文档库 最新最全的文档下载
当前位置:文档库 › 2 微带传输线负载特性矢网测量

2 微带传输线负载特性矢网测量

2 微带传输线负载特性矢网测量
2 微带传输线负载特性矢网测量

实验二、微波传输线负载特性矢量网络分析仪测量

2.1 实验目的

1. 了解基本传输线、微带线的特性。

2.熟悉网络参量测量,掌握矢量网络分析仪的基本使用方法。

2.2 实验原理

考虑一段特性阻抗为Z o 的传输线,一端接信号源,另一端则接上负载,如图所示,并。并假设此传输线无耗,且传输系数γ=jβ,则传输线上电压及电流可用下列二式表示:

U (z )=U +e ?βz +U ?e βz

I (z )=I +e ?βz ?I ?e βz

L

Z z

z ββ--+L

L Z -=0

=Z

图 传输线电路

1、负载端(z =0)处情况

电压及电流为

U =U L =U ++U ?

I =I L =I +?I ? 而Z 0I +=U +,Z 0I ?=U ?,公式可改写成 I L =10

(U +?U ?) 可得负载阻抗为

Z L =U L I L =Z 0(U ++U ?

U +?U ?

) 定义归一化负载阻抗为

z L =Z

L ???=Z L 0=1+ΓL L

其中定义 ΓL 为负载端的电压反射系数

ΓL =U ?U +=Z L ????1Z

L ???+1=|ΓL |e jφL 当Z L =Z 0或为无限长传输线时,ΓL =0,无反射波,是行波状态或匹配状态。 当Z L 为纯电抗元件或处于开路或者短路状态时,|ΓL |=1,全反射,为驻波状态。

当Z L 为其他值时,|ΓL |≤1,为行波驻波状态。

线上任意点的反射系数为

ΓL =|ΓL |e jφL ?j2βz

定义驻波比 VSWR 和回拨损耗 RL 为

VSWR =1+|ΓL |1?|ΓL |

RL =?20lg |ΓL |

2、输入端(z =?L )处情况

反射系数 Γ(z )应改成

Γ(L )=U ?e ?jβL +jφβL =U ?+e ?j2βL =ΓL e ?j2βL 输入阻抗为

Z in =Z 0Z L +jZ 0tan (βL )Z 0+jZ L tan (βL )

由上式可知:

(1)当L →∞时,Z in →Z 0。

(2)当L =λ2?时,Z in =Z L 。

(3)当L =λ4?时,Z in =Z 02Z L ?

2.3 实验设备

1、矢量网络分析仪 一台

2、微带电路 一套

2.4 实验内容

实验内容1.查阅“2附录.矢量网络分析仪操作说明.pdf ”,了解矢量网络分析仪的原理和使用方法。

实验内容2. 用矢量网络分析仪分别测量如图微带开路传输线模块的反射特性,并引入电阻负、电容和电感负载测量并分析在不同负载情况下的反射特性。

实验步骤:

1)开机

打开网络分析仪电源,系统开机后需要先预热几分钟,等待仪器内器件稳定再开始测量。观察仪器面板和测量界面(参见2附录.矢量网络分析仪操作说明的第四章快速操作入门)。

2)仪器完成预热后,首先选择测量内容。

一般先进行S参数测量。按【测量】键,根据测试的内容选择显示面板右侧的按键,如按下[S11]软按键即测量反射,[S21]软按键即测量传输。

3)选择测量格式。

按【格式】键,可选择测量结果显示的格式,如对数幅度,史密斯圆图等。(注意:只有在反射测量的情况下才能显示史密斯圆图)

4)设置频率范围

矢量网络分析仪扫频工作,默认最大扫描频率范围工作,如A V36580是300KHz扫描到3GHz。但是在具体测量的过程中,需要设置频率扫描的范围,以便观察和得到更高精度的数据。

以微带传输线模块测量为例,因为微带线设计的工作频率为2.5GHz,所以扫描频率可暂定为2GHz - 3GHz,在测量过程中也可进一步调节频率范围。

按【起始】键,然后用数字键和旁边的单位键输入测量的起始频率。此时测量界面下方显示的起始频率变为设置值。

按【终止】键,然后用数字键和旁边的单位键输入测量的终止频率。此时测量界面下方显示的终止频率变为设置值。

5)校准

测量校准是通过测量特性已知的标准来确定系统误差,然后在进行被测件测量时去除这些系统误差影响的过程,通过校准可减小测量误差,提高分析仪的测量精度。

一般情况下系统默认校准参数,为了测量更准确,每次测量之前需要连接好转接头和射频电缆线,然后校准。

以微带传输线反射测量为例来校准。

由于网络分析仪和校准件是N型接口,和射频电缆线的SMA接口不匹配,所以需要通过转接头连接。(注意:接头连接时要先对齐,然后轻轻旋转,不能

暴力操作,以免损伤接头导致测量失败!)

