在722型分光光度计上510nm进行测定,实验结果表明:该方法的精密度在6.25%以下,加标回收率在95.4%。

1.3.2原子吸收光谱法

原子吸收光谱法是指将样品进行消解后,利用原子吸收光谱法的条件下进行测定待测样品中铅的一种方法,应用最为广泛的方法有火焰法和石墨炉法[10]。最主要的区别是火焰法的检出范围大概是10-6,石墨炉原子吸收光谱法的检出范围大概是在10-9。潘锦武[11]用2mol/L碘化钾2.5mL和甲基异丁基甲酮在6mol/L的盐酸介质中萃取2min 后测定食品中铅含量,实验结果表明:该方法的精密度为2.07%,加标回收率为98.4%。盛强等[12]用干法灰化消解食品,石墨炉原子吸收光谱法测定粮食中铅,实验结果表明:该方法的检出限为0.003μg/L,精密度为0.1%,加标回收率在99.6%~103.4%之间。

1.3.3 原子荧光光谱法

原子荧光光谱法是指将样品进行预处理后,将样品的pH进行详细调节后,在原子荧光光度计条件下测定铅的一种方法[13],该方法的检出限大概在10-9。刘子文[14]等利用AFS-2201原子荧光光度计测定食品中铅,实验中利用硝酸和高氯酸预处理样品后,将体系pH调节至7,以2%盐酸+2%铁氰化钾+0.4%草酸混合液做载流,在320V负高压、60mA灯电流条件下,在0~400μg/L范围内进行测定,实验结果表明:该方法的检出限为2ug/L,精密度为2.32%,加标回收率为94.0%~106.0%之间。

1.3.4 其他测试方法

其他测定食品中铅的方法主要有:电感耦合等离子体发射光谱(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)法等。ICP-AES法是利用电感耦合等离子体发射光谱法测定样品中铅的一种方法,该方法主要有线性范围宽、测定范围在10-9。ICP-MS 法是指利用电感耦合等离子体质谱法测定待测样品中铅的一种方法,该方法具有检出限低、线性范围宽等优点,测定范围在10-12。李浩洋等[15]利用ICP-MS法测定饼干中铅等8种元素含量,实验中采用微波消解处理样品,实验结果表明:在0~50μg/L 线性范围内,该方法测定饼干中铅的检出限为0.01mg/kg,精密度为2.71%,加标回收率为106%。

1.4 研究内容

综合考虑湿法消解、干法灰化消解、微波消解方法在饼干中铅样品预处理的优缺点,文章采用湿法消解对于饼干中铅的测定进行前处理。综合考虑紫外分光光度法、火焰原子吸收光谱法、石墨炉原子吸收光谱法、原子荧光光谱法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法等方法的优缺点及实验室的实际情况,文章采用石墨炉原子吸收光谱法对饼干中铅含量进行测定。文章需要对基体改进剂进行选择、仪器的加热程序进行优化,之后绘制饼干中铅测定的标准曲线、检出限、精密度、加标回收率实验等,确定饼干中铅测定的最佳方法。

第二章实验部分

2.1 主要实验仪器

实验中使用的主要实验仪器相关信息见表2.1所示。

表2.1 主要实验仪器

序号仪器型号仪器名称生产厂家

1 Z-2000 原子吸收分光光度计日立公司

2 DKQ-3B 智能控温电加热器上海屹尧仪器科技发展有限公司

3 AL10

4 电子天平捷久计量衡器(上海)有限公司

4 ULUP-I 优普纯水/超纯水制造系统四川优普超纯科技有限公司

2.2 仪器工作条件

Z-2000型原子吸收分光光度计工作条件为:波长283.3nm,灯电流为7.5mA,狭缝为1.3nm,PMT电压为321V,计算方式采用峰高法,样品进样量为20μL,基体改进剂加入量为10μL。石墨炉加热程序见表2.2所示。

表2.2 饼干中铅测定加热程序

测试项目

干燥灰化原子化除残

温度/℃时间/s 温度/℃时间/s 温度/℃时间/s 温度/℃时间/s

Pb 80~120 20 400 30 2000 3 2200 2

2.3 实验材料

标准储备液:1000μg/mL铅单元素标准溶液(购于中国国家钢铁材料测试中心钢铁研究总院)。

材料:市售饼干各一袋,分别为奥利奥(亿滋食品企业管理(上海)有限公司)、嘉士利(广东嘉士利食品集团有限公司)、好吃点(福建达利食品集团有限公司)、徐福记(雀巢(中国)有限公司)、旺旺雪饼(中国旺旺控股有限公司),购于学校附近超市。

试剂:硝酸(优级纯)、高氯酸(分析纯)、盐酸(分析纯)、硝酸钯(分析纯)、磷酸氢二铵(分析纯),产自于四川西陇化工有限公司。实验用水为电阻率18.2MΩ·cm的高纯水。

2.4 校准曲线溶液配制

为了减少标准溶液配制的误差,将1000μg/mL铅标准溶液逐级稀释(每次稀释倍数小于20倍),配制浓度梯度为0.0μg/L、2.0μg/L、5.0μg/L、10.0μg/L、20.0μg/L、40.0μg/L的铅系列标准溶液。

2.5 样品预处理

将待测样品用玛瑙研钵研磨,过60目筛。准确称取待测样品0.5000g于100mL 锥形瓶中,加入15mL硝酸、5mL高氯酸,浸泡放置过夜,在电热板上150℃左右加热消解,至有高氯酸烟冒至瓶底时,取下,冷却至室温,将溶液转移至50mL容量瓶中,摇匀,备用。

第三部分结果与讨论

3.1 消解酸种类的选择

实验中分别考虑用硝酸、硝酸+盐酸、硝酸+高氯酸对样品进行预处理,实验结果表明:当用硝酸、硝酸+盐酸消解样品时,消解完后,样品呈现出淡黄色,且有悬浮液出现,当用硝酸+高氯酸消解样品时,样品澄清,且呈现出白色,因此实验中选择用硝酸+高氯酸消解样品。

