文档库 最新最全的文档下载
当前位置:文档库 › 细纱工艺

细纱工艺

细纱工艺
细纱工艺

细纱工艺

一、细纱工序的任务

1.牵伸:将粗纱牵伸到所要求的特数。

2.加捻:给牵伸后的纱条加上一定的捻度,使之具有一定的强力、弹性和光泽。

3.卷绕:卷绕成管纱,便于运输和后加工。

二、细纱工艺设计概要

在确定细纱工艺时,应考虑以下一些方面。

(1)细纱机在向大牵伸方间发展。为了加大细纱机的牵伸倍数,可采用不同的牵伸机构.改善在牵伸过程中对须条的控制,合理确定牵伸工艺,获得理想的效果。在加压形式上,目前大多采用弹簧摇架加压和气动加压。在加大细纱机的牵伸倍数、缩短前纺工序和减少并合数的同时,必须注意改进喂入半制品的质量。

(2)细纱捻度直接影响成纱的强力、捻缩、伸长、光泽和毛羽、手感,而且捻度对细纱机的产量和用电等经济指标的关系很大,因此,必须全面考虑,合理选择捻系数。

(3)在加强机械保全保养工作的基础上,保证最大限度地提高车速,选择合适的钢领、钢丝圈、筒管直径和长度等。

(4)加大细纱管纱卷装可以有效地提高劳动生产率。在确定管纱卷装时,应考虑最大限度地增加卷绕密度,但必须使络筒时发生的脱圈现象减少到最低限度,否则会降低劳动生产率。

三、细纱牵伸工艺

(一)细纱总牵伸倍数

在保证和提高产品质量的前提下,提高细纱机的牵伸倍数,在经济上获得较大的效益。目前细纱机的牵伸倍数一般在30—50倍。总牵伸倍数的能力首先决定于细纱机的机械工艺性能,但总牵伸倍数也因其他因素而变化。当所纺棉纱线密度较粗时,总牵伸能力较低;当所纺棉纱线密度较细时,总牵伸能力较高;在纺精梳棉纱时,由于粗纱均匀、结构较好、纤维伸直度好、所含短绒率也较低,牵伸倍数一般可高于同线密度非精梳棉纱;纱织物和线织物用纱的牵伸倍数也可有所不同,这是因为单纱经并线加捻后,可弥补若干条干和单强方面的缺陷,但也必须根据产品质量要求而定。总牵伸倍数过高,产品质量将恶化,棉纱条干不匀率和单强不匀率高,细纱机的断头率也增高。但总牵伸倍数过小,对产品质量未必有利,反而增加前纺的负担,造成经济上的损失。

(二)前区的牵伸工艺

国内细纱牵伸装置的前区都采用双胶圈牵伸,其工艺配置、牵伸能力与纺出细纱的质量关系密切,现将各影响的因素分述如下:

1.浮游区长度:纺制精梳棉纱或涤棉混纺纱时,由于纤维长度长,纤维整齐度好,短纤维少,浮游区长度过小会引起牵伸力剧增,带来前钳口难以满足的过高要求,反而造成不良后果。缩小浮游区长度的措施,可以采用双短胶圈,减小销子前缘的曲率半径,选用较小的钳口隔距和较薄较软的胶圈等。弹簧摆动销的浮游区长度一般可收小到12mm左右。

2.胶圈中部摩擦力界:双胶圈具有较强的中部摩擦力界布置。但同样是双胶圈牵伸,牵伸能力和成纱质量可能会有较大的差界。双胶圈使牵伸区小部摩擦力界强度增强,胶圈钳口形式、销子形式及胶圈材料的不同,其强度也有差异。双短胶圈在运行中易出现中凹现象,使摩擦力界减弱且不稳定;经改进后,使上销下压、下销下倾,改善了胶圈的中凹现象,而采用曲面阶梯下销上托,也收到同样的效果。为有效地解决胶圈工作段松弛而引起的中凹,销子下压或上托的部位一般都靠近胶圈工作段长度的正中部,这个部位至前罗拉钳口的距离接近于纤维品质长度。这样,当该部位快速纤维向前抽引时,使胶圈中部松散的须条得到一些外加压力,而加强了对纤维的控制作用。

3.胶圈钳口的摩擦力界强度:胶圈钳口一方面要有效地控制浮游纤维,另一方向又要使前纤维能顺利通过。为使牵伸区内纤维变速点分布向前罗拉钳口靠近,并保持纤维变速点稳定,除适当缩小浮游区长度和加强胶圈个部摩擦力界外,主要取决于胶圈钳口部分摩擦力界的强度及其稳定性。目前细纱机多采用的是弹性钳口。

4.罗拉加压:为了使牵伸顺利进行,罗拉钳口必须具有足够而又可靠的握持力,以适应牵伸力的变化。如果后罗拉握持力不足,纱条就会在后罗拉钳口下打滑,恶化成纱的重量不匀率,甚至会产生重量偏差。中罗拉握持力不足,既影响后牵伸区牵伸顺利进行,又影响前牵伸区牵伸纤维的正常运动,从而影响成纱的重量不匀率和条干不匀率。前罗拉握持力不足,须条就不能正确地按罗拉表面速度运动,而在罗拉钳口下打滑,造成牵伸效率低,输出条干不匀,甚至出现“硬头”等不良后果。罗拉钳口握持力的大小随罗拉加压增大而增大。

(三)后牵伸区牵伸工艺

1.罗拉握持距:罗拉握持距与喂入品的定量、纤维长度、粗纱捻系数、温湿度等因素有关。握持距的大小与牵伸力有着密切的关系。握持距大,牵伸力小;握持距小,牵伸力大。因此,在生产中所用的纤维细而长,喂人粗纱定量重、粗纱捻系数大、车间湿度高,罗拉握持距应偏大掌握,以减小牵伸力.使它与握持力相适应。反之,则偏小掌握。

2.后牵伸区牵伸倍数:提高前牵伸区牵伸能力主要是合理配置胶圈工作区的摩擦力界,使之有效地控制纤维运功,提高成纱条干均匀度。但仅有前牵仲区摩擦力界的合理布置,而没有喂入纱条的结构均勾、纤维之间有足够联系的条件,还不能充分发挥前牵伸区胶圈的牵伸作用。因此,后牵伸区牵伸主要作用是为前区牵伸区做准备,使喂入前牵伸区的须条具有结构均匀和一定的紧密度,使之与前牵伸区摩擦力界相配合而形成稳定的前牵伸区摩擦力界分布。以充分发挥胶圈控制纤维的作用,从而减少粗细节,提高成纱条干均匀度。实际使用时,后牵伸区牵伸一般以偏小掌握为宜。

