文档库 最新最全的文档下载
当前位置:文档库 › 离子交换技术与海水淡化

离子交换技术与海水淡化

离子交换技术与海水淡化
离子交换技术与海水淡化

目录

摘要 (2)

Abstract (2)

关键词 (2)

一、海水淡化的背景 (2)

九海水淡化的原因 (2)

2.............................................................................................................................. 海水的成分 (3)

二、海水淡化的技术: (3)

1?海水的预处理 (3)

2.反渗透 (4)

3.电渗析 (4)

4.蒸馆法 (4)

5.海水淡化的建设周期 (4)

三、离子交换海水的淡化技术: (5)

[.淡化原理 (5)

2.离子交换剂直接淡化海水 (5)

3.离子交换剂用于淡化海水的预处理 (5)

3.离子交换剂用于淡化海水的后处理 (6)

4.离子交换技术淡化海水的特点 (6)

5.离子交换技术淡化海水的发展前景 (6)

四、结语 (7)

五、参考文献: (7)

摘要

随着我国经济的快速发展,用水量急剧增加,沿海地区由于经济发达人口众多,对水资源的需求量更大,水资源严重匮乏,海水淡化将成为沿海城市解决水危机的重要途径。离子交换法淡化海水具有处理彻底、成本低、可再生等优势, 已在海水淡化预处理、后处理、浓海水提取化学元素等方面得到广泛的应用,具有广阔的前景。

Abstract

With the rapid development of economy in our country, water consumption has increased chamatically, due to the economic developed coastal areas with a large population, the greater demand for water resources, water resources are scarce, desalination will become the important way to solve the problem of water crisis in coastal cities.Method of ion exchange desalinatioii has complete processing, low cost and renewable advantages, has been in seawater desalination pretreatment, aft erti eatm ent, strong water extraction widely used in the chemical elements and so OIL has a broad prospect?

关键词

海水淡化;离子交换技术应用;离子交换技术海水淡化前景

一、海水淡化的背景

1?海水淡化的原因

水资源是基础性然资源和战略性经济资源,是经济社会发展的命脉,淡水资源短缺己成为制约我国经济和社会可持续发展的重要因素Z—。海水利用己成为世界许多临海国家新水源开发的战略决策,也是缓解我国水资源短缺、促进经济可持续发展的重要途径。

为解决淡水资源的供需矛盾,人们的目光早已转向相当于全球淡水37.6倍储量的海水。于是,海水和微咸水淡化被视为开发新水源、解决淡水资源危机的基本途径。rti 于物理方法耗能多、造价高,只适合于经济发达国家,适用性有限。为此,有人研究开发了用离子交换法进行海水淡化的新技术,并取得了成功。表1为淡化综合水价与沿海自來水价的比较:

表1:

从上表可以看出,到了2010年,海水淡化的水价,比居民自来水价比居民自来水价

和工业自來水价都要低。

2?海水的成分

海水是一种非常复杂的多组分水溶液,海水中各种元素都以一定的物理化学形态存在。海水中溶解有各种盐分,海水盐分的成因是一个复杂的问题,与地球的起源、海洋的形成及演变过程有关。一般认为盐分主要來源于地壳岩石风华产物及火山喷出物。另外,全球的河流每年向海洋输送5.5X1015g溶解盐,这也是海水盐分来源之一。从其来源看,海水中似乎应该含有地球上的所有元素,但是,由于分析水平所限,已经测定的仅有80多种。

下表为典型海水水质中心表;

表2:

二、海水淡化的技术:

海水的淡化技术主要是将海水脱盐产生淡水,以用來实现水资源的利用,增加淡水量,全球的海水淡化有很多种方法,有反渗透法、低多效、多级闪蒸、电渗析法、压汽蒸憎、露点蒸发法、水电联产、热膜联产以及利用核能、太阳能、风能、潮汐能海水淡化技术等等,以及微滤、超滤、纳滤等多项预处理和后处理工艺。在这里我们主要介绍反渗透、电渗析和蒸饰三种的方法。

1?海水的预处理

海水预处理的目的是去除地表海水屮存在的泥沙、胶体、微生物等杂质,它为了确保反渗透系统能够长期稳定的运行,在海水预处理工艺设计时经预处理后的海水水质应达到反渗透膜元件的进水水质要求。

海水预处理的处理工艺有:(1)混凝过滤或者浅层气浮:(2)加药消除余氯和防止反渗透膜而结垢沉淀:(3)保安过滤。

2?反渗透

通常乂称超过滤法,是1953年才开始采用的一种膜分离淡化法。该法是利用只允许溶剂透过、不允许溶质透过的半透膜,将海水与淡水分隔开的。在通常情况下,淡水通过半透膜扩散到海水一侧,从而使海水一侧的液面逐升高,直至一定的高度才停止,这个过程为渗透。此时,海水一侧高出的水柱静压称为渗透压。如果对海水一侧施加一大于海水渗透压的外压,那么海水中的纯水将反渗透到淡水中。反渗透法的最大优点是节能。它的能耗仅为电渗析法的1/2.蒸饰法的1/40。