连接好之后,按【校准】键,出现多个校准选项,因为反射测量只需要用到矢网单个端口,为方便起见,可选择[机械校准]软按键,然后再选择[单端口(反射)]。

此时显示面板右侧出现[开路器]、[短路器]和[负载],需要用配套的校准件,依次接上开路器、短路器和匹配负载,每接完一个校准件,就按下显示面板上相应选项右侧的软按键,显示选项下会出现下划线,如[开路器],则表示按键有效。

最后按[完成单端口]软按键即完成校准,此时如果匹配负载校准件还未移除,可看到如图显示测试界面,表示此时为史密斯圆图的匹配状态。

6)测量微带传输线电路模块

在射频电缆线端接入微带开路传输线模块。然后按【光标】键打开光标,可看到如图的测试结果。旋转旋钮光标会沿着扫描曲线移动,同时可观察右上角的测试数据。

(注意:由于校准件也是N接头,微带传输线电路模块是SMA接头,所以在之前射频电缆线上校准时需要转接头连接校准件,校准完成移除转接头连接电路模块,但转接头引起的误差无法消除,所以测量曲线参数偏移。)

7)其他负载测量。

以51欧姆电阻负载为例。用防静电镊子夹取一个51欧姆的1206贴片电阻,放置在测量模块的传输线上,将电阻两端分别和传输线的开路端和大面积覆铜端连接起来,然后用镊子向下压紧使接触充分有效,即传输线负载端接入51欧姆电阻。观察此时网络分析仪测试窗口曲线的变化。

其他负载以此类推。

2.5实验报告内容要求

1、将测试结果拍照记录,比较测试结果与仿真的差异,分析原因。

2、思考题:

1)什么是S参数?

2)如果不校准,直接接入射频电缆和电路模块测量会对结果有什么影响?

3、实验的收获与体会。

4、实验的建议与意见。

说明:在文中网络分析仪前面板输入的硬键和软键的描述形式为:硬键即前面板按键,由键名加【】来描述,如【校准】;软按键为8个空白键,列在矢量网络分析仪对应的屏幕边上,文中用这些键的键名加[]来描述,如[机械校准]。

传输线特性阻抗基知识

什么叫传输线的特性阻抗?传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟, 在这里,我们主要讨论特性阻 抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传 输线的分布参数通常用单位长度的电感 L 和单位长度的电容C 以及单位长度上 的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。 分布的电容、电感和电阻是传输线本身固有的参数, 给定某一种传输线,这些参 数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输 线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就 是微分线段的特性阻抗。 卄联原抗为: Z F = ------- --------- - =— i(G + joe) 传输线可等效为: IR IL U_ IR IR IL iR IL 半耻用比巧: 乙、iR + jE)

Z E,¥=Z Z Z O Zc + Zr 叭鬲■独返 呼4阳粽 內为1是懒井14*F J9(可 产5 =卩5=爲 G + j 肚 |G + Jex 皆赖宰址骼窩时<f^lOOKHZ). 3=2n監掘借損女.3. uefg±. R、G可黑略.L 中单懂怅度线的固打电臥住为肛拉忙度蜒的H有电皐此的 当墓車迥惟艸rf^lKHZh 肛2卫片櫃水.可以耐.此时 Z0就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路下图为典型的单端(通常称为非平衡式)传输线电路。 心J 4 电路窗化 m —

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

传输线的特性阻抗分析

传输线的特性阻抗分析 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段l可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。

传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。 单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下: ?? 与迹线到参考平面的距离(介质层厚度)成正比 ?? 与迹线的线宽成反比

50欧微带线

微带线的特性阻抗计算方法: 0=60Z π≥(W h ) 这个公式近似度差些,若要求稍微更精确些的计算,可采用下列的计算公式,即 01 =601+[2(2h 2h Z W W Ln e h ππ ≥(W h )+0.94)] 1 -r r 2e 1+-110h ++22W εεε=(1) 或者使用另一组计算公式: 0068h =60n +h 4h 120=h h h +2.42-0.44+-h W Z L W Z W W W π≤≥( ),W ,W (1) 本设计中使用r ε=的介质,那么对于不同的W/h ,使用matlab 编程计算: disp('微带线阻抗计算') er=; wh=1::10 ee=(1+er)/2+(er-1)/2*(1+10*(1./wh)).^; z0=120*pi./(wh+得到WH 比为

copper: relative permittivity:1 relative permeability: conductivity:58000000 siemens/m mass density:8933 Tlines microstrip: MUSB H=1mm,微带线基板厚度为1mm Er=,微带线基板的相对介电常数为 Mur=1,微带线基板的相对磁导率为1 Cond=58000000,微带线导体的电导率为58000000 Hu=+,表示微带线的封装高度 T=,微带线的导体层厚度为(50um) TanD=,微带线的损耗角tan= Rough=0mm,微带线表面粗糙度为0mm 几种方法: (1)经验公式法 (2)手动设置法 (3)计算法,需要ADS的计算控件 (4)优化法 使用经验公式计算得到得到WH比为,实际反射系数很大,S11<-12dB,由圆图可见,微带线特性阻抗偏大。其坑爹程度令人发指。 手调WH,当WH=时,S11<-40dB,可以求出反射系数为,反射能量为万分之一,满足设计要求。 使用ADS自带计算微带线阻抗,可以得到WH为时,分析得到微带线特性阻抗为欧。