3.粗纱捻系数:生产实践表明,当后牵伸区采用较小的牵伸倍数时,适当提高粗纱捻系数,对降低细纱断头,提高成纱均匀度是有利的。在双胶圈牵伸时,适当增加粗纱捻度,对胶圈控制纤维运动是有利的。捻度较多的粗纱,经后牵伸区牵伸后,捻度尚未完全解开,部分剩余捻回的纱条进入胶圈牵伸区,由于上下胶圈对纱的有效控制,纱条在胶圈间不发生翻动,消除了捻度重分布现象。这部分剩余捻回在须条牵伸时,受到张力的作用产生向心压力,增强了须条中部摩擦力界,从而有助于控制纤维运动。粗纱捻系数的具体应用,需结合喂人粗纱定量、后牵伸区牵伸倍数、中后罗拉隔距及加压、温湿度等因素确定。

四、加捻卷绕工艺

(一)锭速

细纱机锭速的选择与纺纱线密度、纤维特性、钢领直径、钢领板升降动程、捻系数等有关。随着新型细纱机的发展,锭速一般为14000~17000r/min,最高可达25000r/min。锭子的振动和磨灭常常在高速时比较突出。因为在实际生产中,常因锭子偏心、筒管动平衡不良、筒管与锭子的配合状态不良以及锭胆磨灭、锭胆弹簧吸振和调节作用不良等原因,使锭子获得较大的强迫振动,以至锭子造成磨灭。因此,筒管的质量、锭子锭胆本身的防振吸振、自调中心等结构完善与否以及筒管和锭子配合的良好与否,直接关系到锭子的速度水平。

(二)钢领的选择

钢领分普通钢领、高速钢领和锥边钢领三种。普通钢领和高速钢领又各分狭边和宽边两种。钢领直径是影响细纱机速度的主要因素。钢领直径大,在相同的锭子速度下,钢丝圈线速度增加。因此,要使钢丝圈线速度控制在一定范围内,所使用的钢领直径增大时,锭速就必须降低。由于钢领直径增大时,钢领的曲率小,且散热性好,有利于钢丝圈的运行,钢丝圈的线速度可稍许增加。

(三)钢丝圈的选择

细纱机高速后,引起断头增加,因素是多方面的。通常见到的现象:如拎头困难,钢丝圈飞脱断头,气圈波动大或炸断头等,都应该从钢丝圈和钢领的选配使用上寻找原因,大都是由于钢丝圈的重心过高或过低,或是由于纱线通道不宽畅,钢丝圈运转不稳定,或是钢丝圈磨损(包括局部的熔焊、刮擦、脆损)等原因所造成。此时应该重新选配钢丝圈的型号或重量,以至调换或修理钢领。

在纺纱工艺中,过去主要是改变钢丝圈的重量来控制气圈的大小。近年来,不仅对钢丝圈的重量,而且对钢丝圈的圈形,如重心、纱线通道、钢丝截面形状、钢丝圈的开口等都作了全面研究。一般认为,钢丝圈的选配必须符合以下两个要求。(1)钢丝圈运转平稳,并且有足够的纱线通道。(2)钢丝圈和钢领间应保持适当的摩擦力,用以控制纺纱张力及卷绕张力,维持正常的气圈形态和保持良好的管纱成形。所以,必须恰当地选择钢丝圈的重量。当然,还应考虑钢丝圈的材料、硬度以及表面状态等因素。例如钢丝圈镀铬可有效地延长钢丝圈的使用寿命。

(四)捻度

加捻的目的是使纤维相互紧密联系在一起,形成一根有一定强力的棉纱。所加捻回的多少,不仅直接影响棉纱本身的物理特性和外观,还将影响到棉纱在以后加工中及其成品的某些效应。捻度大小还直接关系到细纱机的产量、用电量和断头率等各项经济指标。

1.捻度与细纱质量的关系

(1)棉纱强力。在临界捻系数内,棉纱强力随捻系数的增大而提高,达到临界捻系数时,棉纱强力最大,超过临界捻系数时,强力反而下降。

(2)捻缩和特数。须条经加捻后,纤维自平行于细纱轴心的方向改呈螺旋线形状,各根纤维对细纱的轴心线方向的投影较原来长度为短,这种现象通常称为捻缩,即细纱的长度比原来须条的长度为短。捻度愈大,捻缩愈大。须条经加捻后,由于捻缩,棉纱的实际特数将提高。捻度愈大,捻缩率愈高,棉纱特数将提高得愈多,这在计算牵伸齿轮时,必须加以考虑。

(3)棉纱断裂伸长。在一般捻度范围内,细纱的断裂伸长随着捻度的增加而增大。这是因为捻度增加后,纤维对细纱轴线的倾斜角增大。随着断裂伸长增大,细纱

对瞬时荷重的抵抗力增大,可降低纺纱、织造过程的断头率。

(4)细纱直径。细纱直径和捻度的关系决定于径向压缩力和细纱捻缩两个因素的总和。径向压缩力随着捻度的增加而增大,因此细纱直径在开始时很快变小,随后就慢下来。细纱捻缩随着捻度的增加而逐渐增大,此时细纱直径也在增大。捻度与细纱直径及其刚性的关系对织物设计有重要的意义。例如对横贡、府绸等类织物,在纬纱方面如采用直径较粗、刚性较好的细纱时,织物的粒纹就较清晰。

(5)细纱的光泽与毛羽。细纱上所加的捻回较少,又用较重的钢丝圈时,可获得毛羽少、光泽好的外观。这是因为须条在捻度较小时,径向压缩力小,纤维易于滑动,当所用的钢丝圈较重时,纺纱张力较大,对须条中的纤维拉伸力增加,有利于纤维按细纱的轴向平行伸直,从而使毛羽减少。同时,捻度小,光线的反射好,因此,棉纱的外观较为光洁。

(6)棉纱手感软硬。捻度的大小,对棉纱及其制成品的手感有直接关系。捻度大时,手感硬爽;捻度小时,手感柔软。不同用途的纱线有不同的捻度要求。例如麻纱织物要求滑爽,棉纱的捻度就应该稍大一些;府绸织物的棉纱捻度就不宜太大,要求特殊柔软的府绸除在印染后处理上考虑外,棉纱捻度常常设计得特别小,以获得光泽好、柔软如绸的织物;针织用纱因工艺制造和成品质量均要求柔软性好,常选用较小的捻度,但要求爽滑的特细特汗衫纱,则需要较大的捻度。2.捻度对棉纱加工及其成品的影响

(1)棉纱上浆率。当其他条件不变时,捻度小,棉纱容易吸浆,捻度大,棉纱上浆率会降低。棉纱捻度不能随便变动,应当注意在以后加工过程中可能产生的后果。当然,在棉纱捻度必须改变时,可以通过调整浆纱工艺来保持一定的上浆率。织布厂在加工外购纱时,为了稳定生产,必要时,应对来纱捻度提出一定的要求。

