文档库 最新最全的文档下载
当前位置:文档库 › Gamma函数与Beta函数的关系及应用

Gamma函数与Beta函数的关系及应用

Gamma函数与Beta函数的关系及应用
Gamma函数与Beta函数的关系及应用

关于Γ函数与B 函数的关系及应用

问题1:欧拉函数是什么东西?如何定义的?

答: 欧拉函数是Γ函数与B 函数的统称。其中若下面的含参变量广义积分收敛,则

分别称为Γ函数与B 函数。即:

(s)Γ=

10

s x x e dx +∞

--?

(1)

(p,q)B =1

110

(1)p q x x dx ---? (2)

(1)式称为伽马函数,(2)式称为贝塔函数,二者统称为欧拉函数 ,Γ函数与B 函数实质上是含参变量广义积分表示的两个特殊函数.

问题2:Γ函数与B 函数的定义域是什么?

答:(一)、Γ函数的定义域:(s)Γ的定义域为0s >.

事实上,(1)当s 1≥时,0x =不是被积函数的瑕点,因此取1p >都有

1lim ()0p s x x x x e --→+∞

=,由柯西判别法知(1)的积分是收敛.

(2)当s<1时,0x =是被积函数的瑕点,此时,有

(s)Γ=1110

1

s x s x x e dx x e dx +∞

----+??

=()()I s J s +

其中()J s 对任何s 都是收敛的, 又110

lim ()lim 1s

s x

x

x x x x e e ++

----→→==,所以1

10

s x dx -?与

1

10s x

x e dx --?在0x =点是等价的,当11s ->-时,1

10

s x dx -?是收敛,当11s -≤-时,

1

10

s x dx -?

是发散.所以当01s <<时(s)Γ是收敛的.

综上可知(s)Γ的定义域为0s >.

(二)、B 函数的定义域:0,0p q >>。

事实上,

(p,q)B =11

1

1

1

1

1

11210

2

(1)(1)

(1)p q p q p q x

x dx x

x dx x x dx -------=-+-???=I J +

而I ,J 在各自的区间内只有一个瑕点。又

1111

lim (1)lim(1)1p p q q x x x x x x ++

----→→-=-= ∴ 在0x =,

1

p x -与11(1)p q x x ---等价,∴ 当11p -<时,

1

p x -收敛, 所以0

p >时, 11(1)p q x x ---在0x =收敛.

同理0q >时,11(1)p q x x ---在1x =时收敛.

综上可知当0p >且0q >时 1

110(1)p q x x dx ---?收敛,所以(p,q)B 的定义域

为0p >且0q >。

问题3:Γ函数有些什么性质?

答:Γ函数具有如下性质:

(1)Γ函数的连续性

(s)Γ在(0,+∞)上连续,由(s)Γ=()()I s J s +,只证()I s 与()J s 在(0,+∞)内连

续即可.在任意闭区间[,]a b (0a >)上对于函数()I s 当1x ≤<∞有11s x a x

x e x e ----≤由于

11

b x x e dx +∞

--?

收敛由附录中的定理5,知()I s )在[,]a b 上一致收敛,对于()I s 当01

x ≤≤时有1s x

x e --在[,;0,1]a b 上连续,所以()I s 在[,]a b 连续,所以()I s 在[,]a b 上一致收敛,

所以(s)Γ在(0,+∞)上内闭一致收敛, 由附录中的定理2,知(s)Γ在(0,+∞)上连续.

(2)Γ函数的的可微性

首先考虑积分

110

0()()ln s x

s x x e dx x e xdx s

+∞

+∞----?=??

?在任何闭区间[,]a b (0a >)

上一致收敛.考虑积分

110

0()()ln s x

s x x e dx x e xdx s

+∞

+∞----?=??

?=110ln s x x e xdx --? +11ln s x x e xdx +∞--?.

当0a s << 1ln s x

x

e x --≤1

ln a x

x -(01x ≤≤)而积分1

10

ln a x xdx -?收敛,故积分

1

1

ln s x x e xdx --?

当0a s <<时一致收敛.

同样,当s b ≤时,1ln s x x e x --≤1ln b x

x e x -- (1x ≥)故

11

ln s x x e xdx +∞

--?

当s b ≤时

一致收敛.因此积分

10

ln s x x e xdx +∞

--?

当0a s b <≤≤时一致收敛.由此可知(s)Γ在

a s

b ≤≤上具有连续的导函数(s)'Γ且可在积分下求导

(s)'Γ=10

ln s x x e xdx +∞

--?

(3)

由,a b 的任意性,可知(s)'Γ在0s >上连续且(3)式对一切0s >皆成立.

类似的数学归纳法可知,对任何正整数n ()()n s Γ在0s >上都存在且可在积分号下求导数, 得 ()()n s Γ=

10

(ln )s x n x e x dx +∞

--?

(0s >).

(3) 递推公式(1)()(0)s s s s Γ+=Γ>

由此可知,任意0s >,如果1n s n <≤+(其中是非负整数)即01s n <-≤有

(1)()(1)(1)()()s s s s s s s s n s n Γ+=Γ=-=--Γ- (4)

特别地当s 为正整数1n +时可写成(1)(1)2(1)n n n Γ+=-Γ= 0

!x n e dx +∞

-?