实验1 理想微带传输线特性阻抗模拟

實驗一理想微帶傳輸線特性阻抗模擬 ㄧ、原理說明 一般常見的電子電路都是以集總模式(lumped mode)來描述電路的行為,主要的假設是電路的工作波長遠大於實際電路尺度的大小,在頻率很低時可以得到相當正確的近似。然而電路工作頻率變高時,也就是說工作波長與實際電路尺度大小差不多時,以集總模式來描述電路的行為其誤差相當大,因此必須以分散式模式(distributed mode )來考慮電路的行為,分散式模式的做法是將電路分成很小的片段,每一小片段可用電阻、電容及電感代表小片段的電路的行為,將每一小片段整合起來即為整個電路的行為。圖1.1為傳輸線的等效電路圖,根據此圖可列出電壓在x+ x與x處的電壓差方程式,配合 圖1.1 傳輸線的等效電路圖

RLCG 元件可得出公式(1-1),同理可得出電流方程式(1-2)。 兩邊同時除以?x ,可得公式(1-3)及(1-4) 兩邊對x 微分,得公式(1-5)及(1-6) 將公式(1-4)及(1-6)代入公式(1-5),得 以極座標向量(phasor notation)表示電壓電流 可得到頻率領域的表示式 (,)(,)(,)(,)()(,)() (1-1) (,) (,)(,)(,)()(,)() (1-2) i x t v x x t v x t v x t R x i x t L x t v x x t i x x t i x t i x t G x v x x t C x t ?+?-=?=-?-???+?+?-=?=-?+?-??(,)(,)(,) (1-3)(,)(,) (,) v x t i x t Ri x t L x t i x t v x t G v x t C x t ??=--????=--?? (1-4) 2 2 22 2 2 (,)(,)(,) (1-5)(,)(,)(,) v x t i x t i x t R L x x x t i x t v x t v x t G C t x t t ???=--???????=--???? (1-6) 2 2 22 2 2 2 2 (,)(,)(,)()(,)0 (1-7) (,)(,)(,)() (,)0 (1-8) v x t v x t v x t RC LG LC RG v x t x t t i x t i x t i x t RC LG LC RG i x t x t t ???-+--=??????-+--=???(,)Re[()] (1-9) (,)Re[()] jwt jwt v x t V x e i x t I x e == (1-10)

传输线基本公式2008.1.12

传输线基本公式 1、电报方程 对于一段均匀传输线,在有关书上可查到,等效电路如下图所示。 Z i V1V2 Z2 等效电路 根据线的微分参数可列出经典的电报方程,解出的结果为: V1= 2 1(V 2 +I2Z0)eγχ+ 2 1(V 2 -I2Z0)e-γχ I1= Z 2 1(V 2 +I2Z0)eγχ-0 Z 2 1(V 2 -I2Z0) e-γχ 式中,x是传输线上距离的坐标,它由负载端起算,即负载端的x为0。 γ为传输线的传输系统,γ=α+jβ,α为衰减常数,β为相移常数。无耗时γ=jβ。一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样做实际上是可行的,真要计算衰减时,再把衰减常数加上。 Z0为传输线的特性阻抗。 Z i为源的输出阻抗(或源内阻),通常假定亦为Z0;若不是Z0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

上述两式中,前一项x 越大值越大,相位也越领先,即为入射波。后一项x 越大值越小,相位也越落后,即为反射波。 由于一般只对线上的电压、电流的空间分布感兴趣,因此上式中没有写时 间因子e j ωt (下同)。 2、无耗线上的电压电流分布 上面式(1.1)和式(1.2)中,下标2为负载端,下标1为源端,而x 可为任意值,那么V 1、I 1可以泛指线上任意一点的电压与电流,因此下面将V 1、I 1的下标1字省掉。 V=2 1(V 2+I 2Z 0)e j β χ +2 1(V 2-I 2Z 0) e -j βχ =2 1(V 2+I 2Z 0)e j β χ {1+Γ e -j (2β χ-ψ )} I=2 1{ (V 2+I 2Z 0)/ Z 0}e j β χ {1-Γ e -j (2β χ-ψ )} 式中,发射系数Γ=Γ∠ψ= 22022Z I V Z I V +-= 202Z Z Z Z +- Γ ≤1,要想反射为零,只要Z 2 =Z 0即成。 上式中,首项不是x 的函数,而e j β χ 为相位因子,不影响幅度。只是末项 影响幅度分布。 现在让我们看看电压分布: V x =V(1+ Γ e -j (2β χ-ψ ) 显然:2βx -ψ=0或2Nπ时,电压最大,V MAX =V (1+Γ) 2βx -ψ=π或(2N-1)π时,电压最小,V MIN =V (1-Γ)