(2)棉布条影。捻度小,有助于减少条影。这是因为捻度小时,棉纱的直径较粗,加上坯布的上浆率也将稍高,使相邻经纱之间的间隙减小,有利于减少条影。当捻度增加时,不仅上述对条影的有利因素减少,而且捻回易向细节处集中,使条影更加显著。但减小经纱捻度是有限度的,因为除了要考虑织物的风格外,还要考虑捻度降低后,强力降低,会使织造断头增多。

(3)棉布和棉纱耐磨性。习惯上,一般对棉纱和棉布的强力比较注意,在棉纱的捻度选择上,常认为强力已符合或超过要求时,可选用较小的捻系数,因为这样更有利于提高产量,节约用电和降低成本。实际上,棉布的耐磨与棉纱的捻度有很大关系。有时虽然因所用的原棉长度长、质量好,棉布的强力较高,但因棉纱上的捻度小,不耐磨。而棉布的耐磨性能对服用性能的关系很大。棉布强力好,只能说明它在撕破方面的耐用性能好,但不一定耐磨。同理,当棉纱线上捻度过小时,也会因不耐磨而在棉纱上产生小棉球。特别是不上浆织物,或用淀粉上浆率在5%以下的织物,由于纱线在综筘上摩擦严重,不仅影响织物外观,而且在织机上会造成跳花等疵点。

(4)棉布印染吸色差异。由不同捻度的棉纱织成的棉布,在印染加工时,吸色有差异,在加工深杂色时更为显著。因此,不同捻度的棉纱不能混用,否则容易造成条花或横档色差。

(5)棉纱纬缩。捻度过多,会造成纬缩,增加棉布上的外观疵点,在针织生产中会严重影响生产效率。纱线捻度的大小,决定于成品的要求,解决纬缩问题不能单从降低捻度着手,在整经机上必须注意纱线导纱部分的引出张力,在织机上要注意调节好纬纱在梭子中的引出张力。

3.捻度与经济指标的关系.

(1)细纱机的产量。捻度大小直接关系到细纱机产量。在锭速不变的条件下,捻度每减少1%,细纱机的产量即增加1%。

(2)细纱机的用电量。细纱机的用电量与捻度有关,细纱捻度每增减l%,细纱机用电即大约增减1%。

(3)细纱机的断头率。细纱捻度减小时,细纱强力相对降低,细纱断头率会上升。同时由于纺纱张力发生变化,小纱断头增加更多。但在某些情况下,例如细纱强力较高,又能适当调整钢丝圈号数,细纱断头率可能做到不增加或控制在一定范围以内。

4.加捻方向。

捻向有z捻与s捻之分,俗称反手纱和顺手纱。一般都习惯用z捻,有特殊需要的才用s捻,例如织制隐条闪光织物时,其中经纱部分即用反手纱和顺手纱间隔排列后织成。

5.捻系数的选择。

捻度对各个方面的影响如上所述,因此,在选择捻度时,必须根据成品要求,综合考虑,全面平衡。各种棉纱因用途不同,所用原棉的质量各异,产品的要求又经常在变化,因此可根据国家标准规定的范围适当选择。

五、总结

细纱工序是纺纱生产的最后一道工序,它是将粗纱纺成具有一定特数、符合质量标准或客户要求的细纱,供捻线、机织或针织等使用。细纱是纺纱非常重要的工序,棉纺厂生产规模的大小常用细纱机总锭数表示,细纱产量是决定纺纱厂各工序机器配备数量的依据;产质量水平、原料、机物料、电量等的消耗,劳动生产率、设备完好率等又反映了纺纱厂生产技术和管理水平的好坏。

1、细纱机机台的多少决定了企业的规模。

十一万纱锭以上为大一企业;

八到十万纱锭为大二企业;

五到八万纱锭为中型企业;

四万纱锭以下为小型企业。

2、细纱机产量的高低决定了企业的生产水平。

一档水平:38kg以上;

二档水平:35kg以上;

三档水平:30kg以上;

它是企业晋级的重要依据(如国家二级企业)。

3、细纱的质量好坏决定了成纱的质量。

4、细纱工序消耗的多少决定了纺纱的成本。

5、细纱千锭时的断头率是企业考核的重要指标。

年产3000吨丙烯氰(AN)合成工段换热器工艺设计1

年产3000 吨丙烯氰合成工段换热器工艺设计

目录 一、设计说明 (3) 1.1 概述 (3) 1.2丙烯腈生产技术的发展概况 (3) 1.2.1国外的发展情况 (3) 1.2.2国内的发展情况 (4) 1.3 世界X围内产品的生产厂家、产量 (6) 1.4世界X围内生产该产品的所有工艺及其分析 (7) 1.4.1环氧乙烷法 (7) 1.4.2 乙炔法 (7) 1.4.3丙烯氨氧化法 (7) 1.5设计任务 (8) 二、生产方案 (8) 2.1 工艺技术方案及原理 (8) 2.2 主要设备方案 (9) 2.2.1催化设备 (9) 2.2.2控制系统 (10) 三、物料衡算和热量衡算 (10) 3.1 生产工艺及物料流程 (10) 3.2 小时生产能力 (14) 3.3 物料衡算和热量衡算 (14) 3.3.1反应器的物料衡算和热量衡算 (14) 3.3.2废热锅炉的热量衡算 (17) 3.3.3空气饱和塔物料衡算和热量衡算 (18) 3.3.4 氨中和塔物料衡算和热量衡算 (21) 3.3.5换热器物料衡算和热量衡算 (27) 3.3.6丙烯蒸发器热量衡算 (32) 3.3.7丙烯过热器热量衡算 (33) 3.3.8氨蒸发器热量衡算 (33) 3.3.9气氨过热器 (34) 3.3.10 混合器 (34) 3.3.11 空气加热器的热量衡算 (35) 3.3.12吸收水第一冷却器 (36) 3.3.13 吸收水第二冷却器 (36) 四、主要设备的工艺计算 (37) 4.1 空气饱和塔 (37) 4.2 水吸收塔 (40) 4.3 合成反应器 (43) 4.4 废热锅炉 (45) 五、环境保护要求 (46) 5.1丙烯腈生产中的废水和废气及废渣的处理 (46) 六、参考文献 (50) 1设计说明

螺钉头冷镦机 课程设计说明书

课程设计 资料袋 学院(系、部) 2011 — 2012 学年第 2 学期课程名称机械原理课程设计指导教师职称 学生姓名专业班级学号 题目螺钉头冷镦机 成绩 起止日期 2012 年 6 月 7 日-- 2012 年 6 月 13 日 目录清单 课程设计任务书 2011—2012 学年第 2 学期

学院(系、部)专业班级 课程名称:机械原理 设计题目:螺钉头冷镦机 完成期限:自 2012 年 6 月 7 日至 2012 年 6月 21 日

指导教师(签字): 2012 年 6 月 20 日 系(教研室)主任(签字): 2012 年 6 月 20 日 机械原理课程设计 设计说明书 螺钉头冷镦机 起止日期: 2012 年___6 月 7 日至 2012 年 6 月 14 日学生姓名 班级 学号 成绩 指导教师(签字)