=!n .

(4) 极值与凸性

因为对一切0s >,(s)Γ=

10

s x x e dx +∞

--?

>0,''

120

()()s x s x e lnx dx +∞

--Γ=?

>0

因此(s)Γ 的图形位于s 轴上方且凸的. 又

(1)x e dx

+∞

-Γ=?=1,

(2)1(1)Γ=Γ=1,所以,(1)(2)Γ=Γ。

因此()s Γ在0s >上有唯一的一个极小值点0x 落在(1,2)之间.

问题4:Γ函数还有其它的形式吗?

答:Γ函数的其他形式:

在(1)式中,令x py =,则有

110

()()s py

s

s py s py e

pdy p

y e dy +∞

+∞

----Γ==??

(0s >,0p >) (6)

在(1)式中,令2

x y =,则有()s Γ=2

2

2(1)210

22s y s y y

e

ydy y

e dy +∞

+∞

----=?

?

问题5:B 函数有些什么性质?

答:B 函数具有如下性质:

(1)B 函数的连续性

事实上,对任何00p p ≥>,00q q ≥>有1

1(1)p q x

x ---≦0011(1)p q x x ---,而

001

110

(1)p q x x dx ---?

收敛,所以由附录中的定理5,(,)p q B 在0p p ≤<+∞,

0q q ≤<+∞上一致连续,故而(,)p q B 在(0,)+∞×(0,)+∞内连续.

(2)B 函数的可微性

(,)p q B 在(0,)+∞×(0,)+∞内可微且存在任意阶连续偏导数.

考虑积分1

111

1100

[(1)](1)l p q p q x x dx x x nxdx p ----?-=-??? 当00p p ≥>,00q q ≥>时,恒有

11(1)p q x x Inx ---≤0011(1)p q x x Inx --- ,(01x <<)

001

110

(1)ln p q x x x dx ---?

收敛,故积分1

110

(1)p q x x dx ---?当0p p ≥,0q q ≥时一致

收敛.因此当0p p ≥,0q q ≥时可在积分下求导,得

1

110

(,)(1)ln p q p p q x x xdx --'B =-?并且(,)p p q 'B 是0p p ≥,0q q ≥上的连续函数.

同理 '

(,)p p q B 是域0,0p q >>上的二元函数,且当0,0p q >>可在积分下求导得

1

'110

(,)(1)ln(1)p q q p q x x x dx --B =--?。

完全类似地用数学归纳法可证(,)

n i n i

p q p q -?B ??在域0,0p q >>上存在连续偏导数,且

(,)n i n i p q p q

-?B ??=1110(1)(l )(l (1))p q i n i

x x n n x dx -----?。 (3)B 函数的对称性 (,)(,)p q q p B =B (4)递推公式 (,)p q B =

1

(,1)1

q p q p q -B -+-(0,1p q >>)

1

1

1

(,)(1)

p q p q x

x dx --B =

-=

?

1

(1)

p p q

u du u -+∞

++?

(1u x u =+) 110

1

(1)1p p q u d u p q +∞---=+--? (当1p >时) 2

101(1)(1)1(1)

p p q u p du p q u -+∞++=----+? 21011(1,)1(1)1

p p q p u p du p q p q u p q -+∞+---==B -+-++-? 由对称性可证

(1)(1)

(,)(1,1)(1)(2)

q p p q p q p q p q --B =

B --+-+-

特别对正整数,m n ,(,)m n B =

(1)!(1)!

(1)!

n m m n --+-。

问题6:B 函数还有其它的形式吗?

答:B 函数的其他形式:

212120

(,)2sin cos q p p q d π

θθθ--B =?(令2cos x θ=)

1

(,)(1)p p q

u p q du

u -+∞

+B =+?

(1u x u =+) 进而将此积分拆成[0,1],[1)+∞,

两段积分,后者作变换1

u t

=,仍把t 写成u ,则有

11

1

0(,)(1)p q u u p q du u p q

--+B =++?。

问题7:Γ函数与B 函数有怎样的关系?

答:Γ函数与B 函数有下面的关系:

(1) ()()

(,)()

p q p q p q ΓΓB =

Γ+ (0,0)p q >>

事实上,当0,0p q >>时,由(6)有,10()

p ty p p y e dy t

+∞--Γ=?,从而

1

10

()()q p x

y

p q x e dx y e dy -+∞

+∞

---ΓΓ=??

110

()

p ty

q y ty e ydy y e dy +∞

+∞

----=??

1

1(1)

p p q y t t

dt y

e

dy +∞

+∞

-+--+=??

11(1)0

0[(1)(1)(1)

p p q t y

p q t dt t e d t y t -+∞+∞+--++=+++?

? (,)()p q p q =B Γ+ ,

故有, ()()

(,)()

p q p q p q ΓΓB =

Γ+。

(2)(余元公式)(,1)sin p p p

π

πB -=

(3)(倍元公式)

21

1

(2)()()2αααα-Γ=Γ+ ﹙0α>﹚

问题8:能否举一些Γ函数与B 函数应用的例子?