3.2 基体改进剂的选择

当在待测样品中加入基体改进剂后,使得待测元素可以在较低的温度下基体被全部清除且可以使得原子化过程较为充分。因此实验中选择不使用基体改进剂、2%磷酸氢二铵、0.5%硝酸钯作为基体改进剂进行实验,考察分别10μg/L标准溶液在1700℃、1800℃、1900℃、2000℃、2100℃时原子化阶段的吸光度,结果见图3.1

所示。

图3.1 基体改进剂选择

从图3.1可以看出,当不加入基体改进剂时,在1700℃~2100℃之间,待测样品的吸光度呈现出逐渐升高的趋势;当以2%磷酸氢二铵作为基体改进剂时,当温度在2000℃左右时吸光度趋于稳定,但是会观察到有爆沸现象产生;当以0.5%硝酸钯作为基体改进剂时,在2000℃左右时吸光度趋于稳定,且不会产生爆沸现象,因此选择用0.5%硝酸钯作为基体改进剂[16]。

3.3 加热程序的选择

加热程序是否合适对于实验结果的准确性有着重要的影响,因此实验对加热程序

进行优化[17][18]。

3.3.1 干燥温度及时间的选择

干燥过程的目的是将待测样品中的溶剂完全蒸发掉,使得测定结果不受影响且不会危害石墨管的寿命。干燥温度和时间选择的原则是不能使得干燥温度过低,温度过低时干燥时间过长,干燥温度过高可能会引起样品瀑沸,使得样品损失。分别控制干燥温度为80℃、90℃、100℃、110℃、120℃,实验结果表明:当干燥温度在80℃以下时,水峰出峰较缓慢,且干燥时间在40s以上;当干燥温度在110℃以上时,干燥时间在15s以上,水峰消失,可以观察到以后瀑沸现象;当干燥温度在80℃~110℃之间时,水峰出峰平缓且在20s时水峰结束。因此实验中选择干燥温度为80℃~110℃,时间为20s。

3.3.2 灰化温度及时间的选择

灰化阶段的目的是让样品中的基体组分全部被破坏且不会使待测组分造成损失。实验中分别选择灰化温度为300℃、350℃、400℃、450℃、500℃,测定10μg/L标准溶液的吸光度,实验结果见图3.2所示。

图3.2 灰化温度的选择

从图3.2中可以看出,当灰化温度在300℃~400℃之间时,待测溶液的吸光度持续升高,且峰型呈现出“矮胖型”,灰化时间较长,在40s以上;当灰化温度为400℃时,峰型比较完美,且出峰时间为30s左右,且吸光度稳定;当灰化温度在400℃以上时,峰型呈现出“瘦高型”灰化时间在20s以下,吸光度偏低。综上所述,实验中选择灰化温度为400℃,时间为30s。

3.3.3 原子化温度及时间的选择

原子化阶段的目的是使待测元素转变为自由态原子,之后测定待测元素在相应空心阴极灯下对该元素的吸光度。实验中分别选择原子化温度为1700℃、1800℃、1900℃、2000℃、2100℃,测定10μg/L标准溶液的吸光度,实验结果见图3.3所示。

图3.3 原子化温度的选择

从图3.3可以看出,当原子化温度为1700℃~2000℃之间时,吸光度呈现出逐渐升高的情况,当原子化温度为2000℃时,吸光度趋于稳定,继续升高原子化温度,吸光度变化不大,且原子化温度过高对于石墨管的寿命影响极大。原子化阶段是通过短暂高温进行的,因此实验中选择原子化温度为2000℃,时间为3s。

3.4 校准曲线的绘制

打开仪器,将仪器工作条件按照“步骤2.2”进行设置,分别测定各个标准溶液的吸光度,以浓度为横坐标,吸光度为纵坐标,绘制饼干中铅测定的校准曲线,见图3.4所示。

图3.4 饼干中铅测定校准曲线

从图3.4计算可以得知,该方法校准曲线线性关系式为y=0.0098x+0.0056,相

关系数为R2=0.9991。

3.5 检出限

将空白溶液连续测定11次,计算11次测定值的相对标准偏差,3倍的标准偏差即为饼干中铅测定的检出限,结果见表3.1所示。

表3.1 检出限

项目测定值/(μg/L)Sr/(μg/L)C L/(μg/L)

结果0.21210.21320.32090.11980.22840.3981

0.08060.2419 0.31090.23980.30980.16090.1983

从表3.1可以得知,石墨炉原子吸收光谱法测定饼干中铅的检出限为0.2419μg/L,根据样品质量和定容体积计算为含量为0.024mg/kg。

3.6 精密度

准确称取各样品5份0.5000g于100mL锥形瓶中,按照步骤“2.5”消解样品后,测定各样品浓度,计算各次测定结果的相对标准偏差,结果见表3.2所示。

表3.2 精密度结果

测定值/(mg/kg) 平均值

/(mg/kg)

Sr

/(mg/kg)

RSD

/%

1 2 3 4 5

奥利奥0.41 0.42 0.43 0.43 0.42 0.422 0.008 1.98

嘉士利0.22 0.21 0.22 0.24 0.23 0.224 0.011 5.09

好吃点0.09 0.1 0.11 0.1 0.11 0.102 0.008 8.20

徐福记0.15 0.16 0.18 0.16 0.15 0.16 0.012 7.65 旺旺雪饼0.33 0.34 0.32 0.32 0.35 0.332 0.013 3.93

表 3.2结果表明,石墨炉原子吸收光谱法测定饼干中铅的相对标准偏差在1.98%~8.20%之间,说明该方法具有良好的精密度。

3.7 加标回收率

准确称取各样品0.5000g一份于100mL锥形瓶中,加入一定量的铅标准溶液,按照步骤“2.5”消解样品后,测定各样品浓度,计算加标回收率,结果见表3.3所示。

表3.3 加标回收率结果

测定值/(mg/kg)