反渗透海水淡化技术发展很快,工程造价和运行成本持续降低,主耍发展趋势为降低反渗透膜的操作压力,提高反渗透系统回收率,廉价高效预处理技术, 增强系统抗污染能力等。

3?电渗析

渗析是属于一种自然发生的物理现象。如将两种不同含盐量的水,用一张渗透膜隔开,就会发生含盐量大的水的电介质离子穿过膜向含盐量小的水中扩散, 这个现象就是渗析。这种渗析是由于含盐最浓度不同而引起的,称为浓差渗析。渗析过程与浓度差的大小有关,浓差越大,渗析的过程越快,否则就越慢。因为是以浓差作为推动力的。因此,扩散速度比较慢。如果在膜的两边施加直流电场,就可以加快扩散速度。电解质离子在电场的作用下,会迅速地通过膜,进行迁移过程,这样,就形成了去除水中离子的淡水室和离子浓缩的浓水室,将浓水排放,淡水即为除盐水。这就是电渗析法除盐原理。

4?蒸馆法

蒸僧法虽然是一种古老的方法,但由于技术不断地改进与发展,该法至今仍占统治地位。蒸镭淡化过程的实质就是水蒸气的形成过程,其原理如同海水受热蒸发形成云,云在一定条件下遇冷形成雨,而雨是不带咸味的。根据设备蒸锚法、蒸汽压缩蒸懈法、多级闪急蒸懾法等。

5?海水淡化的建设周期

一般來说,7J吨级反渗透海水淡化工程的建设周期为2年左右,百吨级至一千吨海水淡化工程的建设周期为3-12个月。而低温多效海水淡化工程的时间稍长,万吨级海水淡化工程的建设周期为3年左右,白吨级至一千吨淡化匸程的建设周期为6“8个月。

三、离子交换海水的淡化技术:

1?淡化原理

该技术采用天然沸石分子筛作基本材料。天然沸石分子筛是一种白色、无毒、无臭的晶体粉末,可吸附尺寸在0. 3-2nm的多种离子。在分子筛骨架结构中,阳离子定位在孔道或空腔中的一定位置上,在水溶液中,是可以互相交换的。具体方法是将天然沸石分子筛作为基本材料,加入到AgN03中,与Ag离子进行交换,然后利用交换在天然沸石分子筛阴离子骨架上的Ag离子去沉淀溶液中C1 离子,同时溶液中的Na离子、

Mg离子等碱金属、碱土金属被反交换在天然沸石分子筛阴离子骨架上,最终完成对海水(sw)或微咸水(ww)的淡化。实验的技术路线为:

NaZ + Ag+ -> AgZ + Na十

AgZ + Na+ + Mg+^K+ + Cl~ -> NaZ + AgCl l(白色)

KZ

MgZ

式中:NaZ为钠型沸石分子筛:AgZ为银型沸石分子筛;KZ为钾型沸石分子筛:MgZ为镁型沸石分子筛。

2?离子交换剂直接淡化海水

天然沸冇分子筛是一种白色无毒无臭的晶体粉末,可吸附尺、」在0.3~2nm 的多种离子,基于这样的原理,海水中的阳离子吸附到沸石分子筛的骨架结构中,定位孔道或空腔中的一定位置,但海水溶液离子是电中性的,为了同时去除氯离子,将天然分子筛与硝酸银溶液反应,将银离子进行交换,生成沸石银复合物, 然后利用沸石分子筛的阴离子结构上的银离子去交换海水中的钠离子、镁离子、钙离子等碱金属离子,被替换掉的银离子则与海水中的氯离子产生氯化银沉淀, 反应方程式在上式,最终完成海水的淡化。

3?离子交换剂用于淡化海水的预处理

海水是友杂的稀溶液体系,含有80多种化学元素,同时海水中含有大量的钙镁离子,导致海水具有很高的硬度,对于膜法海水淡化而言,高硬度海水容易堵塞膜孔,降低膜的透水率,对于蒸慵法淡化海水而言,在锅内易结垢,从而降低蒸发效率,使锅体受热不均匀,已发生意外。因此,淡化海水需要预处理。

海水的预处理程序先用石灰软化去掉大部分钙镁离子,然后通过离子交换法进一步软化,阳离子交换树脂常用钠离子、氢离子型,通过与海水中的反应去除大部分的钙镁离子,如果单纯使用钠型阳离子型交换树酯,交换反应后,水中硬度虽被去除,但碳酸氢钙和碳酸氢镁转换为碳酸氢钠,水质呈碱性:

Ca(HCO3)2 + 2NaR -> Ca2+ + 2NaHCO3

Mg(HCO3)2 + 2NaR t Mg2+ + 2NaHCO3

所以,同时使用氢离子树脂,与水中阳离子交换时释放氢离子:

Ca2+ + 2HR CaR2 + 2H+ Mg2+ + 2HR -> MgR2 + 2H+ 从式子可以看出,只要控制两种树脂的使用比例,便可是水的pH值处于中性范围内。

3?离子交换剂用于淡化海水的后处理

反渗透法是现如今淡化海水最常用的一种方法,但是此法还存在很多问题, 其中最令人关注的便是除硼问题,反渗透法只能除去海水中40%~50%的硼,淡化海水中的硼含量仍在0. 5~2. 5mg/l之间,完全不符合饮用水和灌溉水的标准。而离子交换是目前海水淡化除硼最为重要和高效的方法,它的机理是利用离子交换树脂内的功能基团与溶液中

的离子发生交换反应,以达到分离和浓缩的目的,按照活性基团的不同,研究人员先后通过阳离子交换树脂、阴离子交换树脂、大孔树脂和凝胶树脂,由于硼酸可以迅速与多元醇和a —梵皋竣酸反应形成稳定的螯合物,研究人员研发出了大星含有微孔结构的硼特效吸附树脂,其中主要含有N■甲基葡萄糖胺的树脂,这种弱碱性阴离子交换树脂加入含硼的水后,硼酸受到功能基团中疑基氧原子的攻击,原来的B—0键断裂形成B-0-C 新键,断裂后形成的耕基与功能基团断裂产生的氢离子形成水,一般情况下,一个硼酸分子可与两个疑基作用形成稳定的螯合物,直至离子交换反应结束。

4?离子交换技术淡化海水的特点

(1)含Ag离子的天然沸冇分子筛处理海水及微咸水后,Ag离子以AgCI 状态沉淀:含K、Na、Mg离子的沸石分子筛亦以沉淀状态从淡化后的水中分离出去,淡化后的水中未带入其他离子。

(2)淡化后的水中仍会保留部分人体需要的离子,不是纯水,符合国家规定的饮用水标准,有利于人体健康。

(3)本工艺过程中,不排放污染环境的污气、液、渣,符合环保要求。

(4)由于形成AgCI沉淀的溶解度极小,化学反应的化学动力性强,在无电力的情况下,用风力或人力搅拌、晃动等都可以完成淡化,适用范围广。

(5)作为生产含Ag离子的沸石分子筛之原料的天然沸石在我国贮最大,质优价廉,可供充分开发利用。

5?离子交换技术淡化海水的发展前景

(1)民用。由于目前自來水净化工艺无法去除微咸水中氯、钠、钾、镁等离子,因此,以微咸水为源的食品、造纸、印染等工艺,可以用该技术自制小型淡化设施,淡化后的水产品质量好,淡化的费用低。亦可以在居民小区建小型微咸水淡化厂,应用含Ag 离子的沸石分子筛淡化微咸水,以桶装形式向居民或企事业单位出售,供直接饮用,造价是纯净水造价的0.9%.2.5%。

(2)军用。为战备需要,可在远离海岸无淡水的军事用小岛上,建小型海水淡化装置。该装置简单,易操作(不考虑回收)。

结语

离子交换树脂法可通过较小的能耗來获得很低的硼浓度的水,具有技术上的优势,但树脂再生的操作则要花费大最的化学药剂,而且再生产水处理会产生二次污染,在这一方面引起了研究者们的广泛关注。

五、参考文献:

陈鹏飞?李媛?陈玲?曾宇佳?王瑶.周学永.Chen

Pengfei.LiYuan.ChenLing.ZengYujia.WangYao.ZhouXueyong 离了交换法在海水淡化中的应用[期刊论文卜山东化工2015(11)

反渗透技术在海水淡化中应用资料

作者:Mouseby 浅析反渗透在海水淡化中的应用 摘要:海水淡化自古以来就是人们梦寐以求的,现在已经变为现实,尤其是近几年来,反渗透技术由于其投资少、能耗低、成本便宜、建设周期短等优点。已多次在国际海水淡化会化招标中胜出。本文主要介绍反渗透技术的发展,介绍了膜、组器、设备以及应用工艺的创新性开拓,其中包括不对称膜、复合膜。 关键词:海水淡化,渗透,反渗透,膜分离