答: 下面是几个关于Γ函数与B 函数应用的例子:

(1)用余元公式计算1

()2

Γ的值:

解:1()2Γ==。

(2)求10

sin ()1cos 1cos d I k π

α??π??

-=

++?

﹙0<k <1﹚。 解:由公式sin 2

1cos tg

?

?

?

=

+,令2t tg ?=,则

111

sin ()()1cos 2

tg t ααα???---==+ ,221cos 1t t ?-=+, 221dt d t ?=+

∴1

1

22

20

02

12211(1)(1)11t I t

dt dt t t k k t k

t αα-+∞

+∞-==-+++-++??

02)1k α=+?

2tg θ=

,则10112

I tg d k πααθ

θ-=+?,

令2u θ

=

,120

21I tg udu k π

αα-=+?

2.1

2(1)1

1

222

2

00

22sin

cos

(,1)22sin 2

tg

udu u udu B ππ

α

α

αααπ

πα----==-=??

11sin 2

I k αππα∴=

+

(3)Γ函数在积分不等式中的应用:

例1 已知01h ≤<,正整数3n ≥

,证明:

322

(1)()2

n h

t dt --≥

Γ?

. 证明:

3331

1

2

2

2

2

22

2

(1)

(1)

(1)

n n n t hu

h

t dt h h u

du h u du ---=-=

-≥-?

??

sin 320

11cos cos (,)222u n h n h d B π

θ

θθθ=--==

?()2

=Γ.

例2 求

()1

2

10lim n

n x dx →+∞

-=?.

解:

()

()11

12

220

01112n

n x dx t t dt --=-??()()111112

20

112n t t dt +--=-?

()

111112,132222n B n n ??

Γ?Γ+ ?????

=+=? ?????Γ+ ???

1!

121133112222222n n n n ??

Γ? ???=??

???????+-?-?Γ ??? ? ?

?

???????

()()()()()222422!

21215312121531

n n n n n n n n ?-??==

+-??+-?? 令 ()()()222422121531n n n x n n ?-?=

+-?? ,()()()21215322264

n n n y n n +-?=

+??

则由于对一切自然数k ,有

221k k +<21

22

k k ++,又0n n x y <<,故 2

101n n n x x y n <<=

+

,即0n x <<

0n =,由夹逼原则,

可知lim 0n n x →∞

=,所以

()1

2

10lim n

n x dx →+∞

-=?.

参考文献:

[1]裴礼文 数学分析中的典型问题与方法 高等教育出版社 [2]钱吉林 数学分析解题精粹 北京高等教育出版社 [3]华东师大数学系 数学分析 北京高等教育出版社 [4]东北师大数学系 常微分方程 北京高等教育出版社 [5]周民强 实变函数 北京高等教育出版社

函数、方程及其应用(1)

、选择题 1. (上海文)17若x o 是方程式lgx ?x=2的解,贝U x o 属于区间 () (A ) (0, 1) . ( B) (1 , 1.25) . (C) ( 1.25, 1.75) ( D) (1.75, 2) 答案D 7 7 1 【解析】 构造函数 f (x) = lg x ? x -2,由 f(1.75) = f( ) = lg 0 4 4 4 f(2)=lg2 0知 X 。属于区间(1.75,2) 2. (湖南文) 3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是 A A A. y = _1Ox 200 B. y =10x 200 答案A 3. (陕西文)10.某学校要招开学生代表大会,规定各班每 10人推选一名代表,当各班人数 除以10的余数大.于6时再增选一名代表.那么,各班可推选代表人数 y 与该班人数x 之间的 函数关系用取整函数 y =[x ] ([x ]表示不大于x 的最大整数)可以表示为 x x + 3 x+4 x + 5 (A) y = [ — ] (B) y = [- 3 ] (C) y = [- 4 ] (D) y = [- 5 ] 10 10 10 10 答案B 解析:法一:特殊取值法,若 x=56, y=5,排除C D,若x=57, y=6,排除A 所以选B 当 6 :::〉_9时,仝3 二 m ' 3 = m 1 x 1,所以选 B _ 10 . IL 10 . |l 10 1 3. (浙江文)(9)已知x 是函数f(x)=2x + 的一个零点 若X 1 €( 1, X ° ), 1 —X X 2 €( X 。, +旳),则 (A ) f( x 1) v 0, f( x 2) v 0 ( B ) f( x 1) v 0, f( x 2) > 0 (C ) f( X 1) >0, f( X 2) v 0 ( D ) f( X 1) >0, f( X 2) > 0 A C. y - _10x - A D. y=10x_200 法二:设 x = 10m 11 二(0 _ : - 9), 。》6 时晋…