加标值

/(mg/kg)

回收值

/(mg/kg)

加标回收率

/%

奥利奥0.4220.5 0.913 98.2

嘉士利0.2240.5 0.711 97.4

好吃点0.1020.5 0.591 97.8

徐福记0.160.5 0.623 92.6

旺旺雪饼0.3320.5 0.801 93.8 从 3.3结果中可以得知,石墨炉原子吸收光谱法测定饼干中铅的加标回收率在92.6%~98.2%之间,说明该方法具有良好的准确度。

第四部分总结

4.1 综合考虑湿法消解、干法灰化消解、微波消解法的优劣,实验选择用湿法消解处理饼干样品。实验中称取样品0.5000g,加入15mL硝酸、5mL高氯酸,放置过夜后,在电热板上低温消解样品。

4.2 通过考察紫外分光光度法、原子吸收光谱法、原子荧光光谱法和其他方法的优劣及实验室实际情况,实验选择用石墨炉原子吸收光谱法测定饼干中铅元素含量。

4.3 通过考察不使用基体改进剂、2%磷酸氢二铵、0.5%硝酸钯作为基体改进剂的结果,实验最终选择用0.5%硝酸钯10μL作为基体改进剂。

4.4 实验最终选择的加热程序为:干燥温度为80℃~110℃,时间为20s;灰化温度为400℃,时间为30s;原子化温度为2000℃,时间为3s。

4.5 实验结果表明:在0~40μg/L的浓度范围内,校准曲线线性关系式为y=0.0098x+0.0056,相关系数为R2=0.9991;检出限为0.024mg/kg;精密度结果在1.98%~8.20%之间;准确度结果在92.6%~98.2%之间。

4.6 分别对奥利奥、嘉士利、好吃点、徐福记、旺旺雪饼五个品牌的饼干中铅含量进行测定,结果分别为0.42 mg/kg、0.22 mg/kg、0.10 mg/kg、0.16 mg/kg、0.33mg/kg,均符合我国食品安全国家标准《食品中污染物限量》GB 2762—2012中限量值的规定。

4.7 说明该方法是一种准确、快速、实验成本低、操作简单的测定饼干中铅含量的方法。

致谢

本论文是在***老师的指导帮助下完成的,从课题方向的把握、课题主要研究内容的确定以及实验的进行一直到论文的撰写,老师都给予了细心的指导。*老师严谨的治学态度,丰富的科研经验,勤恳认真的工作态度令我深深的敬佩。在此向您表示衷心的感谢。

在本论文完成的过程中,还得到了****等多位同学无私的帮助和大力支持,在此对各位表示我衷心的感谢。

参考文献

[1] 姚智卿.铅对人体健康的危害[J].微量元素与健康研究,2011, 28(5):67-68.

[2] 赵亚男,陈体能.浅谈食品中铅含量测定的质量控制的必要性及意义[J].农家参谋:种业大观,2013(9):38-38.

[3] CMA Iwegbue.Metal Contents in Some Brands of Biscuits Consumed in Southern Nigeria[J].American Journal of Food Technology, 2002, 7(3):160-167.

[4]李琳,李冰.现代饼干甜点生产技术[M].中国轻工业出版社,2001.

[5] 刘建,徐文科.悬浊液直接进样石墨炉原子吸收法测定饼干中铅含量[J].中国国境卫生检疫杂志,2004,27(2):102-104.

[6] GB 2762—2012,食品中污染物限量[S].

[7] 孙灵霞,黄现青,赵改名,等.消解方法对面粉中铅含量测定的影响[J].浙江农业科学,2010,1(4):883-885.

[8] 陆飞峰,董金成.四种消解方法对小麦中铅含量测定的比较[J].粮油仓储科技通讯,2012,28(2):46-47.

[9] 苗立新,李秀梅.二硫腙比色法测定食品中铅的方法改进[J].山西预防医学杂志,2001(4):382-382.

[10] GL Wang,YH Jiang,WJ Liu,ect.Determination of lead content in cosmetics by microwave digestion-atomic fluorescence spectrometry[J].China Surfactant Detergent & Cosmetics, 2005

[11] 潘锦武.萃取火焰原子吸收光谱法同时测定食品中痕量铅和镉[J].中国卫生检验杂志,2005,15(8):940-941.

[12] 盛强,熊升伟,姜涛,等.石墨炉原子吸收光谱法测定粮食中铅含量[J].粮油仓储科技通讯,2012,28(1):45-46.

[13] GL Wang,YH Jiang,WJ Liu,ect.Determination of lead content in cosmetics by microwave digestion-atomic fluorescence spectrometry[J].China Surfactant Detergent & Cosmetics, 2005.

[14] 刘子文,蔡文华.氢化物发生原子荧光光谱法测定食品中铅[J].华南预防医学,2005,31(6):47-48.

[15] 李浩洋,李蓉,林晓云,等.ICP-MS 测定饼干中的铅、砷、铬、镉、铜、锌、铁和锰[J].粮油食品科技,2016,24(2):65-68.

[16] 冯银凤,黄诚,周日东,等.基体改进剂在石墨炉原子吸收法测定食品中铅的探讨[J].中国卫生检验杂志,2005,15(4):450-450.

[17] 谌启鹏,郭琪,曲海.优化Z-2000偏振塞曼原子吸收分光光度计测定食品中铅的条件[J].中国保健营养旬刊,2013,23(2):894-894.

[18] 樊艳茹,黄宇,张霞,等.石墨炉原子吸收光谱法测定银柴胡中铅含量[J].广州化工,2014,42(1):91-92.