引言 海水的组成很复杂,已知海水中含有80 多种化学元素,主要以离子形式存在。在海水浓缩、结晶过程中,则以盐的形式析出。其中Cl -,Na +,Mg 2+等11 种含量超过1 ×10 - 6的元素是海水的主要成份,占海水总含盐量的99.58% 。此外,海水中还存在某些同位素,重要的有氢的同位素氘等。海水中也溶解有多种气体,含量最多的为二氧化碳、氮和氧。空气中的稀有气体氩、氦和氖,在海水中也有微量存在。溶解在海水中的二氧化碳,与淡水中的情况不同,淡水中的二氧化碳主要是以游离状态存在,可用煮沸或减压等方法驱除。海水中的二氧化碳除少量是游离状态外,主要是以碳酸根及碳酸氢根形式存在,需加入强酸方可逐出,用一般的方法难以驱逐。海水中还含有各种数量不等的无机和有机悬浮物,因此要从海水中提取淡水并不是一件很容易的事。 世界上淡水资源不足,已成为人们日益关切的问题。作为水资源的开源增量技术,海水淡化已经成为解决全球水资源危机的重要途径。反渗透法于20世纪70年代起用于海水净化,经过几十年的发展,随着反渗透膜性能提高、预处理技术进步、能量回收率的提高等,已成为投资最省、成本最低、应用范围广泛的海水淡化技术,也是目前最清洁的方法。 一、反渗透简介 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。 反渗透时,溶剂的渗透速率即液流能量N为: N=Kh(Δp-Δπ) 式中Kh为水力渗透系数,它随温度升高稍有增大;Δp为膜两侧的静压差;Δπ为膜两侧溶液的渗透压差。稀溶液的渗透压π为:

海水淡化技术介绍

海水淡化技术及建设投资运行成本介绍 1.海水淡化技术发展现状 海水淡化又被称为海水脱盐,也就是从海水中获取淡水的技术和过程。从海水中取出淡水或者除去海水中的盐分,都可以达到淡化的目的。从这两条路线出发,海水淡化分为两类。采用从海水中分离出淡水的方法又可以细分为蒸馏法、冷冻法、反渗透法、水合物法和溶剂萃取法;而第二类则包括电渗析法和离子交换法。其中目前得到大规模商业应用是反渗透法和蒸馏法。 (1)反渗透海水淡化技术 对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶液的薄膜称之为理想的半透膜。当半透膜把不同浓度的溶液隔开后,在自然情况下,水流是从低浓度盐水侧往高浓度盐水侧流动;当在高浓度盐水侧加上一个适当的压力后,也会将水从高浓度侧压到低浓度侧,见图1。反渗透海水淡化就是利用该原理,用高压泵将海水增压后,借助半透膜的选择截留作用来除去水中的无机离子得到淡水。由于反渗透膜的截留粒度小于10×10-10 m,所以反渗透海水淡化同时能滤除各种细菌、病毒,获得高质量的纯水。 图1. 反渗透海水淡化技术原理 一般说来,反渗透海水淡化工艺包括四部分:预处理、反渗透、后处理及清洗系统,图2是一种反渗透海水淡化系统的典型工艺流程。

图2. 反渗透系统典型工艺流程图 预处理系统的目的是为了充分发挥反渗透淡化系统的技术优越性,保障良好的设计性能和长时间的安全运行,特别是为了保证膜的使用寿命(一般情况下,自来水和苦咸水反渗透膜的使用寿命为5年,而海水膜的使用寿命为3年)而设置。由于供给的源水不同,其水质组成与杂质成分千差万别,预处理系统也有很大的区别,在决定预处理系统时需要丰富的基础理论知识和工程实际经验。 反渗透装置的主体由反渗透膜堆和高压泵两部分组成,反渗透组件是整个系统的心脏部分,而高压泵是系统的关键部件。高压泵把进水升压至不同的压力进入膜堆,透过膜的水作为产品水,而未透过膜的作为浓盐水排放。其设计的核心在于根据不同的原水水质安排不同的回收率,以及通过流程及设备的选用使系统尽可能的节能。一般情况下自来水及苦咸水回收率可以做到45%~75%,有些系