函数的凹凸性

函数的凹凸性 一、出示曲线,出示课题 1、请大家看一下屏幕上的四条曲线,如果要给它们分一下类,怎么分?可以按照函数的单调性分。这两个从左往右,逐渐上升,这两个从左往右,逐渐下降。 2、从单调性的角度,这两条曲线是一类,但如果再仔细观察一下,这两条曲线还是不一样,这条曲线是凸的,这条曲线是凹的。同样,这条曲线是凸的,这条曲线是凹的。所以,如果按照曲线的凹或者凸,我们可以把这两条曲线作为一类,因为它们都是凹的,把这两条作为另外一类,因为它们都是凸的。那么,曲线的凹或者凸,反映了函数的什么性质呢?这就是本节课我们要学习的内容:函数的凹凸性。 二、比较位置,给出定义 刚才我们说这两条曲线是凹的,什么是凹的呢?实际上,如果在这条曲线上任取两点,不难发现,连结这两个点的曲线弧始终在连结这两个点的弦的下面,所以我们说它是凹的。而如果在这条曲线上任取两点,连结这两个点的曲线弧始终在弦的上面,所以我们说它是凸的。这里我们是用比较曲线弧和弦的上下位置来区分曲线的凹和凸,那么,如果用数学语言来刻画曲线的凹和凸,怎么来描述呢? (1)现在屏幕上显示的是2y x =,0x ≥的函数图象,可以看出来它是一条凹的曲线。 1、在曲线上任取两点A 、B ,设点A 的横坐标为1x ,点B 的横坐标为2x ,如果在()12,x x 内任取一个x ,过这个点作x 轴的垂线,这条垂线与曲线弧相交,交点是P ,与弦相交,交点是Q ,由于连结A 、B 两点的曲线弧始终在弦AB 的下面,所以不管x 怎么变,点P 的纵坐标始终小于点Q 的纵坐标。 2、刚才x 是在()12,x x 内任取的,这样的话,随着x 的变化,点P 和点Q 的纵坐标也在变化,这样对我们表示点P 和点Q 的纵坐标很不方便。所以,为了表示点P 和点Q 的纵坐标的方便,x 就取()12,x x 的中点122 x x +。 3、好,在这里同学们可能会有这样的疑问:你取区间的中点,那你比的只是区间中点处对应的P 和Q 的纵坐标,不能说明曲线弧和弦上所有点的情况啊?实际上,由于点A 、B 是任取的,所以12,x x 也是任意的,随着12,x x 的变化,中点也在变化,对应的点P 和Q 也在变化,所以中点处对应的P 和Q 实际上就代表了曲线弧和弦上的所有点。 4、点P 的纵坐标是122x x f +?? ??? ,点Q 的纵坐标是()()122f x f x +,则有122x x f +??< ??? ()()122f x f x +。一般地,如果函数()f x 在区间I 上连续,对I 上任意两

(整理)函数凹凸性的应用

函数凹凸性的应用 什么叫函数的凸性呢?我们先以两个具体函数为例,从直观上看一看何谓函数的凸性. 如函数y =所表示的曲线是向上凸的,而 2y x =所表示的曲线是向下凸的,这与我们日常习惯上的称呼是相类似的.或 更准确地说:从几何上看,若y =f(x)的图形在区间I 上是凸的,那么连接曲线上任意两点所得的弦在曲线的上方;若y =f(x)的图形在区间I 上是凹的,那么连接曲线上任意两点所得的弦在曲线的下方. 如何把此直观的想法用数量关系表示出来呢? 设函数 ()f x 在区间I 上是凸的(向下凸),任意 1x , 2x I ∈( 12 x x <). 曲线 ()y f x =上任意两点11(,())A x f x ,11(,())B x f x 之间的图象位于弦AB 的下方,即任意 12(,)x x x ∈,() f x 的值小于或等于弦AB 在x 点的函数值,弦AB 的方程 211121 ()() ()() f x f x y x x f x x x -= -+-. 对任意 12(,) x x x ∈有,整理得 21 122121 ()()()x x x x f x f x f x x x x x --≤ +--. 令 221()x x t x x -= -,则有01t <<,且12(1)x tx t x =+-,易得1 21 1x x t x x -=--,上式可写成 1212[(1)]()(1)() f tx t x tf x t f x +-≤+- 1.1凸凹函数的定义 凸性也是函数变化的重要性质。通常把函数图像向上凸或向下凸的性质,叫做函数的凸性。图像向下

专题三函数与方程及函数的应用

高三二轮复习专题三 函数与方程及函数的应用 主备教师:xxx 审核:xxx 班级___________ 姓名____________ 【考试要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数2、根据具体函数的图象,能够用二分法求相应方程的近似解;3、了解函数模型的广泛应用。 【高考试题回放】 1、(2011天津理2)函数()23x f x x =+的零点所在的一个区间是( ). A. ()2,1-- B. ()1,0- C. ()0,1 D. ()1,2 2、(2011山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3 ()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 (A )6 (B )7 (C )8 (D )9 3、(2011湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系: ()30 02 t M t M -=,其中 M 为0=t 时铯137 的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60M A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 4、(2011北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为 ()x A f x x A <=≥(A ,c 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件 产品时用时15分钟,那么c 和A 的值分别是 A. 75,25 B. 75,16 C. 60,25 D. 60,16 【课内探究】探究一、确定函数的零点 例1.设函数1()ln (0)3 f x x x x = ->,则f(x)( ) A .在区间1[,1],(1,)e e 内均有零点 B.在区间1[,1],(1,)e e 内均无零点 C.在区间 1 [,1]e 内有零点,在区间(1,e )内无零点 D .在区间 1 [,1]e 内无零点,在区间(1,e )内有零点

神奇的Gamma函数 (上)