传输线特性阻抗基知识

什么叫传输线的特性阻抗? 传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。 传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。

单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下:与迹线到参考平面的距离(介质层厚度)成正比 与迹线的线宽成反比 与迹线的高度成反比 与介电常数的平方根成反比 单端传输线特性阻抗的范围通常情况下为25Ω至120Ω,几个较常用的值是28Ω、33Ω、50Ω、52.5Ω、58Ω、65Ω、75Ω。 差分传输线路 下图为典型的差分(通常称为平衡式)传输线电路。 差分传输线适用于对噪声隔离和改善时钟频率要求较高的情况。在差分模式中,传输线路是成对布放的,两条线路上传输的信号电压、电流值相等,但相位(极性)相反。由于信号在一对迹线中进行传输,在其中一条迹线上出现的任何电子噪声与另一条迹线上出现的电子噪声完全相同(并非反向),两条线路之间生成的场将相互抵消,因此与单端非平衡式传输线相比,只产生极小的地线回路噪声,并且减少了外部噪声的问题。 这是一个平衡线路的示例-- 信号线和回路线的几何尺寸相同。平衡式传输线不会对其他线路产生噪声,同时也不易受系统其他线路产生的噪声的干扰。 差分模式传输线的特性阻抗(也就是通常所说的差分阻抗)指的是差分传输线中两条导线之间的阻抗,它与差分传输线中每条导线对地的特性阻抗是有区别的,

特征阻抗那点事

特征阻抗那点事 关键词:特征阻抗 PCB 电缆 传输线的特征阻抗,又称为特性阻抗,是我们在进行高速电路设计的时候经常会提到的一个概念。但是很多人对这个概念并不理解,有时还会错误的理解为直流阻抗。弄明白这个概念对我们更好的进行高速电路设计很有必要。高速电路的很多设计规则都和特征阻抗有关。 要理解特征阻抗的概念,我们先要弄清楚什么是传输线。简单的说,传输线就是能够传输信号的连接线。电源线,视频线,USB连接线,PCB板上的走线,都可以称为传输线。如果传输线上传输的信号是低频信号,假设是1KHz,那么信号的波长就是300公里(假设信号速度为光速),即使传输线的长度有1米长,相对于信号来说还是很短的,对信号来说传输线可以看成短路,传输线对信号的影响是很小的。但是对于高速信号来说,假设信号频率提高到300MHz,信号波长就减小到1米,这时候1米的传输线和信号的波长已经完全可以比较,在传输线上就会存在波动效应,在传输线上的不同点上的电压电流就会不同。在这种情况下,我们就不能忽略传输线对信号造成的影响。传输线相对信号来说就是一段长线,我们要用长线传输里的理论来解决问题。 特征阻抗就属于长线传输中的一个概念。信号在传输线中传输的过程中,在信号到达的一个点,传输线和参考平面之间会形成电场,由于电场的存在,会产生一个瞬间的小电流,这个小电流在传输线中的每一点都存在。同时信号也存在一定的电压,这样在信号传输过程中,传输线的每一点就会等效成一个电阻,这个电阻就是我们提到的传输线的特征阻抗。这里一定要区分一个概念,就是特征阻抗是对于交流信号(或者说高频信号)来说的,对于直流信号,传输线有一个直流阻抗,这个值可能会远小于传输线的特征阻抗。一旦传输线的特性确定了(线宽,与参考平面的距离等特性),那么传输线的特征阻抗就确定了.此处省略一万字的公式推导过程,直接给出PCB走线的特征阻抗计算公式: 其中L是单位长度传输线的固有电感,C是单位长度传输线的固有电容。肯定有人会问,什么是单位长度?是1cm,1mm,还是1mil?其实这里的单位长度是多少并不重要。单位越小精度越高,学过微积分对这个概念应该就更清楚了。通过这个简单的计算公式我们能看出来,要改变传输线的特征阻抗就要改变单位长度传输线的固有电感和电容。这样我们就能更好的理解影响传输线特征阻抗的几个因素: a. 线宽与特征阻抗成反比。增加线宽相当于增大电容,也就减小了特征阻抗,反之亦然 b. 介电常数与特征阻抗成反比。同样提高介电常数相当于增大电容