机械工程学院(部) 2012年 6月20 日 目录 一、螺钉头冷镦机功能及设计要求 1.设计题目 采用冷镦的方法将螺钉头镦出,可以大大减少加工时间和介绍所节省材料。冷镦螺钉头主要完成以下动作: (1)自动间歇送料 (2)截料并运料

(3)顶镦并终镦 (4)顶料 2.设计要求 2.1原始数据及设计要求 (1)每分钟冷镦螺钉头120只 (2)螺钉杆的直径D为2-4毫米,长度L为6-32毫米 (3)毛坯料最大长度为49毫米,最小长度为12毫米 (4)冷镦行程为56毫米 2.2设计方案提示 (1)自动间歇送料采用槽轮机构、凸轮机构间歇运动机构等 (2)将坯料转动切割可采用凸轮机构推进进刀 (3)将坯料用冲压机构在冲模内进行顶镦和终镦,冲压机构可采用平面四连杆或六连杆机构 (4)顶料,采用平面连杆机构等 二、工作原理和工艺动作分解 1.工艺动作的确定 根据题目分析可知,螺钉头冷镦机主要完成以下几个工艺动作: ⑴送料:将一定长度的毛坯料送入执行机构中,并且具有间歇性。 ⑵截料:将一定长度的毛坯料截断,且要快速的截断并退出。 ⑶夹紧:将截取下来的毛坯料夹住,以便接下来将要进行的冷镦,又要便于 工件的卸载。 ⑷冷镦:在一定力的冲压下将螺钉的头部镦出,冷镦机构需要具有急回特性。 2.机构的设计与比较 根据机械的使用要求、工艺性能、结构要求、空间位置和总传动比等条件选择传动系统类型,并拟定从原动机到工作机之间传动系统的方案和总体布置。

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

细纱工艺设计(改)

CD 18.2 tex 细纱工艺设计 设计步骤 ◆分析细沙机技术性能 ◆配置细沙机主要工艺参数 1.分析细纱机技术性能 本组选择的细纱机的型号是FA506,其主要技术特征见表格。 试纺纤维长度(mm)65mm以 下棉、化 纤及混 纺 锭距(mm)70 每台锭数 (锭) 384-516 牵伸形式三罗拉长短皮圈牵伸(倍)10-50 罗拉直径(mm)25 每节罗拉锭数6 罗拉加压方式 弹簧摇架加压,气压摇 架加压 最大罗拉中心距(m m)前- 后 143 纲领直径(mm)35,38,42,45 前- 中 43 升降动程(mm)155,180,205 锭子型号JWD32 锭速(r/min)12000-18000 满纱最小 气圈高度 (mm) 85 锭带张力盘单、双张力盘 捻向Z,Z或S 粗纱卷装尺寸 (mm)直径*长 度 152*406 粗纱架单层六 列吊锭 自动机构 PLC控制,中途关机适 位制动,中途落纱纲领 板自动下降适位制动, 满管纲领板自动下降适 位制动,开机低速生头, 开机前纲领板自动复

位,落纱前自动接通落纱电源,工艺参数显示 新技术 可配变 频调速, 可配竹 节纱装 置,可配 包芯纱 装置 主要制造厂 中国纺织集团经纬股份 有限公司榆次分公司 2.配置细纱技术工艺参数 (1)总牵伸与牵伸分配 纺18.2tex纱,考虑总牵伸在35倍左右;加工针织用纱,后区牵伸一般为1.04~1.30倍,通常情况下偏小为宜,本设计取1.1倍。(2)罗拉中心距 采用三罗拉长短皮圈牵伸,握持距的影响因素很多,主要以纤维品质长度而定,一般用经验公式计算。 前区中心距45 依据上销长度33mm,浮游区长度12mm,前区中心距=上销长 后区中心距58 后区中心距:机织用纱 44-58mm,针织用纱48-60mm (3)罗拉加压 皮辊加压选择137N/双锭×98N/双锭×122N/双锭。 (4)皮圈钳口隔距 隔距块厚度选择2.5mm .(5)锭速选择

年产20万吨氯碱盐酸工段工艺设计

1引言 盐酸,又称氢氯酸,是氯化氢的水溶液。亦是氯碱企业中最基本的无机酸和化工原料之一,也是氯碱厂做好氯气产品生产能力平衡的关键产品和大宗的化学合成法产品。 氯碱,即氯碱工业,也指使用饱和食盐水制氯气氢气烧碱的方法。工业上用电解饱和NaCl 溶液的方法来制取NaOH 、Cl 2和H 2,并以它们为原料生产一系列化工产品,称为氯碱工业。 工业上利用氢气与氯气合成的方法生产氯化氢,因此盐酸是氯碱工业的重要产品。 1.1盐酸概况 1.1.1物理性质 盐酸是无色液体,具有腐蚀性,是氯化氢的水溶液(工业用盐酸会因有杂质三价铁盐而略显黄色)。氯化氢分子量36.46,密度大于空气,标准状态下的密度为1.639g /L ,临界温度为51.54℃,临界压力为8314kPa 。氯化氢气体在水中的溶解度很大,随着氯化氢的分压的升高而增加,随着温度的上升而降低。 在化学上人们把盐酸和硫酸、硝酸、氢溴酸、氢碘酸、高氯酸合称为六大无机强酸,有刺激性气味。由于浓盐酸具有挥发性,挥发出的氯化氢气体与空气中的水蒸气作用形成盐酸小液滴,所以会看到酸雾。 主要成分:氯化氢,水。 熔点(℃):-114.8(纯HCl) 沸点(℃):108.6(20%恒沸溶液) 相对密度(水=1):1.20 相对蒸气密度(空气=1):1.26 饱和蒸气压(kPa):30.66(21℃) 溶解性:与水混溶,浓盐酸溶于水有热量放出。溶于碱液并与碱液发生中和反应。能与乙醇任意混溶,溶于苯。 氯化氢在101.3kPa 压力下,沸点为—85℃,凝固点为—114.2℃。 氯化氢的比热容在常压下15℃时为0.8124kJ /kg ℃,在0—1700℃范围内,可按下式计算(其误差为1.5%) 50.7557511.2505C T -=+?10 (8-1),式中,T 为绝对温度K 。 15℃时盐酸的密度与浓度之间的关系