神奇的Gamma函数 (上) rickjin 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 Γ(x)=∫∞0t x?1e?t dt 通过分部积分的方法,可以推导出这个函数有如下的递归性质 Γ(x+1)=xΓ(x) 于是很容易证明,Γ(x)函数可以当成是阶乘在实数集上的延拓,具有如下性质 Γ(n)=(n?1)! 学习了Gamma 函数之后,多年以来我一直有两个疑问: ? 1.这个长得这么怪异的一个函数,数学家是如何找到的; ? 2.为何定义Γ函数的时候,不使得这个函数的定义满足Γ(n)=n!而是Γ(n)=(n?1)! 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16,?可以用通项公式n2自然的表达,即便n为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,?,我们可以计算2!,3!, 是否可以计算 2.5!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。 但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题,由此导致了Γ函数的诞生,当时欧拉只有22岁。 事实上首先解决n!的插值计算问题的是丹尼尔.贝努利,他发现,

函数的凹凸性在高考中的应用

函数的凹凸性在高考中的应用 崇仁二中廖国华 教学目的: ①了解函数的凹凸性,掌握增量法解决凹凸曲线问题。 ②培养学生探索创新能力,鼓励学生进行研究型学习。 教学重点:掌握增量法解决凹凸曲线问题 教学难点:函数的凹凸性定义及图像特征 教学过程: 一、课题导入 1.展示崇仁县第二中学2008届高三第一次月考试题12得分统计表 2.组织学生现场解答月考试题12并进行得分统计,以引出课题——— 题目:一高为H、满缸水量为V的鱼缸的截面如图1所示,其底部碰了一个小洞,满缸水从洞中流出.若鱼缸水深为h时水的体积为V,则函数V=f(h)的大致图象可能是图2中的().(选自《中学数学教学参考》2001年第1~2合期)的《试题集绵》. 函数凹凸性问题是近几年高考与平时训练中的一种新题型.这种题情景新颖、背景公平,能考查学生的创新能力和潜在的数学素质,体现“高考命题范围遵循教学大纲,又不拘泥于教学大纲”的改革精神.但由于函数曲线的凹凸性在中学教材中既没有明确的定义,又没有作专门的研究,因此,就多数学生而言,对这类凹凸性曲线问题往往束手无策;而教师的“导数”理解又不能被学生所接受.所以,对这类非常规性问题作一探索,并引导学生去得到一般性的解法,无疑对学生数学素质的提高和创新精神的培养以及在迅速准确解答高考中出现此类的试题都是十分重要的。 二、新课讲授 1、凹凸函数定义及几何特征 图1 图2

⑴引出凹凸函数的定义: 如图3根据单调函数的图像特征可知:函数)(1x f 与)(2x f 都是增函数。但是)(1x f 与)(2x f 递增方式不同。不同在哪儿?把形如)(1x f 的增长方式的函数称为凹函数,而形如)(2x f 的增长方式的函数称为凸函数。 ⑵凹凸函数定义(根据同济大学数学教研室主编《高等数学》第201页): 设函数f 为定义在区间I 上的函数,若对(a ,b )上任意两点1x 、2x ,恒有: (1)1212()()()2 2 x x f x f x f ++<,则称f 为(a ,b )上的凹函数; (2)12 12()() ( )2 2 x x f x f x f ++> ,则称f 为(a ,b )上的凸函数。 ⑶凹凸函数的几何特征: 几何特征1(形状特征) 图4(凹函数) 图5(凸函数) 如图,设21,A A 是凹函数y=)(x f 曲线上两点,它们对应的横坐标12x x <,则 111(,())A x f x ,222(,())A x f x ,过点12 2 x x +作ox 轴的垂线交函数于A ,交21A A 于B , 凹函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的下方; 凸函数的形状特征是:其函数曲线任意两点1A 与2A 之间的部分位于弦21A A 的上方。 简记为:形状凹下凸上。

2 函数与方程及函数的实际应用

1.函数f (x )=-1x +log 2x 的一个零点落在下列哪个区间( ). A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内, 则下一步可断定该根所在的区间为( ). A .(1.4,2) B .(1.1,4) C.? ????1,32 D.? ?? ??32,2 3.设函数f (x )=13 x -ln x ,则函数f (x )( ). A .在区间? ?? ??1e ,1,(1,e)内均有零点 B .在区间? ?? ??1e ,1,(1,e)内均无零点 C .在区间? ?? ??1e ,1内有零点,在(1,e)内无零点 D .在区间? ?? ??1e ,1内无零点,在(1,e)内有零点 4.已知f (x )=????? x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为( ). A .1 B .2 C .3 D .4 5.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ). A .60件 B .80件 C .100件 D .120件 6.已知0<a <1,函数f (x )=a x -|log a x |的零点个数为________. 7.已知函数f (x )=? ?? ??15x -log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)________0(填“>”、“<”、“≥”、“≤”).