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

实验4 火焰原子吸收光谱法测定铁(标准曲线法)教学教材

实验4火焰原子吸收光谱法测定铁(标准 曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。

5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),1.000mg·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=0.05)稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入0.0, 2.0,5.0,10.0,15.0,20.0mL铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min: 分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2

泡沫塑料富集原子吸收法测定金的技术问题.

泡沫塑料富集原子吸收法测定金的技术问题 1引言湖北三鑫金铜股份有限公司是以采选金铜矿产为主的矿山生产企业。在生产中,金的快速、准确地分析测定对控制工艺指标及调度生产起着极其关键的作用。泡沫塑料富集原子吸收法测定金, 虽然在周边矿山中基本上没有应用于实际生产中,但在我公司经10余年的实际应用,其经验已相当成熟,在多次外检中(含长春黄金研究院、湖北省地矿厅中心化验室、大冶有色金属公司中心化验室、鄂东南地质大队化验室等多家具有省级以上质量认证的单位) ,金外检合格率均优于国家标准,完全可以满足生产要求。笔者在实际应用中,针对三鑫公司各种化验分析样品的要求,对泡沫塑料富集原吸收测定金的若干技术问题进行了有益探讨,并得到了具有指导意义的技术要领,排除了影响化验分析质量的许多因素,提高了分析结果的准确性。 2泡沫塑料富集原子吸收法 2. 1化学原理试样用王水分解,在约10% (V /V)王水介质中, 3价金在王水介质中被直接用多孔聚氨 脂泡沫吸附富集,然后用5g/L硫脲2%(V /V)盐酸溶液加热解脱被原子吸附的金,直接用火焰原 子吸收光谱法测定。 2. 2试剂及仪器和器皿 (1)试剂。稀王水: HCl + HNO3 + H2O的配比为3 + 1 + 4。泡沫塑料: 将30个密、1cm厚聚氨酯软质 泡沫塑料剪成7. 5cm长, 1cm宽的条状,用洗衣粉洗干净,晾干备用。动物胶溶液: 20g/L称取2g动物胶于250ml烧杯中,加100ml沸水,煮至透明,用时现配硫脲- 盐酸混合溶液: 含5g/L 硫脲的2% (V /V)盐酸溶液。金标准溶液: 称取0. 1000g 纯金(99. 99%以上)于100ml烧杯中,加入10ml稀王水,盖上表面皿,在60 ~70℃水浴上加热溶解后立即加入8~10滴250g/LnaCl溶液, 再在沸水浴上加热蒸干, 取下加入1mlHCl,继续在沸水浴上蒸干,取下加入少量水,微热使盐类全部溶解,取下冷却至室温,移入盛有10mlHCl的1000ml容量瓶中,用水稀释至刻度, 混匀; 此溶液ρ(Au) =100μg/ml。 (2)仪器和器皿。奥豪斯电子天平(分度值为0. 01g,最大称重200克) 1台; 电热板,功率3kw, 5台; 箱式电阻炉,功率4kw,温度0~1200℃, 3台; 瑞利WFX - 310型原子吸收光谱仪, 1套。 低腰三角烧杯: 250ml; 表面皿: 70mm;塑料洗瓶: 500ml; 瓷圆皿: 60ml; 短颈漏斗:7. 5cm长; 长颈漏斗;定性滤纸: ф12. 5cm,快速; 比色管: 10ml;比色管: 50ml。 2. 3分析步骤称取10g试样于圆皿中,在马弗炉(慢慢升温至600℃)焙烧1 ~2h,取出冷至室温。倒入 烧杯中, 以少量水润湿, 加稀王水100ml,盖上表面皿,置于电热板上低温分解至体积15~20ml, 加2~5ml动物胶溶液,取下稍冷,吹洗表面皿及杯壁加水至50ml煮沸溶解盐类。取下冷至室温, 注入100ml容量瓶中稀释至刻度。摇匀,用快速定性滤纸干过滤,用50ml容量瓶取滤液至刻度。 将滤液倒入颈内塞有5~6cm泡沫的漏斗吧适当速度过滤。用蒸馏水洗2~3次,取下泡沫并用 水吹洗之,放入盛有10~50ml l0. 5%的硫脲溶液的比色管中,水浴加热10min,冷却后用原子吸收 仪进行金的测定。计算公式: w (Au) /106 =A ×V /m 式中: A—样品的吸光度值; V—待测样品溶 液的体积(ml) ; m—称取试样的质量( g) 。 3 技术要领 (1)焙烧。对含砷量的试样,焙烧时应从低温开始,至480℃时保持1~2 h,使砷挥发,然后再升高温度继 续焙烧除硫,否则由于形成低沸点的砷—金合金而挥发,造成金的损失,导致测定结果偏低。 (2)溶样。加王水前试样应用蒸馏水润湿,对于含碳酸盐的试样,溶样时反应剧烈,加酸时应缓缓 加入,低温加热溶解。个样溶解温度应控制在200 ~300℃,不得太高,以免王水提前蒸干,而导致 样品溶解不完全,个样溶解时间应控制在1h左右为好,太长或太短都不利于生产。 (3) 吸附。吸附用泡沫塑料要求较高,除严格按前面所定规格外,还应用金标液或金标样做吸附率 试验,最少在采用一个新批次泡沫塑料前要做一次试验。吸附速度应为1. 5S/滴(待吸附的试样 溶液通过短颈漏斗中的海绵而滴落下来的速度) , 吸附时间应控制在30~45min。本法吸附金 的酸度范围较宽, 即0. 5 ~6mol/L 盐酸或5% ~30%(V /V)王水介质都能定量吸附金,但硝