微波传输线ADS仿真与负载特性测量

本科实验报告 课程名称:电磁场与微波实验 姓名:李昂诺 学院:信息与电子工程学院系: 专业:电子科学与技术 学号:3130000766 指导教师:王子立 2015年6 月8 日

实验报告 课程名称:___电磁场与微波实验________________指导老师:___王子立________成绩:__________________ 实验名称:____微波传输线 ADS 仿真与负载特性测量__实验类型:___设计实验___同组学生姓名:__韩天啸___ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 了解基本传输线、微带线的特性。 2.熟悉 ADS 软件的基本使用方法。 3.利用 ADS 软件进行基本传输线和微带线的电路设计和仿真。 4.掌握矢量网络分析仪测量的方法。 二、实验内容和原理 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如图所示,假设此传输线无耗,且传输系数γ= j β,则传输线上电压及电流可用下列二式表示: ()z z U z U e U e ββ+--=+ ()z z I z I e I e ββ+--=- 专业:_电子科学与技术_ 姓名:___李昂诺_______ 学号:___3130000766___ 日期:___2015.6.10_____ 地点:__东四 -227______

1、负载端(z = 0)处情况 可得负载阻抗为 0()L L L U U U Z Z I U U +- +- +==- 定义归一化负载阻抗为011L L L L Z z Z +Γ= = -Γ 其中定义L Γ为负载端的电压反射系数1 ||1 L j L L L L z e z ?-Γ= =Γ+ 当0L Z Z =或为无限长传输线时,0L Γ=,无反射波,是行波状态或匹配状态。 当L Z 为纯电抗元件或处于开路或者短路状态时,||1L Γ=,全反射,为驻波状态。 当L Z 为其他值时,||1L Γ≤,为行波驻波状态。 线上任意点的反射系数为2||L j j z L L e ?β-Γ=Γ 2、 输入端(z = ?L )处情况 反射系数()z Γ应改成2()L j L L e β-Γ=Γ 输入阻抗为00 0tan() tan() L in L Z jZ L Z Z Z jZ L ββ+=+ 由上式可知: ( 1)当L →∞时, 0in Z Z →。 ( 2)当L = λ?2时, in L Z Z =。 ( 3)当L = λ?4时, 2 0in L Z Z Z =。 三、主要仪器设备 1、装有 ADS 软件的电脑 一台 2、矢量网络分析仪 一台 3、微带电路 一套

关于天线传输馈线的基本知识

关于天线传输馈线的基本知识 1、传输线的特性阻抗 无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。同轴电缆的特性阻抗的计算公式为:Z0=〔60/√εr〕×Log ( D/d ) [ 欧] 式中:D 为同轴电缆外导体铜网内径; d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。通常Z0 = 50 欧,也有Z0 = 75 欧的。 由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关. 2、馈线的衰减系数 信号在馈线里传输,除有导体的电阻性

损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。因此,应合理布局尽量缩短馈线长度。 单位长度产生的损耗的大小用衰减系数β 表示,其单位为dB / m (分贝/米),电缆技术说明书上的单位大都用dB / 100 m(分贝/百米)。 设输入到馈线的功率为P1 ,从长度为L(m )的馈线输出的功率为P2 ,传输损耗TL可表示为:TL =10 ×Lg ( P1 /P2 ) ( dB ) 衰减系数为:β =TL / L ( dB / m ) 例如,NOKIA 7 / 8英寸低耗电缆,900MHz 时衰减系数为β =4.1 dB / 100 m ,也可写成β =3 dB / 73 m ,也就是说,频率为900MHz 的信号功率,每经过73 m 长的这种电缆时,功

率要少一半。 而普通的非低耗电缆,例如, SYV-9-50-1,900MHz 时衰减系数为 β =20.1 dB / 100 m ,也可写成β = 3 dB / 15 m ,也就是说,频率为900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半。 3、匹配概念 什么叫匹配?简单地说,馈线终端所接 负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。匹配时, 馈线上只存在传向终端负载的入射波, 而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天 线取得全部信号功率。当天线阻抗为50欧时,与50欧的电缆是匹配的,而当天线阻抗为80欧时,与50欧的电缆是不匹配的。如果天线振子直径较粗,天线 输入阻抗随频率的变化较小,容易和馈

高速PCB设计的传输线及其特性阻抗

高速PCB设计的传输线及其特性阻抗 一. 什么是传输线 我们经常会用到传输线这一术语,可是讲到其具体定义时,很多工程师都是欲言又止,似懂非懂…… 我们知道,传输线用于将信号从一端传输到另一端,下图说明了所有传输线的一般特征 所以,可以这样理解:传输线由两条一定长度导线组成,一条是信号传播路径,另一条是信号返回路径。 1. 分析传输线,一定要联系返回路径,单根的导体并不能成为传输线 2.和电阻,电容,电感一样,传输线也是一种理想的电路元件,但是其特性却大不相同,用于仿真效果较好,但电路概念却比较复杂 3.传输线有两个非常重要的特征:特性阻抗和时延 二. 传输线分类 经常用到的双绞线,同轴电缆都是传输线