及世界海水淡化发展和现状概述

中国及世界海水淡化的发展和现状概述 种种现实已经深刻地表明:水是可以耗尽的,水资源是取之不尽、用之不竭的观点应当改变。保护水资源,并加强水资源的开发,是增创新优势、并实施可持续发展决策的一项具有重大战略意义的举措,而海水淡化是缓解当今水危机,并沿海地区和岛屿水资源开发的必然趋势和最终归宿。 一、淡水资源严重短缺 随着现代化建设的高速发展,人口的急剧膨胀,以及人们物质文化生活水平的极大提高,水的用量与日俱增,但是供水量却有减无增,而且水体污染日趋严重。因此,全球范围及至全国性的供水矛盾日益突出。人类正面临着来自水资源和水质性两大危机越来越严峻的挑战。所以,合理地开发利用和有效地保护水资源已成为全世界共同关注的热点,防止水危机的呼声浪高一浪,正席卷全球。 1.缺水与日俱增 <1)世界范围 从1990年到1995年,水的消耗量增长了6倍,比人口增长速度还快2倍,约有80个国家和地区严重缺水,占地球陆地面积的60%,有15亿人口缺少饮用水,20亿人得不到安全的用水。其中29个国家的4.5亿多人口完全生活在缺水状态中。 因为饮用不符合卫生要求的水源而导致的疾病有50多种,平均每天发生与水相关的疾病65万例,夺去2.5万人的生命。 到2000年,全世界人均占水量减少24%。估计到2025年,全世界将有近1/3的人口<23亿)缺水。按每年取水量4—5%递增为计,到2100年地球上所有河水将被耗尽,到2230年,人类将耗尽地质圈内所有储备的淡水资源。 <2)全国范围 河川地面迳流量平均每年为2.81万亿立方M,居世界第六位。但按人口平均,每人每年仅2400立方M,仅为世界人口平均占有量的四分之一。中国人口占世界22%,而淡水占有量仅为8%,世界排序名列第109位,是世界12个严重贫水国之一。 径流的地区和时空分布很不均衡,包括北京、上海、广州、沈阳、长春、大连等我国40多个城市也被列入世界性严重缺水的黑名单上。据资料表明,因为水资源短缺、生态退化、水污染加剧等原因。 全国近600多座城市中,有400多座城市缺水,严重缺水的城市就有110多个。 我国城市2000年缺水达600多亿立方M,每年因缺水而损失,仅工业产值就达2400亿元。据预测,我国30年后将出现用水高峰,2030年人口总量将达16亿,城市化水平将达到40%,届时用水总量将达7000—8000亿立方M。 广东目前年缺水约42.45亿立方M,近年取水量将达50亿万吨。 2.污染日趋严重 <1)世界范围 全世界每年排放的污水现达4000多亿吨,从而造成5万多亿吨水体被污染,致使地球每年有700多万人因不洁净饮水引起疾病而死亡。估计到2005年前,因水的原因而成为“环境难民”者将多达1亿人。 到2005年全世界污水总排放量将达6900亿立方M,仅仅为了稀释这些污染物,就要耗尽全球河流水量。 <2)中国范围 我国沿海地区企业每年排入近岸海域工业废水39.8亿吨,年工业废水和生活污水排放量已达到620亿吨之多,相当于每人平均排放量近49吨。 致使全国138个城市河段中的133个河段已受到不同程度的污染,78%的河段不适宜作饮

海水淡化技术及发展状况简析

一、海水淡化简介 1、海水淡化的定义 海水淡化即利用海水脱盐生产淡水。是实现水资源利用的开源增量技术,可以增加淡水总量,且不受时空和气候影响,水质好、价格渐趋合理,可以保障沿海居民饮用水和工业锅炉补水等稳定供水。从海水中取得淡水的过程谓海水淡化。 2、海水淡化的主要用途 海水淡化主要是为了提供饮用水和农业用水,有时食用盐也会作为副产品被生产出来。海水淡化在中东地区很流行,在某些岛屿和船只上也被使用。 3、海水淡化综合简介 海水淡化是人类追求了几百年的梦想。早在400多年前,英国王室就曾悬赏征求经济合算的海水淡化方法。 从20世纪50年代以后,海水淡化技术随着水资源危机的加剧得到了加速发展,在已经开发的二十多种淡化技术中,蒸馏法、电渗析法、反渗透法都达到了工业规模化生产的水平,并在世界各地广泛应用。 现在世界上有十多个国家的一百多个科研机构在进行着海水淡化的研究,有数百种不同结构和不同容量的海水淡化设施在工作。一座现代化的大型海水淡化厂,每天可以生产几千、几万甚至近百万吨淡水。 淡化水的成本在不断地降低,有些国家已经降低到和自来水的价格差不多。某些地区的淡化水量达到了国家和城市的供水规模,目前淡化水已经完全可用于农田灌溉。 4、海水淡化历史 地球表面2/3的面积被水覆盖,但水储量的97%为海水和苦咸水,这些水是很丰富的。但是,要利用海水必须经过淡化。目前,全世界有一百二十多个国家和地区采用海水或苦咸