高中数学经典解题技巧(函数与方程及函数的实际应用)

高中数学经典解题技巧(函数与方程及函数的实际应用)【编者按】函数与方程及函数的应用是高中数学考试的必考内容,而且是这几年考试的重点和难点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下函数与方程及函数的实际应用的经典解题技巧。 首先,解答函数与方程及函数的实际应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.函数与方程 (1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。 (2)根据具体函数的图象,能够用二分法求相应方程的近似解。 2.函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 好了,搞清楚了函数与方程及函数的实际应用的基本内容之后,下面我们就看下针对这两个内容的具体的解题技巧。 一、函数零点问题 考情聚焦:1.函数的零点是新课标的新增内容,其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为新课标高考命题的热点. 2.常与函数的图象、性质等知识交汇命题,多以选择、填空题的形式考查。 解题技巧:1.函数零点(方程的根)的确定问题,常见的类型有(1)零点或零点存在区间的确定;(2)零点个数的确定;(3)两函数图象交战的横坐标或有几个交点的确定;解决这类问题的常用方法有:解方程法、利用零点存在的判定或数形结合法,尤其是那些方程两端对应的函数类型不同的方程多以数形结合法求解。 2.函数零点(方程的根)的应用问题,即已知函数零点的存在情况求参数的值或取值范围问题,解决该类问题关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解。

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用 作者:祝红丽 指导老师:邢抱花 摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过 它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸 性的判别方法以及在解题中的应用,如在不等式证明中的应用以及在求函数最值时的应用等.并 结合相关例题做了较详细的论述. 关键词 凹凸性 导数 不等式 应用 1 引言 函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变 量变化而变化的快慢程度,如果结合函数的其它性质,可以使我们对函数的认识更加精确. 以函数()y f x 在某区间I 上单调增加为例说明.我们不难理解,随着自变量x 的稳定增 加,当函数y 的增量越来越大时,函数图形是凹的,当函数y 的增量越来越小时,函数图 形是凸的,当函数y 的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分 析. 作为研究分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学 者致力于函数凹凸性的判别法及其应用的研究.近年来,关于函数凹凸性的判定与应用的研 究取得了一些成果,使函数凹凸性的判别法与应用更加的广泛. 本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函 数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹 凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性, 及利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判 别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函 数凹凸性在证明不等式、求函数最值以及函数作图中的应用.虽然说并不是所有的不等式都 能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代 的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路.利用导数分析函 数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的 函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.

方程应用题与函数应用

2015方程应用题与函数应用 1(2015?聊城)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花 的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元? 2(2015?威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为:; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用. 3(2015?滨州)一种进价为每件40克的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大? 4(2015?济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件. (1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件?? (2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?

5(2015?潍坊)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元. (1)求A、B两种型号家用净水器各购进了多少台; (2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价) 6为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本. (1)问符合题意的组建方案有几种?请你帮学校设计出来; (2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元? 7(2014?威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个? 8(2014年山东烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%. (1)今年A型车每辆售价多少元?(用列方程的方法解答) (2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?

方程、不等式与一次函数专题(实际应用)

方程、不等式与一次函数专题练习(实际应用) 题型一:方程、不等式的直接应用 典型例题1:(2009,株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知: 在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分.... 每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内. 典型例题2:(2007,福州,10分)李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资 为b 元. (1)求a ,b 的值; (2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件? 配套练习: 3、(2009,益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元 买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运 会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 4、(2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五 月份的工资情况信息: (1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元? (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 5、(2009,青岛)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=?利润成本 ) 题型二:方案设计 典型例题6、(2009,深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 典型例题7:(2008、湖北咸宁)“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点。从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元。设从地运往处的蔬菜为x 吨。 x 的值; ⑵、设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; ⑶、经过抢修,从B 地到C 地的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线的运费不变,试讨论总运费最小的调运方案。

函数和方程及函数的实际应用

个性化教学设计教案 授课时间: 2011 年 7 月 20 日( 8:00--10:15 )备课时间:2011 年 7月 18 日年级:高二学科:数学课时:3 学生姓名: 课题名称第三讲函数与方程及函数的实际应用授课教师:曾先兵 教学目标 1.函数与方程 (1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。 (2)根据具体函数的图象,能够用二分法求相应方程的近似解。 2.函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 教学过程 一、函数的零点 1.三个等价关系:方程f(x)=0有实根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 2.函数零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. (尤其注意,f(a)f(b)<0是“函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,那么函数y=f(x)在区间(a,b)内有零点”的充分不必要条件) 二、二分法 1.二分法的条件:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0. 2.二分法的思想:通过二等分,无限逼近. 3.二分法的步骤:其中给定精确度ε的含义是区间(a,b)长度|a-b|<ε,不能认为是函数零点近似值的精度. 三、函数模型及其应用 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是: 1.阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题. 2.数学建模:弄清题目中的已知条件和数量关系,建立函数关系式. 3.解函数模型:利用数学方法得出函数模型的数学结果. 4.实际问题作答:将数学问题的结果转译成实际问题作出解答. 四、二次函数、二次方程、二次不等式的关系 二次函数、二次方程、二次不等式是最基本的知识点,“三个二次型”是一个有机的整体,其中二次函数的图象是联系三者的桥梁和纽带. 一:函数零点问题

神奇的Gamma函数

神奇的Gamma函数 (上) 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 通过分部积分的方法,可以推导出这个函数有如下的递归性质 于是很容易证明,函数可以当成是阶乘在实数集上的延拓,具有如下性质 学习了Gamma 函数之后,多年以来我一直有两个疑问: 1.这个长得这么怪异的一个函数,数学家是如何找到的;