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子吸收法测定水中的铜含量

华南师范大学实验报告 原子吸收法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原于吸收光谱法是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。每一种元素的原子不仅可以发射一系列特征诺线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比: A=KLc 式中,A为吸光度;K为吸收系数;L为原子吸收层的厚度;c为样品溶液中被测元素的浓度。 三、仪器和试剂 (1)仪器 TAS-986型原子吸收分光光度计; Cu空心阴极灯;容量瓶,吸量管;烧杯。 (2)试剂 20.00mg/ml铜标准溶液、水样 四、实验步骤 1.系列标准溶液配制 在100ml的容量瓶中,分别加入100μg/mL Cu标准溶液O.00mL、 0.25mL、 0.5mL、 0.75mL、l.OOmL,再用1mol/L稀硝酸稀释至刻度,摇匀。 2.实验条件: 参数铜元素参数铜元素 工作灯电流 I/mA 3.0 燃烧器高度 /mm 6.0 光谱通带 d/nm 0.4 燃烧器位置 /mm -0.5 负高压 /V 300.0 吸收线波长/nm 324.7 空气压 /MPa 0.24 主压表/Mpa 0.075 3. 标准曲线和样品分析: 根据所设定的实验条件,分别测定浓度为0μg/mL,0.500μg/mL,1.000μg/mL,1.500μg/mL,2.000μg/mL的铜系列标准溶液的吸光度。 相同条件下,测定样品的吸光度,测定两次,求平均值。 五、结果和讨论 测得实验数据如下: 0.00 0.500 1.000 1.500 2.000 样品1 样品2 试样浓 度μ

泡沫塑料富集—原子吸收光谱法测金

泡沫塑料富集—原子吸收光谱法测金 一、方法提要: 矿样经高温焙烧,溶于王水后的金,不过滤分离矿渣直接以泡沫塑料吸附,再以水将泡沫塑料洗净用硫脲解脱,直接用原子吸收测定。 王水对金的溶解作用,硝酸将盐酸氧化放出游离氯,生成氯化亚硝酸,反应式如下: HNO3+3HCL=CL2+2H2O+NOCL 2NOCL=2NO+ CL2氯将Au0—Au3+ Au+3HCL+ HNO3= AuCL+ NO+2H2O 二、仪器工作条件及试剂: 1、仪器: GGX-600AAS型北京科创海光原子吸收金空心阴极灯。 2、仪器工作条件: 灯电流5mA、乙炔1.2L/min、空气6.8 L/min、光谱带宽0.2nm波长242.79、燃烧器高度7mm。 3、试剂: ①泡沫塑料(厚度为0.5cm) ②硫脲2%水溶液(现用现配) ③1:1王水 ④金标准溶液:ρ(Au)=1000μg/ml,称取国家标准物质纯金1.0000g于50ml 烧杯中,加入新配制的王水10~20ml在沸水浴上蒸至小体积,移入1000 ml容量瓶中,加氯化钾2g、王水200m l,用水稀释至刻度,摇匀。此溶液1 ml含金1mg,介质为20%王水。 金标准工作液:ρ(Au)=50μg/ml,吸取金标准母液25 ml于500ml容量瓶中,用10%的王水稀释至刻度,摇匀。此溶液1 ml含金50μg,介质为10%王水。 三、分析步骤: 称取样品10.0-20.0g于瓷方舟中,放入马弗炉中(由低温升至650℃灼烧二小时左右,中途时间取出搅拌一次)以除尽硫及有机物碳等。取出冷却后移入250ml锥形瓶中,加入50ml 1:1的王水,加热煮沸20分钟左右,取下冷却,用水稀释至100ml左右以降低酸度(若Sb含量高需加入热水),加0.4g泡沫塞上塞子,放于振荡机上振荡吸附20min,取出泡沫塑料用水冲洗干净挤干后放入泡沫塑料平放于准确盛有25ml2%硫脲溶液的比色管中,然后将比色管放入水浴锅中加热煮沸20min,取出放入冷水水池中冷却至室温,然后直接用原子吸收测定。 标准曲线绘制:分别吸取1 ml=50μg金标准工作液0 ml、0.25ml、0.50ml、1.00ml、2.00ml,于250ml锥形瓶中,加10%王水100ml放入0.4g泡沫塑料,塞好瓶口震荡吸附20min,以下同分析手续。

原子吸收法测定样品中的锌和铜实验报告

原子吸收法测定样品中的锌和铜 () 摘要:本实验采用了原子吸收光谱法测定发样中的锌和铜的含量,方法简单、快速、准确、灵敏度高。此实验用了火焰原子吸收法以及石墨炉原子吸收法对锌喝铜的含量作了检测。实验表明,锌所测得的含量为232.4442 ug/g;铜所测得的含量为10.0127 ug/g。铜所测得的线型数据比锌的较好。 关键词:锌;铜;发样;原子吸收光谱法 前言 随着原子吸收技术的发展,推动了原子吸收仪器[1]的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术[2](色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。原子吸收光度法是一种灵敏度极高的测定方法,广泛地用来进行超微量的元素分析。在这种情况下,试剂、溶剂、实验容器甚至实验室环境中的污染物都会严重地影响测得的结果。实际上,由于人们注意了这个问题,文献中所报道的多种元素在各种试样中的含量曾做过数量级的修正,这正是因为早期的实验中人们把测定中污染物造成的影响也算到试样中的含量中去所造成的。因此在原子吸收光度测定中取样要特别注意代表性,特别要防止主要来自水、容器、试剂和大气的污染;同时要避免被测元素的损失。 在火焰原子吸收法中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用的仪器有关外,在很大程度上取决于实验条件。因此最佳实验条件的选择是个重要问题,仪器工作条件,实验内容与操作步骤等方面进行了选择,先将其它因素固定在一水平上逐一改变所研究因素的条件,然后测定某一标准溶液的吸光度,选取吸光度大且稳定性好的条件作该因素的最佳工作条件。 在石墨炉原子吸收法中,使用石墨炉原子化器,则可以直接分析固体样品,采用程序升温,可以分别控制试样干燥、灰化和原子化过程,使易挥发的或易热解的基质在原子化阶段之前除去。石墨炉的维护在石墨炉膛部分,因为里面是加热高温-低温冷却,一个循环过程,同时里面还有还原性强的石墨产生积碳同时还有不同的待测物质灰化时产生的烟雾,都会在炉膛或者是在炉膛光路上的透镜上附近凝结。如果长时间不清理,炉膛底部的光控温镜可能会因为积碳的干扰,失去控温能力,直接导致石墨管烧断。灰化物在透镜上面凝结,挡住了部分光路,额外增加了负高压,积碳在加热和塞曼的震动时,有可能会随着震动,这样也变相增加了仪器的噪声。一般建议在每次更换石墨管时清洗一次石墨炉膛。