水淡化技术取得淡水。 第一个海水淡化工厂于1954 年建于美国,现在仍在德克萨斯州的弗里波特(Freeport)运转着。佛罗里达州的基韦斯特(Key West)市的海水淡化工厂是世界上最大的一个,它供应着城市用水。 表面看海水淡化很简单,只要将咸水中的盐与淡水分开即可。最简单的方法,一个是蒸馏法,将水蒸发而盐留下,再将水蒸气冷凝为液态淡水。这个过程与海水逐渐变咸的过程是类似的,只不过人类要攫取的是淡水。另一个海水淡化的方法是冷冻法,冷冻海水,使之结冰,在液态淡水变成固态的冰的同时,盐被分离了出去。两种方法都有难以克服的弊病。 1953年,一种新的海水淡化方式问世了,这就是反渗透法。这种方法利用半透膜来达到将淡水与盐分离的目的。在通常情况下,半透膜允许溶液中的溶剂通过,而不允许溶质透过。 由于海水含盐高,如果用半透膜将海水与淡水隔开,淡水会通过半透膜扩散到海水的一侧,从而使海水一侧的液面升高,直到一定的高度产生压力,使淡水不再扩散过来。这个过程是渗透。 在新兴的反渗透法研究方兴未艾的时候,古老的蒸馏法也改弦易辙,重新焕发了青春。常识告诉我们,水在常温常压下要加热到100℃才沸腾,产生大量的水蒸气。传统的蒸馏法只考虑了通过升高温度获得水蒸气的方式,耗能甚巨。而新的方法是将气压降下来,把经过适当加温的海水,送入人造的真空蒸馏室中,海水中的淡水会在瞬间急速蒸发,全部变成水蒸气。许多这样的真空蒸馏室连接起来,就组成了大型的海水淡化工厂。如果海水淡化工厂与热电厂建在一起,利用热电厂的余热给海水加温,成本就更低了。 现在世界上的大型海水淡化工厂,大多采用新的蒸馏法。在西亚盛产石油的国度,往往土地“富得流油”,却打不出一口淡水井。水比油贵的现实,使海水淡化工厂如雨后春笋般出现在西亚的海岸线上。1983年,西亚第一大国沙特阿拉伯在吉达港修建了日产淡水30万吨

热法海水淡化技术介绍

热法海水淡化介绍 1鼎联的海水淡化技术 目前商业应用主流的海水淡化技术分为膜法和热法两大类。膜法主要指的是反渗透海水淡化技术;热法海水淡化技术包括:多级闪蒸(MSF)、普通多效蒸发(MED)、热力压缩耦合多效蒸发技术(MED—TC)和机械蒸汽压缩蒸发技术(MVC)等几种。 (1)多级闪蒸(MSF) 多级闪蒸是使海水依次通过多个温度、压力逐级减低的闪蒸室进行蒸发冷凝的海水淡化方法。MSF需要串联较多的级数才能实现较高的造水比,且大多数级需要在真空条件下运行。目前MSF主要适用于大规模的海水淡化项目,可以充分体现规模效益,减少投资和运行费用。 墨西哥炼油厂MFS海水淡化项目 (2)普通多效蒸发(MED) 普通多效蒸发是将前一效产生的二次蒸汽作为后一效的加热蒸汽使用,最后一效的二次蒸汽经过末端冷凝器冷凝后排出。这样做的目的是利用二次蒸汽的气化潜热作为蒸发海水需要的热源,大大降低蒸发过程中的热能消耗。同多级闪蒸相比,普通多效蒸发更为节能。

泰国炼油厂MED海水淡化项目 (3)热力压缩耦合的多效蒸发技术(TC-MED) 为了充分利用末效二次蒸汽的气化潜热,降低蒸发的能耗,在普通多效蒸发的基础上增加蒸汽喷射压缩器,就组成了热力压缩耦合的多效蒸发技术,其工作原理是:采用少量高温高压的热力蒸汽(≥0.5MPa)喷入蒸汽喷射压缩器,将末效蒸发器的部分二次蒸汽吸入,两种蒸汽混合后产生能够用于蒸发器加热的蒸汽,再次送回至第一效蒸发器使用。末效蒸发器剩余部分的二次蒸汽经过末端冷凝器冷凝后排出。由于回收利用了部分末效蒸发器的二次蒸汽,因此TVC-MED系统的造水比明显高于普通MED系统。另外由于末效蒸发器需要被冷凝器冷凝的二次蒸汽明显减少,因此TVC-MED对冷却水的消耗量也明显小于普通MED。 台湾妈祖电厂MED-TC海水淡化项目 (4)机械蒸汽压缩蒸发技术(MVC) 机械蒸汽压缩蒸发技术是采用机械蒸汽压缩机对二次蒸汽进行压缩,使蒸汽的压力和温度得到提升,作为加热蒸汽再次送入蒸发器;加热蒸汽在蒸发器内通过换热将热量传给海水,而自身被冷却形成冷凝水。与TC-MED只利用部分二次蒸汽的潜热不同,MVC能够充分利用全部二次蒸汽的潜热,可以最大限度的减少蒸发过程的能耗,同时也不需要消耗冷却水。MVC正常运行过程中只需要消耗电,而不需要消耗蒸汽;只有在启动的时候消耗少量的蒸汽。MVC处理每吨水的电耗大约只消耗15~20KWh,等效的造水比大约在10~20,