冷镦成型工艺

紧固件冷镦成型工艺 紧固件成型工艺中,冷镦(挤)技术就是一种主要加工工艺。冷镦(挤)属于金属压力加工范畴。在生产中,在常温状态下,对金属施加外力,使金属在预定得模具内成形,这种方法通常叫冷镦。实际上,任何紧固件得成形,不单就是冷镦一种变形方式能实现得,它在冷镦过程中,除了镦粗变形外,还伴随有正、反挤压、复合挤压、冲切、辗压等多种变形方式。因此,生产中对冷镦得叫法,只就是一种习惯性叫法,更确切地说,应该叫做冷镦(挤)。冷镦(挤)得优点很多,它适用于紧固件得大批量生产。它得主要优点概括为以下几个方面: a。钢材利用率高。冷镦(挤)就是一种少、无切削加工方法,如加工杆类得六角头螺栓、圆柱头内六角螺钉,采用切削加工方法,钢材利用率仅在25%~35%,而用冷镦(挤)方法,它得利用率可高达85%~95%,仅就是料头、料尾及切六角头边得一些工艺消耗、 b、生产率高。与通用得切削加工相比,冷镦(挤)成型效率要高出几十倍以上、 c。机械性能好、冷镦(挤)方法加工得零件,由于金属纤维未被切断,因此强度要比切削加工得优越得多、 d.适于自动化生产。适宜冷镦(挤)方法生产得紧固件(也含一部分异形件),基本属于对称性零件,适合采用高速自动冷镦机生产,也就是大批量生产得主要方法。 总之,冷镦(挤)方法加工紧固件、异形件就是一种综合经济效益相当高得加工方法,就是紧固件行业中普遍采用得加工方法,也就是一种在国内、外广为利用、很有发展得先进加工方法、因此,如何充分利用、提高金属得塑性、掌握金属塑性变形得机理、研制出科学合理得紧固件冷镦(挤)加工工艺,就是本章得目得与宗旨所在。 1?金属变形得基本概念 1.1变形 变形就是指金属受力(外力、内力)时,在保持自己完整性得条件下,组成本身得细小微粒得相对位移得总与。 1.1.1 变形得种类 a.弹性变形 金属受外力作用发生了变形,当外力去掉后,恢复原来形状与尺寸得能力,这种变形称为弹性变形。 弹性得好坏就是通过弹性极限、比例极限来衡量得。 b.塑性变形 金属在外力作用下,产生永久变形(指去掉外力后不能恢复原状得变形),但金属本身得完整性又不会被破坏得变形,称为塑性变形。 塑性得好坏通过伸长率、断面收缩率、屈服极限来表示。 1.1。2塑性得评定方法 为了评定金属塑性得好坏,常用一种数值上得指标,称为塑性指标。塑性指标就是以钢材试样开始破坏瞬间得塑性变形量来表示,生产实际中,通常用以下几种方法: (1)拉伸试验 拉伸试验用伸长率δ与断面收缩率ψ来表示。表示钢材试样在单向拉伸时得塑性变形能力,就是金属材料标准中常用得塑性指标、δ与ψ得数值由以下公式确定: (公式36—1) (公式36—2)

130万吨焦化厂粗笨工段工艺的设计

1 绪论 1.1炼焦煤气中回收苯族烃的意义 炼焦化学工业是煤炭综合利用的专业。煤在炼焦时除了有75%左右变成焦炭外,还有25%左右生成各种化学品及煤气,为了便于说明将煤炭炼焦时的产品列出如下:(单位:2 /Nm g) 75%25% 250~450 80~120 30~45 8~16 6~30 2~2.5 1.0~ 2.5 8~12 0.4~0.6? ? ? ? ? ? ? ←??????→? ??????? 2水煤汽焦油汽粗苯氨 焦炭煤荒煤气硫化氢 其它硫化物(CS,噻吩等) 氰化物 萘 吡啶盐基 由此看来,从荒煤气中粗苯的含量来看,回收粗苯是十分必要的。 焦炉煤气经硫铵工段后进入粗苯工段,进行苯族烃的回收并制取粗苯,目前我国焦化工业生产的苯类产品仍占很重要的地位。 1.2粗苯的性质 粗苯是多种芳烃族和和其它多种碳氢化合物组成的复杂混合物,粗苯的主要成分是苯、二甲苯、甲苯及三甲苯等,此外,还含有一些不饱和化合物,硫化物及少量的酚类和吡啶碱类。在用洗油回收煤气中的苯族烃时,则尚有少量轻质馏分掺杂在其中。 粗苯是谈黄色的透明液体,比水轻,不溶于水。在贮存时,由于轻质不饱和化合物的氧化和聚合所形成的树脂状物质能溶于粗苯使其着色并很快地变暗。在常温下,粗苯的比重是0.891~0.92kg/L。粗苯是易燃易爆物质,闪点12℃.粗苯蒸汽在空中的浓度达到1.4~7.5%(体积)范围内时,及形成爆炸性的混合物。 粗苯质量的好坏以实验室蒸馏时180℃前蒸馏出量的百分数来确定,粗苯的沸点范围是75~200℃,180℃前溜出量越多,粗苯质量越好;在180℃后的溜出物则为溶剂油。 粗苯易燃易爆,要求工段必须严禁烟火,并对电动机加以防爆。 粗苯的组成取决于炼焦配煤的组成及炼焦产物在炭化室内热解程度,粗苯各组分的平均含量见下表(表1-1)。

冷镦锻工艺与模具设计

以GB5786-M8六角头螺栓为例来说明...冷镦锻工艺是一种少无切削金属压力加工工艺。它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。 冷镦锻工艺的特点: 1.冷镦然是在常温条件进行的。冷镦锻可使金属零件的机械性能得到改善。 2.冷镦锻工艺可以提高材料利率。它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。一般材料利用率都在85%以上,最高可达99%以上。 3.可提高生产效率。金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率。 4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。 二、冷镦锻工艺对原材料的要求 1.原材料的化学成份及机械性能应符合相关标准。 2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4-6级。 3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性。一般要求原材料的硬度在HB110~170(HRB62-88)。 4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。 5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。 6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1.5%(具体情况随各制造厂家的要求而定)。 7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。 8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加。 三、紧固件加工工艺简述 紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。这里仅针对螺纹类紧固件进行简述。 1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的。 材料改制工艺流程一般为: 酸洗→拉丝→退火→磷化皂化→拉丝→(球化磷化) 螺纹类紧固件冷加工艺流程订要有以下几种情况: 8.8级以下的螺纹紧固件产品加工流程 打头→清洗→搓螺纹→清洗→表面处理→包装 8.8级以下的螺纹紧固件产品加工流程 打头→清洗→切削→热处理→穿垫搓螺纹→清洗→表面处理→包装 8.8-10.9级螺纹紧固件产品加工流程 打头→清洗→切削→搓螺纹→热处理→清洗→表面处理→包装 10.9-12.9级螺纹紧固件产品加工流程 打头→清洗→热处理→切削→滚螺纹→清洗→无损检测→清洗→表面处理→包装 2. 螺纹类紧固件常用材料

(完整版)年产45万吨乙醇精馏工段工艺设计毕业设计

年产45万吨乙醇精馏工段工艺设 计 The Process Design of Ethanol Refining Section of 450 kt/a

目录 摘要 ....................................................................................................................... Abstract ................................................................................................................引言 .......................................................................................................................第一章绪论....................................................................................................... 1.1 国内乙醇工业的发展现状 ....................................................................................... 1.2 精馏塔的相关概述 ................................................................................................... 1.2.1精馏原理及其在化工生产上的应用..................................................................... 1.2.2精馏塔对塔设备的要求......................................................................................... 1.2.3常用板式塔类型及本设计的选型......................................................................... 1.2.4本设计所选塔的特性.............................................................................................第二章工艺流程选择与原材料的计算............................................................. 2.1 乙醇精馏工艺流程的概述 ....................................................................................... 2.2 乙醇原料的计算 ..................................................................................................... 2.2.1理论玉米秸秆葡萄糖消耗量................................................................................. 2.2.2实际玉米秸秆耗量 .................................................................................................第三章精馏设备的设计内容............................................................................. 3.1 塔板的工艺设计 ....................................................................................................... 3.1.1精馏塔全塔物料衡算............................................................................................. 3.1.2理论塔板数的确定 ................................................................................................. 3.1.3精馏塔操作工艺条件及相关物性数据的计算..................................................... 3.1.4塔板主要工艺结构尺寸的计算.............................................................................