对于PCB来说,常有微带线和带状线两种 微带线通常指PCB外层的走线,并且只有一个参考平面 带状线是指介于两个参考平面之间的内层走线 下图为微带线和带状线示意图及其阻抗计算公式,可以从这个公式中看出,阻抗和那些因素有关,但是实际工程应用中,都是用一些专业软件进行阻抗计算,比如Polar

三. 传输线阻抗 先来澄清几个概念,经常会看到阻抗,特性阻抗,瞬时阻抗,严格来讲,他们是有区别的,但是万变不离其宗,它们仍然是阻抗的基本定义. 将传输线始端的输入阻抗简称为阻抗 将信号随时遇到的及时阻抗称为瞬时阻抗 如果传输线具有恒定不变的瞬时阻抗,就称之为传输线的特性阻抗 特性阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,这是影响传输线电路中信号完整性的一个主要因素 如果没有特殊说明,一般用特性阻抗来统称传输线阻抗

简单的来说,传输线阻抗可以用上面的公式来说明,但如果往深里说,我们就要分析信号在传输线中的行为,Eric Bogatin 博士在他的著作《Signal Integrity :Simplified》里面有很详细的说明,读者可以找原著来进行细究,这里只做一个简述: *以下分析收自与网络资料网际星空网站oldfriend 老师的作品* 当讯号沿着一条具有同样横截面的传输线移动时,假定把1V的阶梯波(step function)加到这条传输线中(如把1V的电池连接到传输线的发送端,电压跨在发送线和回路之间),一旦连接,这个电压阶梯波沿着该线以光速传播,它的速度通常约为6英寸/ns。这个信号是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。 讯号能量在第一个0.01n s前进了0.06英寸,这时发送线路有多余的正电荷(由电池提供),而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1V电压差,且这两个导体间也形成了一个电容器。在下一个0.01n s中,又要将下一段0.06英寸传输线的电压从0 调整到1V,这必须再加一些正电荷到发送线路,与加一些负电荷到接收线路。每移动0.06英寸,必须把更多的正电荷加到发送线路,而把更多的负电荷加到回路。每隔0.01n s,必须对传输线路的另外一段进行充电,然后信号开始沿着这一段传播。电荷来自传输线前端的电池,当讯号沿着这条线移动时,就给传输线的连续部份充电,因而在发送线路和回路之间形成了1V的电压差。每前进0.01ns,就从电池中获得一些电荷(±Q),恒定的时间间隔(±t)内从电池中流出的恒定电量(±Q)就是一种恒定电流。流入回路的负电流实际上与流出的正电流相等,而且正好在信号波的前端,交流电流藉由上、下线路组成的电容,结束整个循环过程。