海水淡化技术及其现状

海水资源利用 ——海水淡化技术及其现状 摘要:阐述全球淡水资源缺乏的现状,引出海水淡水技术是解决淡水缺乏的有效途径。详细介绍主要的海水淡化方法,包括多级闪蒸、反渗透、太阳能、电渗析等。分析我国淡水资源形势和海水淡化技术的发展状况,以及海水淡化的未来前景。 关键词:海水淡化,多级闪蒸法,反渗透法,太阳能法,电渗析法 1.前言 地球总储水量约为13.86亿立方米,人类主要利用的淡水却只占其中的2.53%,除少部分分布在湖泊、河流、土壤和地表以下浅层地下水中,大部分则以冰川、永久积雪和多年冻土的形式储存。淡水资源本是如此之少,又由于时空分布不均和污染,导致淡水资源更是匮乏,有人预言21世纪的战争必将由水引发。而海洋占据了地球表面积的70.8%,约占全球总水量的96.5%,从海洋中获得淡水是人类解决淡水缺乏的有效途径。 2. 海水淡化技术 海水淡化技术就是利用海水脱盐生产淡水。海水淡化根据不同的原理可以分为相变法、膜分离法、化学平衡法。相变法有蒸发法、蒸馏法和冷冻法,化学平衡法有离子交换法、水合物法和溶剂萃取法,二者都是从海水中分离出淡水;膜分离法有电渗析法和反渗透法,是从海水中分离出盐。自1954年第一个海水淡化厂在美国的德克萨斯建立,世界其他国家相继兴建了很多更大规模的海水淡化厂,尤其是中东地区。 2.1 多级闪蒸法 多级闪蒸海水淡化技术是由英国教授R.S.Silver在1957年发明的,这是蒸馏海水淡化技术历史上的里程碑。多级闪蒸彻底改革了传统的蒸馏脱盐模式,并且提供了一个实用经济又故障较少的饮用给水方法,它结构简单、操作方便、结垢危害小,不需要高压蒸汽为热源。另外,从海水综合利用出发,若将“滨海核电厂——多级闪急蒸馏海水淡化厂——浓海水的无机盐化工厂”综合生产建厂,将是一种现实可行的较为经济的生产系统方案。多级闪蒸海水淡化,是在一定压力下,把经过预热的海水加热至某一温度,引入闪蒸室,此室压强下降,可使海水急速汽化,即闪急蒸馏。产生的蒸汽在热交换管外冷凝成淡水,而留下的海水温度降到相应的饱和温度。温度降低所产出的湿热,供给为闪蒸所需的汽化潜热。依次将浓海水引入后续各闪蒸室逐级降压,使其再闪急蒸发,冷凝得到淡水。闪蒸室的个数称为级数,一般装置要几十级。其级数的多少,主要取决于总的闪蒸温度范围和温度损失。闪蒸温

离子交换技术与海水淡化

目录 摘要 (2) Abstract (2) 关键词 (2) 一、海水淡化的背景 (2) 九海水淡化的原因 (2) 2.............................................................................................................................. 海水的成分 (3) 二、海水淡化的技术: (3) 1?海水的预处理 (3) 2.反渗透 (4) 3.电渗析 (4) 4.蒸馆法 (4) 5.海水淡化的建设周期 (4) 三、离子交换海水的淡化技术: (5) [.淡化原理 (5) 2.离子交换剂直接淡化海水 (5) 3.离子交换剂用于淡化海水的预处理 (5) 3.离子交换剂用于淡化海水的后处理 (6) 4.离子交换技术淡化海水的特点 (6) 5.离子交换技术淡化海水的发展前景 (6) 四、结语 (7) 五、参考文献: (7)

摘要 随着我国经济的快速发展,用水量急剧增加,沿海地区由于经济发达人口众多,对水资源的需求量更大,水资源严重匮乏,海水淡化将成为沿海城市解决水危机的重要途径。离子交换法淡化海水具有处理彻底、成本低、可再生等优势, 已在海水淡化预处理、后处理、浓海水提取化学元素等方面得到广泛的应用,具有广阔的前景。 Abstract With the rapid development of economy in our country, water consumption has increased chamatically, due to the economic developed coastal areas with a large population, the greater demand for water resources, water resources are scarce, desalination will become the important way to solve the problem of water crisis in coastal cities.Method of ion exchange desalinatioii has complete processing, low cost and renewable advantages, has been in seawater desalination pretreatment, aft erti eatm ent, strong water extraction widely used in the chemical elements and so OIL has a broad prospect? 关键词 海水淡化;离子交换技术应用;离子交换技术海水淡化前景 一、海水淡化的背景 1?海水淡化的原因 水资源是基础性然资源和战略性经济资源,是经济社会发展的命脉,淡水资源短缺己成为制约我国经济和社会可持续发展的重要因素Z—。海水利用己成为世界许多临海国家新水源开发的战略决策,也是缓解我国水资源短缺、促进经济可持续发展的重要途径。 为解决淡水资源的供需矛盾,人们的目光早已转向相当于全球淡水37.6倍储量的海水。于是,海水和微咸水淡化被视为开发新水源、解决淡水资源危机的基本途径。rti 于物理方法耗能多、造价高,只适合于经济发达国家,适用性有限。为此,有人研究开发了用离子交换法进行海水淡化的新技术,并取得了成功。表1为淡化综合水价与沿海自來水价的比较: 表1: 从上表可以看出,到了2010年,海水淡化的水价,比居民自来水价比居民自来水价