2.为何定义函数的时候,不使得这个函数的定义满足而 是 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。 1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式 定义从整数集合延拓到实数集合,例如数列可 以用通项公式自然的表达,即便为实数的时候,这个通项 公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线 通过所有的整数点,从而可以把定义在整数集上的公式延拓 到实数集合。一天哥德巴赫开始处理阶乘序列 ,我们可以计算, 是否可以计算 呢?我们把最初的一些的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。

但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题, 由此导致了函数的诞生,当时欧拉只有22岁。 事实上首先解决的插值计算问题的是丹尼尔.贝努利,他发现, 如果都是正整数,如果,有 于是用这个无穷乘积的方式可以把的定义延拓到实数集合。例如, 取, 足够大,基于上式就可以近似计算出 。 欧拉也偶然的发现可以用如下的一个无穷乘积表达

函数方程思想的应用举例.

函数方程思想的应用举例 函数方程思想是中学数学中最基本、最重要的数学思想,也是历年高考的重点。 函数的思想就是用运动和变化的观点,分析和研究数学问题。具体来说,即先构造函数,把给定问题转化为研究辅助函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。函数方程思想就是将数学问题转化为方程或方程组问题。通过解方程(或方程组)或者运 用方程的性质来分析、转化问题,使问题得以解决。函数与方程思想是密切相关的,函数,当 时,就转化为方程或看作方程;而方程的解是函数图象与x 轴交点的横坐标。函数与不等式也可以相互转化,对函数,当时,就是不等式, 而求的解则可比较函数图象位置而得到。 一.构造函数思想 例1.证明不等式 分析:由所证不等式很容易想到比商法,但a、b的正负无法确定,即使分类后,当a、b都为正数时,其 商也无法与1比大小,思路受阻。再观察不等式两边形式类似,稍加变形即为,即可联想到函数 解:令 ,就只需证了,利用函数单调性,问题得以巧妙解决。 在 则则所以在 上, 上为增函数 ,即 。 点评:应用函数性质证明不等式,关键在于构造一个适当的函数,且能方便地判断函数的有关性质。例2.已知 恒成立,求x的范围。 ,对于值域内的所有实数m,不等式

,则 分析:我们习惯上把 x 当作自变量,构造函数 ,于是问题转化为:当 时, 恒成立,求 x 范围,但要解决这个问题要用到二次函数以及二次方程的区间根原 理。相当复杂。而如果把 m 看作自变量,x 视为参数,原不等式化为 ,构造函数 解:因为 , 所以 , 即 原不等式可化为 所以 ,令 的问题。 为 m 的一次函数,在 上恒大于 0,这样就非常简单。 恒成立,又 为 m 的一次函数,问题转化为 在 上恒大于 0 则只需 解得 或 即 。 点评:注意到本题有两个变量 x 、m ,且 x 本来为主元,但为了解题方便,把原不等式看为 m 的一次函数, 大大简化了运算。在多字母的关系式中,应对参数的策略常常是“反客为主、变更主元”,重新构造函数。 二. 构造方程思想 例 3. 已知 ,则有( ) A. C. B. D. 分析:原式变为 是实系数一元二次方程 的一个实根,故 ,故选 C 。 点评:通过简单转化,敏锐地抓住了数与式的特点,运用方程思想使问题迎刃而解。

(完整)(典型题高考数学二轮复习知识点总结函数与方程及函数的应用,推荐文档

函数与方程及函数的应用 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0 的实数x 叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b) <0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c 也就是方程f(x)=0 的根. 注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 考点一函数的零点 例1 (1)(2013·重庆)若a

函数的凹凸性与拐点

第16 次理论课教学安排

图1 2.4导数的应用----曲线的凹凸与拐点 课题: 曲线的凹凸与拐点 目的要求:理解曲线凹凸性的概念、掌握判断函数图形的凹凸性、求函数图形 的拐点等方法。 重、难点:判断函数图形的凹凸性、求函数图形的拐点 教学方法:讲练结合 教学时数:1课时 教学进程: 函数的单调性可用函数的一阶到函数来判定,对于同样的递增函数有着不同的增法,如向上凸的增或凹的增,那么对于这两种不同的增法我们如何刻画那? 一、曲线的凹凸与拐点 1.曲线的凹凸定义和判定法 从图1可以看出曲线弧ABC 在区间()c a ,内是向下凹入的,此时曲线弧ABC 位于该弧上任一点切线的上方;曲线弧CDE 在区间()b c ,内是向上凸起的,此时曲线弧CDE 位于该弧上任一点切线的下方.关于曲线的弯曲方向,我们给出下面的定义: 定义1 如果在某区间内的曲线弧位于其任一点切线的上方,那么此曲线弧叫做在该区间内是凹的;如果在某区间内的曲线弧位于其任一点切线的下方,那么此曲线弧叫做在该区间内是凸的. 例如,图1中曲线弧ABC 在区间()c a ,内是凹的,曲线弧CDE 在区间()b c ,内是凸的. 由图1还可以看出,对于凹的曲线弧,切线的斜率随x 的增大而增大;对于凸 x y o () y f x =A B x y o () y f x =A B