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

什么是特征阻抗

高速设计领域一个越来越重要也是越来越为设计工程师所关注议题就是受控阻抗的电路板设计以及电路板上互联线的特征阻抗。然而,对于非电子的设计工程师来说,这也是一个最容易混淆也最不直观的问题。甚至很多的电子设计工程师对此也同样感到困惑。这篇资料将对特征阻抗作一个简要而直观的介绍,希望帮助大家了解传输线最基本的品质。什么是传输线?什么是传输线?两个具有一定长度的导体就构成传输线。其中的一个导体成为信号传播的通道,而另外的一个导体则构成信号的返回通路(在这里我们提到信号的返回通路,实际上就是大家通常理解的地,但是为了叙述的方便,暂且忘掉地这一概念。)。在一个多层的电路板设计中,每一个PCB互联线都构成传输线中的一个导体,该传输线都将临近的参考平面作为传输线的的第二个导体或者叫做信号的返回通路。什么样的PCB互联线是一个好的传输线呢?通常如果在同一个PCB互联线上特征阻抗处处保持一致,这样的传输线就成为高质量的传输线。什么样的电路板叫做受控阻抗的电路板?受控阻抗的电路板是指PCB板上所有传输线的特征阻抗符合统一的目标规范,通常是指所有传输线的特征阻抗的值在25Ω到70Ω之间。从信号的角度来考察考虑特征阻抗最行之有效的办法是考察信号沿着传输线传播时信号本身看到了什么。为简化问题的讨论起见,假定传输线为微波传输带(microstrip)类型,并且信号沿传输线传播时传输线各处的横断面保持一致。给该传输线加入幅度为1V 的阶跃信号。阶跃信号是一个1V的电池,由前端接入,分别连接在信号线和返回通路之间。在接通电池的瞬间,信号电压波形将以光速在电介质中行进,速度通常约为6英寸/ns(信号为什么行进如此快速,而不是接近电子传播的速度大约1cm/s,这是另外一个话题,这里不做进一步介绍)。当然在这里信号仍然具有常规的定义,信号定义为信号线与返回通路上的电压差,总是通过测量传输线上任何一点与之临近的信号返回通路之间的电压差值来获得。信号沿传输线方向以6英寸/ns的速度向前传输。在传输的过程中信号会遇到什么样的情况呢?在最开始的10ps时间间隔内,信号沿传输线方向行进了0.06英寸的距离。假定锁定时间在这一时刻,来考虑传输线发生的情况。在行进的这一段距离上,信号的传输为这一段传输线和相应临近的信号返回通道之间建立起了稳定的幅度为1V的常量信号。这意味着在行进的这一段传输线和对应的返回路径上已经积聚起了额外的正电荷和额外的负电荷来建立这一稳定的电压。也正是这些电荷的差异在这两个导体之间建立并维持了一个稳定的1 V 电压信号,而导体之间稳定的电压信号就为两个导体之间建立了一个电容。传输线上位于这一时刻信号波前后面的传输线段并不清楚会有信号要传播过来,因而仍然维持信号线同返回通路之间的电压为零。在接下来的10ps时间间隔内,信号又会沿传输线行进一定的距离,信号继续传播的结果是又会在另一段长度为0.06英寸的传输线段同对应的信号返回通路之间的建立起1V的信号电压。而为了做到这一点,必须为信号线注入一定量的正电荷,同时为信号的返回通路注入同等数量的负电荷。信号沿传输线每传播0.06英寸的长度,都会有更多的正电荷注入该信号线,也会有更多的负电荷注入信号返回通路。每隔10ps时间间隔,就会有另外一段传输线被充电到1 V,同时信号也会沿传输线方向继续向前传播。这些电荷从何而来?答案是来自信号源,也就是我们用来提供阶跃信号、连接在传输线前端的电池。随着信号在传输线上的传播,信号不断地为传播经过的传输线段充电,确保信号传输过程中所到之处信号线与返回路径之间建立并维持起1 V的电压。每隔10ps时间间隔,信号会在传输线上传播一定的距离,并且从电源系统中汲取一定数量的电荷δQ。电池在一段时间间隔δt内的向外提供一定数量的电荷δQ,就形成了恒定的信号电流。正的电流会从电池流入信号线,而与此同时同样大小的负电流会流经信号的返回路径。流经信号返回通路的负电流同流入信号线的正电流大小完全一致。而且,就在信号波前的位置,AC电流流经由信号线和信号返回通路构成的电容,完成了信号环路。传输线的特征阻抗从电池的角度来看,一旦设计工程师将电池的引线连入传输线的前端,就总有一个常量值的电流从电池中流出,并且保持电压信号的稳定不变。也许有人会问,是什么样的电子元器件具有这样的行为?加入恒

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

2 微带传输线负载特性矢网测量

实验二、微波传输线负载特性矢量网络分析仪测量 2.1 实验目的 1. 了解基本传输线、微带线的特性。 2.熟悉网络参量测量,掌握矢量网络分析仪的基本使用方法。 2.2 实验原理 考虑一段特性阻抗为Z o 的传输线,一端接信号源,另一端则接上负载,如图所示,并。并假设此传输线无耗,且传输系数γ=jβ,则传输线上电压及电流可用下列二式表示: U (z )=U +e ?βz +U ?e βz I (z )=I +e ?βz ?I ?e βz L Z z z ββ--+L L Z -=0 =Z 图 传输线电路 1、负载端(z =0)处情况 电压及电流为 U =U L =U ++U ? I =I L =I +?I ? 而Z 0I +=U +,Z 0I ?=U ?,公式可改写成 I L =10 (U +?U ?) 可得负载阻抗为 Z L =U L I L =Z 0(U ++U ? U +?U ? ) 定义归一化负载阻抗为 z L =Z L ???=Z L 0=1+ΓL L 其中定义 ΓL 为负载端的电压反射系数

ΓL =U ?U +=Z L ????1Z L ???+1=|ΓL |e jφL 当Z L =Z 0或为无限长传输线时,ΓL =0,无反射波,是行波状态或匹配状态。 当Z L 为纯电抗元件或处于开路或者短路状态时,|ΓL |=1,全反射,为驻波状态。 当Z L 为其他值时,|ΓL |≤1,为行波驻波状态。 线上任意点的反射系数为 ΓL =|ΓL |e jφL ?j2βz 定义驻波比 VSWR 和回拨损耗 RL 为 VSWR =1+|ΓL |1?|ΓL | RL =?20lg |ΓL | 2、输入端(z =?L )处情况 反射系数 Γ(z )应改成 Γ(L )=U ?e ?jβL +jφβL =U ?+e ?j2βL =ΓL e ?j2βL 输入阻抗为 Z in =Z 0Z L +jZ 0tan (βL )Z 0+jZ L tan (βL ) 由上式可知: (1)当L →∞时,Z in →Z 0。 (2)当L =λ2?时,Z in =Z L 。 (3)当L =λ4?时,Z in =Z 02Z L ? 2.3 实验设备 1、矢量网络分析仪 一台 2、微带电路 一套 2.4 实验内容 实验内容1.查阅“2附录.矢量网络分析仪操作说明.pdf ”,了解矢量网络分析仪的原理和使用方法。 实验内容2. 用矢量网络分析仪分别测量如图微带开路传输线模块的反射特性,并引入电阻负、电容和电感负载测量并分析在不同负载情况下的反射特性。