丙烯腈合成工段的工艺设计

丙烯腈合成工段的工艺设计 前言 毕业设计是培养学生运用理论知识进行实际设计能力的重要实践教学环节,是理论与实际结合的重要连接点。在教师指导下毕业设计可以培养我们独立思考,运用所学到的基本理论并结合生产实际的知识,综合的分析和解决工程实际问题的能力。 本次毕业设计所设计的内容为年产6万吨丙烯腈合成工段的工艺设计,通过认真细听老师课堂上讲解和任务布置,我们了解到了为完成设计需要查找资料的方向,并进行了细心的查阅,掌握了基本的理论知识。对于刚进行设计的人来说,学会收集、理解、熟悉和使用各种资料,正是设计课程需要培养的重要方面,化工设计非常强调标准规范。但是并不是限制设计的创造和发展,因此遇到与设计要求有矛盾时,经过必要的手续可以放弃标准而服从设计要求。通过设计应知道如何查取数据知道如何查找资料对丙烯腈合成工段的工艺设计有了一个全新的 认识,知道如何选取相关数据参数,建立一个工程概念,知道工程和理论的区别。对于物料衡算和热量衡算、主要设备的工艺计算(反应器)等都有一个全新的认识和了解,知道如何使用手册和资料,认识工程。

一、产品的性状、用途、国内外市场情况 1.1 丙烯腈简介 丙烯腈是一种重要的有机合成单体,在丙烯产品系列中居第二,仅次于聚丙烯,是三大合成材料(纤维、橡胶、塑料)的重要化工原料,主要用来生产聚丙烯腈纤维(腈纶)、丙烯腈- 丁二烯-苯乙烯(ABS)塑料、苯乙烯(AS)塑料、丙烯酰胺等。丙烯腈在合成纤维、合成树脂等高分子材料中占有显著地位,应用前景广阔。除此之外,丙烯腈聚合物与丙烯腈衍生物也广泛应用于建材及日用品中 1.2 丙烯腈物化性质 1.2.1 丙烯腈物理性质 无色或淡黄色液体,有特殊气味,分子量:53.06 沸点:77.3℃冰点:-83.5 ℃生成热:184.2 kJ/mol(25℃) 燃烧热:1761.5 kJ/mol 聚合热:72.4 kJ/mol 蒸汽压:11.0KPa(20℃) 闪点:0℃自燃点:481℃爆炸极限:在空气中 3.0%~17%(体积)油水分配系数:辛醇/水分配系数的对数值为-0.92 毒性:剧毒,毒作用似氢氰酸溶解性:溶于丙酮、苯、四氯化碳、乙醚、乙醇等有机溶剂,微溶于水 1.2.2 丙烯腈化学性质 丙烯腈由于分子结构带有C=C双键及-CN键,所以化学性质非常活泼,可以发生加成、聚合、腈基及氢乙基化等反应。聚合反应和加成反应都发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下能自行聚合,所以在丙烯腈成品及丙烯腈生产过程中,通常要加少量阻聚剂,如对苯酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除发生自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、丙烯酰胺等发生共聚反应,由此可制得合成纤维、塑料、涂料和胶粘剂等。丙烯腈经电解加氢偶联反应可以制得已二腈。氰基反应包括水合反应、水解反应、醇解反应等,丙烯腈和水在铜催化剂存在下,可以水合制取丙烯酰胺。氰乙基化反应是丙烯腈与醇、硫醇、胺、氨、酰胺、醛、酮等反应;丙烯腈和醇反应可制取烷氧基丙胺,烷氧基丙胺是液体染料的分散剂、抗静电剂、纤维处理剂、表面活性剂、医药等的原料。丙烯腈与氨反应可制得1,3 丙二胺,该产物可用作纺织溶剂、聚氨酯溶剂和催化剂。 1.3 丙烯腈的用途

冷镦工艺

冷镦时,金属材料的变形形式和变形程度,是由材料尺寸、工件形状决定的,由此可求出材料镦锻比和镦锻率。 镦锻比主要用于工艺设计,决定工件的镦锻次数,用以对材料受力、模具寿命、产品质量进行分析的一个重要依据。 (1).镦锻比(S) 又称镦粗比,即被镦锻材料镦锻部分长度h0和直径d0的比值。即: 用镦锻比可以确定镦锻过程中技术上的难易程序,镦锻比愈小,加工愈容易;镦锻比较大时,在制定工艺时应该适当增加镦锻关键次数。镦锻比是设计工艺的重要依据。 (2).镦锻论(ε) 又称变形程度,是材料镦锻部分高度方向上的压缩量与材料镦锻部分的高度的比值。

即: 在塑性变形中,当工件变形程度超过金属材料本身许可变形程度时,在工件的侧面就会出现裂纹。 (3)冷抗日压变形程度表示方法多用断面减缩εF表示①正挤压:

二、镦锻次数的确定 确定镦锻次数,一般考虑下述因素 (1)形成头部的坯料长度与直径的比值h00/d00如果比值过大,一次镦就会产生纵向弯曲(见图3),形成头部后会出现夹层、皱皮或局部不充满,头形偏心等质量问题,这就需用增加镦粗次数来解决。即先把坯料镦成一个锥形,然后将锥形镦成所需形状(见图4) 一般根据经验可按下列数据来决定镦锻次数: 当h0/d0≤2.5时,镦锻一次; 当2.5≤h0/d0≤4.5时,镦锻二次; 当4.5≤h0/d0≤6.5时,镦锻三次;