金的测定----原子吸收分光光度法测定金(精)

金的测定 ----原子吸收分光光度法测定金 一、方法提要 样品经灼烧、王水分解,加动物胶凝聚硅酸,活性炭吸附富集,灰化后以氯化钠为保护剂, 用王水溶解, 于原子吸收分光光计波长 242.8nm 处, 以空气 -乙炔火焰测定矿石中的金。 二、仪器及工作条件 仪器:GGX-2型原子吸收分光光计 波长:242.8nm 狭缝:0.1nm 灯电流:2mA 空气流量:7L/min 乙炔流量:1L/min 燃烧器高:6mm 三、主要试剂 1、氯化钠溶液:25%水溶液。 2、氟化氢铵溶液:2%水溶液。 3、活性炭:(二级或三级将市售活性炭过 200目筛,放入塑料容器中,加入热的4%氟化氢铵溶液浸没活性炭,放置 48小时或更长的时间, 然后过滤,用 4%盐酸洗 8次,再用清水洗 8次,放置凉干备用。

4、金标准溶液:称取 99.99%的金丝 0.1000g ,放于 100mL 烧杯中, 加王水 10mL 于水浴上溶解。溶后,加 25%氯化钠 15滴,蒸至湿盐状, 以盐酸赶硝酸三次,最后蒸至无酸味,加盐酸 9mL ,水洗转入 1000mL 容量瓶中,定容,摇匀。此溶液 1mL 含金 0.1000g 。用时配制成 1mL 含金 100ug 。 四、分析步骤 称取试样 10g ,平铺于方瓷皿中, 400℃灼烧 30分钟后升温至 700℃, 灼烧 1-2小时,取出冷却。转入 400mL 烧杯中,并用水冲洗方瓷皿,加王水(1+1 100mL ,用玻璃棒将样品搅开,盖上表皿,在电炉上加热至沸, 再保持微沸 1小时, 取下烧杯, 用水吹洗表皿及杯壁, 用温水稀释至 200mL , 加 1%动物胶 10mL , 搅匀, 放置澄清, 趁热将试液倾入布氏漏斗 (含铅高的样品则要放冷过滤。用预先装有约 0.5g 活性炭和 1g 纸桨(厚约 8mm 的动态吸附装置进行抽滤。当残渣全部转移到布氏漏斗上之后,用温热的 2%盐酸擦洗烧杯三次(含铅高的样品用冷盐酸洗液 ,再用温热的 2%盐酸洗沉淀 8次,用热的 2%氟化氢铵洗吸附柱 7-10次(每次洗液本浸没吸附柱中的洗活性炭 ,用热的 2%盐酸洗附柱 7-10次,再用热的蒸馏水洗吸附柱 7-10次,热的稀草酸溶液洗 2次。停止抽滤,取出活性炭于 40mL 坩埚中并置于电炉上炭化,使活性炭松散后,放入700℃的高温炉中继续灰化至坩埚底部无黑色炭粒,再保温 10分钟,从炉中取出坩埚,冷却。加入新配制的王水 2mL 、 25%氯化钠 3滴,在水浴上蒸干,取下坩埚趁热加入盐酸 2mL ,使盐类溶解,转入 50mL 比色管中,用水洗净坩埚并稀至刻度,摇匀,在原子吸收分光光计上、波长 242.8nm 处进行测定。 四、注意事项 1、活性炭质量的好坏,对金的吸收有很大的影响,一般的活性炭都含有杂质,用前应予以处理。处理方法:一是用 25%盐酸煮沸除去杂质;二 是用 2%氟化氢铵溶液浸泡 7天以上, 然后用盐酸和水洗净氟离子后使用。 2、活性炭吸附金分静态吸附和动态吸附两种方式。如采用静态吸附, 手续如下:待可溶性硅凝聚后,过滤,往滤液中加入 0.3g 活性炭,剧烈搅拌 1分钟,放置 15分钟后再加入

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

原子吸收法

附件8 化妆品中铅的检测方法(原子吸收法) 1 范围 本方法规定了用石墨炉原子吸收分光光度法测定化妆品中铅的含量。 本方法适用于化妆品中铅的测定。 2 方法提要 样品经预处理使铅以离子状态存在于样品溶液中,样品溶液中铅离子被原子化后,基态铅原子吸收来自铅空心阴极灯发出的共振线,其吸光度与样品中铅含量成正比。在其它条件不变的情况下,根据测量被吸收后的谱线强度,与标准系列比较进行定量。方法的检出限为1.00μg/L,定量下限为3.00μg/L。若取0.5g样品测定,定容至25mL,本方法的检出浓度为0.05mg/kg,最低定量浓度为0.15mg/kg。 3 试剂和材料 除另有规定外,本方法所用试剂均为分析纯或以上规格,水为GB/T 6682规定的一级水。 3.1 硝酸(ρ20=1.42g/mL),优级纯。 3.2 高氯酸[ω(HClO4)=70%—72%],优级纯。 3.3 过氧化氢[ω(H2O2)=30%],优级纯。 3.4 硝酸(1+1):取硝酸(3.1)100mL,加水100mL,混匀。