特征阻抗

特征阻抗,又称为特性阻抗,它是在甚高频、超高频范围的概念。那什么是特征阻抗呢?在信号的传输过程中,在信号沿到达的地方,信号线和参考平面(参考平面指的是电源平面或者是地平面)之间由于电场的建立,就会产生一个瞬间的电流,如果传输线是各向同性的,那么只要信号在传输,就会始终存在一个电流I,而如果信号的输出电平为V,则在信号传输过程中传输线就会等效成一个电阻,大小为V/I,我们把这个等效的电阻称为传输线的特征阻抗(Characteristic Impedance)Z. 那么这个定义如何去理解?首先,必须明白特征阻抗跟线的阻抗的区别,特征阻抗属于传输线的概念,指的是传输线上点的阻抗,而线的阻抗(一般称为电阻)是对与直流而言的;其次传输线又分为微带线和带状线,微带线是指只有一个参考平面的传输线,带状线是指有两个参考平面的传输线;最后特征阻抗是对交流信号而言,对直流信号来说传输线的电阻并不是Z,而是远远小于这个 值(也就是所说的直流电阻)。 特征阻抗的意义在于什么呢?信号在传输的过程中,如果传输线上的特征阻抗发生变化,信号就会在阻抗不连续的结点上产生反 射,后果就是EMI有问题,信号不完整。 特征阻抗的计算比较复杂,一般是采用专门的就算软件。业界用的比较多的Polar Si系列(一般的PCB公司采用) 1.单端特征阻抗的计算 参数说明如下(单位是mil,特殊参数取标准常数): H1:是指示顶层的厚度,也就是说第二层到第一层的距离,一般来说这个有PCB公司决定,4mil是用的比较多的。4点多mil 都是可以的。 Er1:是指板材的介质常数,对于FR-4来说,一般为4.2-4.4。 T1:是指铜薄的厚度,一般用mil来表示。定义是这样的,一OZ(盎司)的铜铺在一平方英寸所形成的铜薄厚度。它们的具体 转化如下 OZ 1/4 1/2 1 2 3 4 mil 0.36 0.7 1.4 2.8 4.2 5.6 W1和W2:是指传输线的线宽,而它为什么不一样呢?因为在PCB的制作过程中是从上到下腐蚀的,因此有梯形的感觉,一般来 说取W2=W-0.5,W1=2+0.5(W是原始传输线的宽度)。 CEr:是指绿漆的介电常数,一般来说取3.5-3.8。 C1和C2:是指绿漆的厚度,一般取1左右。 参数都明白意思了,要计算特征阻抗那就是很容易的一件事情了。 2.差分特征阻抗的计算 差分特征阻抗是指差分线的差分阻抗,计算的方法跟单端的基本上一样,只不过多了一线间距离S。 3.常用的传输线特征阻抗 差分阻抗单端阻抗 HDMI 100 ohms+/-10% 50 ohms+/-10% USB 90 ohms+/-10% 42-78 ohms+/-10% DDR NC 60 ohms+/-10%

传输线s参数

SI-PI講堂\ S-parameter 更新日期: 09/15/2012 01:47:40 1.简介:从时域与频域评估传输线特性 2.看一条线的特性:S11、S21 3.看两条线的相互关系:S31、S41 4.看不同模式的讯号成份:SDD、SCC、SCD、SD C 5.以史密斯图观察S参数 6.仿真范例 -- 地回路有没有slot对S11, S21的影响 -- 有效介电系数如何取得 1.简介:从时域与频域评估传输线特性 良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。 S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示。

S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为VNA port也是50奥姆终端 2.看一条线的特性:S11、S21 如下图所示,假设port1是讯号输入端,port2是讯号输出端 S11表示在port 1量反射损失(return loss),主要是观测发送端看到多大的的讯号反射成份;值越接近0越好(越低越好,一般-25~-40dB),表示传递过程反射(reflection)越小,也称为输入反射系数(Input Reflection Coefficient)。 S21表示讯号从port 1传递到port 2过程的馈入损失(insertion loss),主要是观测接收端的讯号剩多少;值越接近1越好(0dB),表示传递过程损失(loss)越小,也称为顺向穿透系数(Forward Transmission Coefficient)。

相关文档