(2)工件头部直径D与高度之比D/H 当D大而H小,这时h0/d0值可能并不大,但一次镦粗可能造成边缘开裂,就要考虑增加镦锻次数。 (3)工件表面光洁度要求较高、头形复杂的零件,对镦锻次数也有影响。,如半圆装潢螺钉,虽然h0/d0<2.5,D/F也不大,但一次镦粗达不到光洁度要求,头部形状也不易完整镦粗,所以普遍采用二次镦锻成形;冷镦凹穴六角螺栓,由于头部形状较复杂,虽然h0/d0<2.5,但一般采用三次镦锻工艺。 在整体凹模冷镦自动机工作时,镦锻头部和使杆部局部镦粗的作用力,限制了杆部的长度,过长的杆部会产生很大顶料力使自动机工作不正常。一般长度与直径d0比值: Lma/d0<9.5~10 当选用坯料直径大于螺栓杆部直径,以挤压方式加工螺栓时,确定镦锻次数不再以h0/d0作为主要依据。因为这时坯料不会发生纵向弯曲,而应考虑挤压杆部和镦粗头部的形状所需加工步骤。选用粗线材镦制螺栓,头部镦粗杆部二次缩径工艺称为冷镦挤复合工艺,亦称二次缩径工艺。此时必须考虑杆部挤压程度是否在材料许用挤压程度范围内。在总变形程度确定的情况下,工件需要的变形次数与材料性质、工模具质量、润滑条件等方面因素有关。 金属材料塑性好,一次变形程度大,挤压次数少。

年产一万吨聚苯乙烯聚合工段工艺设计

. 毕业设计 题目:年产1万吨聚苯乙烯聚合车间工艺设计学院: 专业: 姓名: 学号: 指导老师: 完成时间:

设计说明 本次设计主要是针对年产1万吨聚苯乙烯聚合车间工艺的设计。设计的内容主要包括绪论、聚苯乙烯的聚合机理、聚合工艺介绍、物料衡算、反应釜的设计、热量衡算、自动控制等几部分。本设计采用的是热引发本体聚合的生产工艺,在确定工艺流程的基础上对以下几部分进行了设计计算:物料衡算、反应釜的设计、热量衡算等。本次设计年理论产值是一万吨经计算投料每小时需投入苯乙烯1288.8kg,甲苯175.69kg,每小时生成的聚苯乙烯计算后可知,年产量为1.08万吨。符合设计的要求。釜体容积14.33m3,釜体高度 3.18m。共需反应热为24000000KJ。 关键词:热引发本体聚合聚苯乙烯苯乙烯预聚釜聚合釜

Design Description This design is mainly aimed at the annual output of 10000 tons of polymerization polystyrene workshop process design. Design content mainly includes the introduction, polystyrene introduced the polymerization mechanism, polymerization process, material balance, the design of the reaction kettle, heat balance, automatic control and so on several parts. This design USES a thermal bulk polymerization production process, the technological process is determined on the basis of calculation in design of the following sections: the design of the material balance and the reaction kettle, heat balance, etc. The design theory of value is ten thousand tons of calculating charge per hour need for styrene 1288.8 kg, 175.69 kg, toluene per hour generated polystyrene after calculation, the annual output of 10800 tons. In line with the requirements of design. The kettle body volume of 14.33 m3, body height of 3.18 m. The total heat of reaction of 24000000 kJ. . Keywords:Heat cause Bulk polymerization polystyrene styrene The performed kettle Polymerization kettle

细纱工艺

细纱工艺 一、细纱工序的任务 1.牵伸:将粗纱牵伸到所要求的特数。 2.加捻:给牵伸后的纱条加上一定的捻度,使之具有一定的强力、弹性和光泽。 3.卷绕:卷绕成管纱,便于运输和后加工。 二、细纱工艺设计概要 在确定细纱工艺时,应考虑以下一些方面。 (1)细纱机在向大牵伸方间发展。为了加大细纱机的牵伸倍数,可采用不同的牵伸机构.改善在牵伸过程中对须条的控制,合理确定牵伸工艺,获得理想的效果。在加压形式上,目前大多采用弹簧摇架加压和气动加压。在加大细纱机的牵伸倍数、缩短前纺工序和减少并合数的同时,必须注意改进喂入半制品的质量。 (2)细纱捻度直接影响成纱的强力、捻缩、伸长、光泽和毛羽、手感,而且捻度对细纱机的产量和用电等经济指标的关系很大,因此,必须全面考虑,合理选择捻系数。 (3)在加强机械保全保养工作的基础上,保证最大限度地提高车速,选择合适的钢领、钢丝圈、筒管直径和长度等。 (4)加大细纱管纱卷装可以有效地提高劳动生产率。在确定管纱卷装时,应考虑最大限度地增加卷绕密度,但必须使络筒时发生的脱圈现象减少到最低限度,否则会降低劳动生产率。 三、细纱牵伸工艺 (一)细纱总牵伸倍数 在保证和提高产品质量的前提下,提高细纱机的牵伸倍数,在经济上获得较大的效益。目前细纱机的牵伸倍数一般在30—50倍。总牵伸倍数的能力首先决定于细纱机的机械工艺性能,但总牵伸倍数也因其他因素而变化。当所纺棉纱线密度较粗时,总牵伸能力较低;当所纺棉纱线密度较细时,总牵伸能力较高;在纺精梳棉纱时,由于粗纱均匀、结构较好、纤维伸直度好、所含短绒率也较低,牵伸倍数一般可高于同线密度非精梳棉纱;纱织物和线织物用纱的牵伸倍数也可有所不同,这是因为单纱经并线加捻后,可弥补若干条干和单强方面的缺陷,但也必须根据产品质量要求而定。总牵伸倍数过高,产品质量将恶化,棉纱条干不匀率和单强不匀率高,细纱机的断头率也增高。但总牵伸倍数过小,对产品质量未必有利,反而增加前纺的负担,造成经济上的损失。 (二)前区的牵伸工艺 国内细纱牵伸装置的前区都采用双胶圈牵伸,其工艺配置、牵伸能力与纺出细纱的质量关系密切,现将各影响的因素分述如下: 1.浮游区长度:纺制精梳棉纱或涤棉混纺纱时,由于纤维长度长,纤维整齐度好,短纤维少,浮游区长度过小会引起牵伸力剧增,带来前钳口难以满足的过高要求,反而造成不良后果。缩小浮游区长度的措施,可以采用双短胶圈,减小销子前缘的曲率半径,选用较小的钳口隔距和较薄较软的胶圈等。弹簧摆动销的浮游区长度一般可收小到12mm左右。