3.5 硝酸(0.5 mol/L):取硝酸(3.1)3.2mL加入50mL水中,稀释至100mL。 3.6 辛醇。 3.7 磷酸二氢铵溶液(20g/L):取磷酸二氢铵20.0g溶于1000mL 水中。 3.8 铅标准溶液 3.8.1 铅标准溶液[ (Pb)=1g/L]:称取纯度为99.99%的金属铅1.000g,加入硝酸溶液(3.4)20mL,加热使溶解,移入1L容量瓶中,用水稀释至刻度。 3.8.2 铅标准溶液:每次吸取铅标准储备液1.0 mL于100 mL容量瓶中,加硝酸(3.5)至刻度。如此经多次稀释成每毫升含 4.00 ng、8.00 ng、12.0 ng、16.0 ng、20.0 ng铅的标准使用液。 4 仪器和设备 4.1 原子吸收分光光度计及其配件。 4.2 离心机。 4.3 硬质玻璃消解管或小型定氮消解瓶。 4.4 具塞比色管,10mL、25mL、50mL。 4.5 蒸发皿。 4.6 压力自控微波消解系统。 4.7 高压密闭消解罐。 4.8 聚四氟乙烯溶样杯。 4.9 水浴锅(或敞开式电加热恒温炉)。 4.10 天平,感量0.001g。 5 分析步骤 5.1 样品处理(可任选一种方法)

原子吸收测金操作规程

原子吸收测金操作规程 一、试样的称取 1.准备工作:在称样前,先要把门和窗关闭,把称样所有的用具彻底清扫干净,以减少污染。称样用的天平要认真调好零,应该去皮的按去皮键,天平上显示的数字一定要稳定才能开始称样。称样过程中要注意天平是否回零,显示的数字是否稳定,这些细节要认真观察,否则会影响称取样品的准确性。 2.样品的混匀:把要称取的粉状样品倒入样盘内,用圆锥法反复堆5次,使样品充分混匀。 3.样品的称取:把混匀的样品摊平,用勺子逐点取样,取样时要做到多点量匀,提高取样的代表性,样品倒入坩埚时应小心防止样品倒出,并预留坩埚钳钳坩埚的位置。 二、马佛炉的使用 1.马佛炉是焙烧、灰化样品的设备,同时也是最容易造成污染的设备。如坩埚炸裂或灰化载金炭时受热不匀而造成炭末飞溅等原因,稍不注意就会污染到其它样品,因此,要求每天要用毛刷清扫炉膛一次,不能提前打开马佛炉,样品只能低温放入,不然有可能坩埚在突然遇高温而炸裂,载金炭飞溅等。 2.马佛炉是电热设备,炉膛内是用电阻丝为发热元件,每天使用时,必须先关断电源,防止触电事故的发生。

三、样品焙烧 1.将称好的样品用坩埚夹入马佛炉,按顺序排好放平,调节好焙烧温度,温度控制在600℃,开启马佛炉,并记好每个样品在马佛炉中的位置,以免错乱。 2.温度不能过高,否则焙烧后样品就容易结块,影响样品的溶解。 3.普通样品的焙烧时间为2个小时,含硫等其它元素的样品应延长焙烧时间,或用蒸发皿摊开焙烧,以焙烧完全为限。 四、溶剂的配制 1.王水:用量筒量取3份盐酸倒入广口瓶内,再量取1份硝酸倒入广口瓶内后,盖好盖充分摇匀,现配现用。 2.1:1王水:量取3份盐酸、1份硝酸和4份蒸馏水倒入广口瓶内,盖好盖充分摇匀,现配现用。 五、样品的溶解 1.准备工作:配制好溶样的1:1王水和4%的聚乙二醇。 2.把焙烧完全的样品从马佛炉内取出冷却。 3.样品冷却后逐个将样品倒入250ml的锥形烧杯中。此过程中要特别注意样品外漏,把坩埚内壁上的样品用毛刷全部扫进锥形瓶中,不能遗失。 4.用蒸馏水慢慢润湿样品,然后加1:1王水200ml,将样品置于电热板加热溶解。电热板在样品从马佛炉取出以后才能开启。

原子吸收光谱法测定铝合金中的铜

广州大学学生实验报告 开课学院及实验室:化学化工学院生化楼四楼年月日 学院 化学化工学院 年级、专业、班 姓名 学号 实验课程名称 分析化学实验 成绩 实验项目名称 原子吸收光谱法测定铝合金中的铜 指导老师 一、实验目的 1.巩固加深理解原子吸收光谱分析的基本原理。 2.掌握原子吸收光谱分析中标准加入法进行定量分析,以消除基体效应及某些干扰对测定结果的影响。 3.学会铝合金样品的制备技术。 二、实验原理 铜是原子吸收光谱分析中经常和容易测定的元素,在贫燃的空气~火焰干扰很少。为了消除铝基的影响,在绘制工作曲线时,标准溶液浓度系列可加入与被测试样溶液相近的铝量或采用标准加入法定量测定。 标准加入法是将已知浓度不同体积的标准溶液加到几个相同量的待测试样溶液中,然后一起