的曲线弧,切线的斜率随x 的增大而减小.由于切线的斜率就是函数()x f y =的导数,因此凹的曲线弧,导数是单调增加的,而凸的曲线弧,导数是单调减少的.由此可见,曲线()x f y =的凹凸性可以用导数()x f '的单调性来判定.而()x f '的单调性又可以用它的导数,即()x f y =的二阶导数()x f ''的符号来判定,故曲线 ()x f y =的凹凸性与()x f ''的符号有关.由此提出了函数曲线的凹凸性判定定理: 定理1 设函数()x f y =在()b a ,内具有二阶导数. (1)如果在()b a ,内,()x f ''>0,那么曲线在()b a ,内是凹的; (2)如果在()b a ,内,()x f ''<0,那么曲线在()b a ,内是凸的. 例1 判定曲线3 x y =的凹凸性. 2.拐点的定义和求法 定义2 连续曲线上凹的曲线弧和凸的曲线弧的分界点叫做曲线的拐点. 定理2(拐点存在的必要条件) 若函数()x f 在0x 处的二阶导数存在,且点 ()()00,x f x 为曲线()x f y =的拐点,则().00=''x f 我们知道由()x f ''的符号可以判定曲线的凹凸.如果()x f ''连续,那么当()x f ''的符号由正变负或由负变正时,必定有一点0x 使()0x f ''=0.这样,点()()00,x f x 就是曲线的一个拐点.因此,如果()x f y =在区间()b a ,内具有二阶导数,我们就可以按下面的步骤来判定曲线()x f y =的拐点: (1) 确定函数()x f y =的定义域; (2) 求()x f y ''='';令()x f ''=0,解出这个方程在区间()b a ,内的实根; (3) 对解出的每一个实根0x ,考察()x f ''在0x 的左右两侧邻近的符号.如果()x f ''在0x 的左右两侧邻近的符号相反,那么点()()00,x f x 就是一个拐点,如果()x f ''在0x 的左右两侧邻近的符号相同,那么点()()00,x f x 就不是拐点. 例2 求曲线2 3 3x x y -=的凹凸区间和拐点. 解 (1)函数的定义域为()+∞∞-,; (2)()1666,632 -=-=''-='x x y x x y ;令0=''y ,得1=x ; (3)列表考察y ''的符号(表中“”表示曲线是凹的,“” 表示曲线 是凸的): x ()1,∞- 1 ()+∞,1 y '' - 0 + 曲线y 拐点 ()2,1-

1函数与方程的综合应用

函数与方程的综合应用 例2 (1)(2018·烟台二模)已知[x ]表示不超过x 的最大整数,当x ∈R 时,称y =[x ]为取整函数,例如[1.6]=1,[-3.3]=-4,若f (x )=[x ],g (x )的图象关于y 轴对称,且当x ≤0时,g (x )=-x 2-2x ,则方程f (f (x ))=g (x )解的个数为( D ) A .1 B .2 C .3 D .4 [解析] 根据已知条件可知,当x >0时,-x <0,又函数g (x )的图象关于y 轴对称,故 g (x )为偶函数,所以g (x )=g (-x )=-(-x +1)2+1=-(x -1)2+1.由f (x )=[x ],得f (f (x )) =[x ].在同一平面直角坐标系中画出y =f (f (x ))与y =g (x )的图象如图所示,由图象知,两个图象有4个交点,交点的纵坐标分别为1,0,-3,-4,当x ≥0时,方程f (f (x ))=g (x )的解是0和1;当x <0时,g (x )=-(x +1)2+1=-3得x =-3,由g (x )=-(x +1)2+1=-4得x =-1- 5.综上,f (f (x ))=g (x )的解的个数为4. (2)(2018·中山一模)已知函数f (x )=? ??? ? |log 3x |,03,若方程f (x )=m (m ∈R ) 有四个不同的实根x 1,x 2,x 3,x 4,且满足x 1

伽马函数在概率统计中的应用

韩山师范学院 学生毕业论文 ( 2011届) 题目(中文)伽马函数在概率统计中的应用(英文)The Application of the Γ–Function in the Probability 系别:数学与信息技术系 专业:数学与应用数学班级: 20071112 姓名:史泽龙学号: 2007111205 指导教师:屈海东讲师 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要: 本文阐述了Γ函数的定义及其特殊性质, 并就如何利用Γ函数的特定性质解决概率应用中的一些特定问题进行了探讨和分析. 分析说明: 应用Γ函数收敛的性质, 可间接求解概率积分值; 利用Γ函数表示分布的密度;可表征F分布的密度函数. 这些分析及其结论对于函数的具体应用, 对于求解概率论中的一些具体实用问题具有重要的参考价值. 关键词: Γ函数; 收敛性; 概率积分; 密度函数

Abstract: Expounds the definition of Γ function and its special properties, and how to use the specific nature solution Γ function in some specific questions the probability application is discussed and analyzed. Γ function analysis and explanation: application of nature, but indirect convergent solution probability integral value; Use the density of Γ function says distribution; F distribution can be characterized the density function analysis and conclusions. These specific application for function for solving some of the specific practical problems probability has important reference value. Keywords:Gamma function;Convergence; Probability integral;Density function

相关文档