竹节纱工艺设计

竹节纱工艺设计实例 1 捻度 1.1 前罗拉变速装置 (1)设计基纱长度和竹节纱长度占总纱长度的百分比(一个循环) 基纱长度/mm:160+320+600+450=1530 竹节纱长度/mm:75+75+75+85=310 总长度/mm:1530+310=1840 基纱占总纱长度百分比:1530/1840=83.2% 竹节纱占总纱长度百分比:310/1840=16.8% (2)计算基纱细度 设基纱号数为Xtex,则有: 1530X+3*310X=1840*36.4(3倍竹节粗度) 求得X=27.2。 (3)根据基纱细度选择所需捻系数,换算出捻度 由27.2号选用370捻系数,换算出捻度71.0捻/10cm。根据A512工艺表: 24374*Z4/Z3/Z5=71.0得Z4/Z3=76/58,Z5=45 由此选择捻度牙轮,但此时年度牙轮实际并不能调节捻度。 (4)由步进电机的高速和竹节粗度、规律计算出前罗拉平均速度 我们根据所用步进电机的实际功率确定前罗拉高速时180r/min,由3倍竹节粗度可知前罗拉低速时为180/3=60r/min。由基纱、竹节纱纺纱时间比例求前罗拉平均速度:180*83.2%+60*16.8%=160r/min (5)由前罗拉平均转速和A512工艺表确定皮带轮7.72*58/76*45*马达盘/主轴盘=160mm。选择电动机皮带盘Φ120mm,主轴盘Φ200mm (6)由主电动机和皮带盘测算出锭子速度1460*120÷200*10.11=885.6r/min 由以上推算可知,在前罗拉变速竹节装置中,纱的捻度完全取决于前罗拉高低速度和高低速纺纱所占的时间比,单纯调节捻度牙改变不了纱线捻度。在锭速不变时只有调节前罗拉车速才能改变捻度。 1.2 后罗拉变速装置 按照(2)、(3)选择捻度牙,适当比正常同支纱大一些。 2 牵伸、车速和钢丝圈 由捻度测算(2)可知基纱细度为27.2tex。总牵伸=粗纱定量/基纱细度=粗纱10m干重/基纱100m干重 由总牵伸倍数选择牵伸齿轮。 前罗拉变速装置参照步进电机功率确定,如额定电流7A的步进电机转速应不高于200r/min;后罗拉变速装置可按基纱细度正常纱时的车速来控制。如竹节36.9tex纱的细度是28.1tex,则可按正常纱的速度265r/min来生产。 根据竹节粗度和车速一般在正常纱的基础上偏重3~5号掌握。 3 结论 竹节纱是一种花式纱线,它具有节长、节距、节粗三大要素,三要素不同就要选择不同的细纱工艺,细纱工艺的是否恰当直接影响细纱生活、成纱质量,影响到织机效率、疵布和布面风格。所以,合理的细纱工艺以及选用ZNZ仿真智能型竹节纱装置是我公司竹节纱成功生产的关键。

阿司匹林的工段工艺设计流程(DOC 37页)

阿司匹林的工段工艺设计流程(DOC 37页)

阿司匹林的工段工艺设计 院别:天津大学化工学院 专业:制药工程 班别:制药一班 学号:3010207306 姓名:马建宇

目录 目录 (1) 1 概述 (3) 1.1 阿司匹林的的性质 (4) 1.1.1 理化性质 (4) 1.1.2 临床上用途 (4) 1.2 发展简史 (5) 1.3 国内外生产现状 (6) 1.3.1 市场分析 (6) 1.3.2 生产情况 (6) 1.3.3 市场情况 (7) 2 生产工艺 (7) 2.1 设计内容 (7) 2.2 生产工艺 (7) 2.3 生产工艺流程确定 (8) 2.3.1 生产工艺流程 (8) 2.3.2 工艺流程图 (8) 2.4 工艺过程说明 (8) 2.4.1 醋化岗位 (8) 2.4.2 酸洗离心洗涤 (9) 2.4.3 水洗离心洗涤 (9) 2.4.4 干燥岗位 (9) 2.4.5 回收岗位 (9) 3 物料衡算 (9) 3.1 溶解罐的物料衡算 (9) 3.2 酰化反应的物料衡算 (11) 3.3 渗滤槽的物料衡算 (15) 3.4 酸洗离心机的物料衡算 (13) 3.5 水洗离心机的物料衡算 (14)

4 能量衡算 (16) 4.1 反应罐能量衡算 (16) 4.1.1 比热容的计算 (17) 4.1.2 能量衡算 (18) (3、4部分为杨书计算) 5 主要工艺设备计算 (19) 5.1 工艺设备选型原则 (19) 5.2 工艺设备计算 (19) 5.2.1 醋化反应釜 (19) 5.2.2 夹套的计算 (20) 5.2.3 筒体的材料和壁厚 (22) 5.2.4 水压试验及其强度校核 (23) 5.2.5 选择釜体法兰 (24) 5.2.6 选用手孔、视镜、温度计、和工艺接管 (25) 5.2.7 搅拌器的设计计算 (26) 5.2.8 容器支座的选用计算 (26) 5.3 酸洗离心机 (26) 5.4 水洗离心机 (26) 5.5 振动流化床干燥器 (27) 5.6 母液蒸馏罐 (27) 5.7 循环母液反应罐 (27) 6 管道设计 (27) 6.1 管道计算 (27) 6.1.1 水杨酸的进料管道的计算 (28) 6.1.2 酸酐的进料管道的计算 (28) 6.1.3 母液的管道进料计算 (28) (5、6部分为马建宇计算) 7 车间布置设计 (29) 7.1 概述 (29)

冷镦成型工艺设计

目录 1.形状、尺寸 2. 坯料准备 3. 自动锻压机的型号 4. 凹模孔的直径 5. 滚压螺纹坯径尺寸的确定 6. 送料滚轮设计 7. 切料模 8. 送料与切料时常见的缺陷、产生的原因 9. 初镦 10. 终镦冲模 11. 镦锻凹模 12. 减径模 13. 切边 14. 常用模具材料及硬度要求 15. 冷成形工艺对原材料的要求 16. 切边时容易出现的缺陷、产生原因 17. 化学成份对材料冷成形性能的影响 18. SP.360设备参数 19. 台湾设备参数 20. 台湾搓丝机参数 21. 国内搓丝机、滚丝机参数 22. YC-420、YC-530滚丝机参数 23. 磨床参数 24. 单位换算 25. 钻床参数

形状、尺寸: 1.圆角半径――取直径的1/20~1/5。冷锻时圆角过大反而难锻造。 2.镦粗头部和法兰部尺寸――头部或法兰部体积V在2D3(D为坯 料直径)以下时用单击镦锻机,3.5D3以下时可用双击镦锻机加工,而不会产生纵向弯曲。如V为4.7D3必须经三道镦粗工序。这部分的直径D1,(镦粗后直径)对于C<0.2%的碳素钢,不经中间退火能够镦粗到2.5D。超过上述范围必须中间退火。侧面尺寸由于难以控制,公差要尽可能放宽。 3.镦粗部分的形状――头部或头下部的高度比直径大时,侧壁上向 上和向下设置2°左右的锥度,使材料填充良好。球形头部顶上允许设计成小平面。 4.挤压件坯料和挤出部分断面积之比A0/A1,即挤压比R,对S10C、 BSW1的实心、空心正挤压件,如在5~10以下,对反挤压杯形件,如在1.3~4间,能够一次成形。自由挤压件的R如在1.25~ 1.4以下,能经一道工序加工。杯形件反挤压时的冲头压力,当R 约为1.7时最小。

相关文档