测定,并绘制标准曲线,将直线外推延长至与横轴相交,其交点与原点的距离所相应的浓度,即为待测试样溶液的浓度。这种方法是针对试样组成复杂,待测元素含量低,样品数量少的情况下可采用的一种定量分析测定方法。 三、仪器与试剂 1.仪器 TAS-990型原子吸收分光光度计,铜空心阴极灯,100mL容量瓶6个。 2.试剂 ⑴1000mg·L-1铜标准储备溶液⑵100mg·L-1铜标准工作液⑶20g·L-1铝标准⑷HCl(AR)1:1。⑸试样。 四、实验步骤 1.工作条件 铜空心阴极灯工作电流 3.0mA 波长324.8nm 光谱带宽0.4mm 燃烧器高度 6.0mm 燃气流量 2.0L/min 2.标准加入法 分别取试样溶液10.0mL四份于4个100mL容量瓶中,分别加入100 mg·、L-1铜标准溶液0.0、0.5、1.0、2.0mL,10滴1:1HCl,(针对模拟样, 每份加20g·L-1铝标准10mL)用水稀释至刻度,摇匀。按以上条件测量各自吸光度。 五、数据处理 绘制标准曲线,将直线外推与横轴相交,其交点与原点的距离所对应的浓度,即为试液的浓度,从而可计算出试样中铜的百分含量。 六、注意事项 1.对不易溶解于硝酸的试样可先用高氯酸和硝酸的混合酸10~15mL分解处理,蒸发至冒高氯酸白烟,并保持1min左右,余下步骤与试样处理过程相同。 2.本法适用于铝合金中0.005~1.00%铜的测定。 七、思考题 工作曲线法与标准加入法定量分析各有什么优点?在什么情况下采用这些方法? 答:工作曲线法适用于标准曲线的基体和样品的基体大致相同的情况,优点是速度快,缺点是当样品基体复杂时不正确。标准加入法可以有效克服上面所说的缺点,因为他是把样品和标准混在一起同时测定的,但他也有缺点就是速度很慢

火焰原子吸收光谱法测定青铜中铬

第36眷第6期2000卑6月 理化检验一化学分册 PTCA(PART13.CHEMICALANALYSIS) V0136No.6 hne2000火焰原子吸收光谱法测定青铜中铬 杨岁i霾 (白银有色金属公司冶炼厂白银市730900) 原予吸收光谱法测定铬的方法报道很多,由于镑豹燕予壤娃竞谱法稳当灵敏,艇巍灌于撬复杂,并且镑鞋蕊锻酸藏形式毒在时,忿稳泻浓度其它形式的铬盐响成信号更高o】。有关燕杂成分样品中铬的测定方法也有报道o。],但是台镑等元素的青铜中铬的原于啵收光谱法测定的结果谯犍不能令人满意。 本文介绍了青铜的溶样方法,用硫酸钠消除锆、锰等元素的干扰,并保持铬标准溶液与溅定样品中铬的氧诧惫的一致性。在渡长357。9am楚,霸空气一乙姨火焰避行隳予暖收光谱测逡,奉法灵敏度蠢0.044,ug?ml叫。,通过对实际样晶分析,其准确度及灵敏度均好。是一种简便、可靠的原子吸收光谱测定青铜中铬的为‘法。 1试黢郝分 l。1笈鹣与试翔 WFX一1D型骧子瑗寝光谱俊(魏=竞厂j 硫酸钠溶液:1009?L_1 铬标准溶液:50/-g?ml_。,称鼠预先在140。C下烘干并擞干燥器中冷却后的黧铬酸钾基准试剂0.14149,避于400ml烧杯中,用水10ml溶癣,加入浓硫酸5ml,玲却,漓搬过氧化熬,停止沸腾后再过量2ml,鼗簸4h疆上,壹裂蓑魏完全滔失,移A1L容量瓶中,以承稀释至瓤度,混匀。 1.2仪器工作条件 波长357.9nm,{:『电流2.0mA.光谱通带宽o.1nm,燃烧器高度9mm,空气流量4.8L?min_÷.乙炔流量2.0L?rain。 1,3试毅方法 穆袋锤标准藩渡s.00m|予100ml容量楚中,麴天浓硫酸1+00ml,硫酸铺溶液4.00ml,鞋承稀释至刻度,混匀。在渡长357.9am处,在给定仪器条件下,使用空气-乙炔火焰测定吸光度。 2结粜岛讨论 2.1酸璇试验 援试验方法操作,竣琉酸麓璧式0t8--l,6ml?278?之间吸光度稳定,本文选用1.00ml。 2.:醢酸镳溶液焉燕 接试验方法操俸,骧酸钠溶液霸萋在2。oo~8,00ml之间吸光度稳定,本文选用4.00ml。 2.3共存离子的影响 试验表明,对于300,ug铬,在拟定条件下,当测定的相对误差小于±5“,下列共存离子(眦mg计)不干扰测定:Cu2+(≤300)+Mn(I)、Zr(1b)、Mg。+(≤1,2),AI”、&≤Ⅳ)、Ni”(≤1,0),As<V》、Sn(Ⅳ)、Za”、Pb2一、edo+、P(V)(≤0.5),Sb(《)(≤0.2),Bi”(≤o.1>;下列共存物质(以ml计)不干扰测定:H。O。、HNO,(≤2.00),HF(≤0.S)。2.4试样分析 2.4.1分析步骤 称取试样0.20009子200mt烧杯中,盏上袭盟,麴A硝酸《1+1)5.0ml,鞠热溶解荠蒸至髂狡趵菇2.0ml,再加入浓蘸酸4.00ml,氢氟酸0.5ml,蒸发至剐冒白烟,趁热加入硝酸3.o~S.0ml,继续椰热至冒浓自烟,冷却,加入水10rnl溶解盐类,移^100mI容量瓶中,卧水稀释黧刻度,混匀。 铬的质量分数农0.050%~0.800新时,敷上述溶渡25.00ml于100ml容量瓶中,加入硫酸钠溶液4,00mt,|羹隶嚣释至刻发,德匀, 铬的质量分数亵0.800%~1.30懿露,袋上述溶液10.00ml于100ml容量瓶中,补加浓硫酸0.6ml,硫酸钠溶液4,ooml,嗣水稀至刻度,混匀。 在给定仪器条件下与标准溶液同时测定吸光废。 2.4.2工作曲线的竣捌 予100ml容蚤糕中壤凌轾A0,0。50,1.oo,2。00,4.00,6.00,8。00.】0.00ml铬标准溶渡,备曲入浓硫酸1.00ml,硫酸钠溶液4.0m!,以下同试样操作。 2.4.3样品测定站策 对部分青铜标撒样品及合成样品测定结果觅表; (下籍豢280荑)  万方数据

相关文档
相关文档 最新文档