第五章离子交换技术

第五章离子交换技术 离子交换(Ion Exchange,简称Ⅸ)技术是除去水中离子态物质的水处理方法之一,采用离子交换法可制取软水、纯水和超纯水,因而在水处理领域中曾被广泛应用。 第一节离子交换剂及分类 离子交换作用是用一种称为离子交换剂的物质来进行的,这种物质在溶液中能以所含的可交换离子与溶液中的同种符号的离子进行交换,离子交换剂的种类很多,如表5—1所示。 早期使用的硅质离子交换剂如海绿砂和合成沸石有许多缺点,特别是在酸性条件下无法使用。磺化煤利用天然煤为原料,经浓硫酸磺化处理后制成,但使用过程中暴露出交换容量低、机械强度差、化学稳定性较差等缺点,已逐渐被离子交换树脂所取代。 离子交换树脂是一种高分子的聚合物,它与其他离子交换剂相比具有如下优点:a.交换容量高;b.外形大多为球状颗粒,水流阻力小;c机械强度高;d.化学稳定性好。因此离子交换树脂已成为目前最普遍采用的离子交换材料。 第二节离子交换树脂 一、离子交换树脂的结构和类型 离子交换树脂与其他交换剂一样,其结构通常分为两个部分。一部分称为骨架,在交换过程中骨架不参与交换反应。另一部分为连接在骨架上的活性基团,活性基团所带的可交换离子能与水中的离子进行交换。 离子交换树脂外形大多呈珠状颗粒,它既不溶于水,也不溶于酸碱和有机溶剂。从微观来看,离于交换树脂具有三维空间网状结构,在网状结构的空隙部位分布着能提供可交换离子的活性基团。 以最常见的苯乙烯系离子交换树脂为例,苯乙烯和二乙烯苯共聚制得高分子化合物—— 第62页交联聚苯乙烯:

在聚合反应中,二乙烯苯起到将苯乙烯长链交联起来而形成网状的作用,二乙烯苯在聚合中所用质量占参与聚合单体的总质量的百分率,称为离子交换树脂的交联度。交联度越高,树脂的网状结构越紧密。此种聚苯乙烯没有活性基团,因而通常称为白球。将白球用浓硫酸磺化,可得磺酸型阳离子交换树脂(RH): 白球经氯甲基化和胺化后,可得阴离子交换树脂: 上述胺化反应用叔胺处理,制得季铵型强碱性阴离于交换树脂(R3NCl),若用仲胺(R2NH)或伯胺(RNH2)处理,则生成弱碱性阴离子交换树脂,(分别为R2N·HCl或RNH·2Cl)。 强碱性阴离子交换树脂分I型和Ⅱ型,它们在制造过程中胺化虽都用叔胺,但I型用的是三甲胺(CH3)2N,Ⅱ型则用二甲基乙醇胺,(CH3)2NC2H4OH,因此I型的碱性比Ⅱ型强,但Ⅱ型的交换容量比较高。 按照树脂骨架的结构特征,离子交换树脂可分为凝胶型和大孔型,它们的区别在于结构中孔眼的大小,凝胶型树脂不具有物理孔眼,只是在浸入水中时才显示其分子链之间的网状 第63页

海水淡化技术及发展状况简析

、海水淡化简介 1、海水淡化的定义海水淡化即利用海水脱盐生产淡水。是实现水资源利用的开源增量技术,可以增加淡水总量,且不受时空和气候影响,水质好、价格渐趋合理,可以保障沿海居民饮用水和工业锅炉补水等稳定供水。从海水中取得淡水的过程谓海水淡化。 2、海水淡化的主要用途海水淡化主要是为了提供饮用水和农业用水,有时食用盐也会作为副产品被生产出来。海水淡化在中东地区很流行,在某些岛屿和船只上也被使用。 3、海水淡化综合简介海水淡化是人类追求了几百年的梦想。早在400 多年前,英国王室就曾悬赏征求经济合算的海水淡化方法。 从20 世纪50 年代以后,海水淡化技术随着水资源危机的加剧得到了加速发展在已经开发的二十多种淡化技术中,、、都达到了工业规模化生产的水平,并在世界各地广泛应用。 现在世界上有十多个国家的一百多个科研机构在进行着海水淡化的研究,有数百种不同结构和不同容量的海水淡化设施在工作。一座现代化的大型海水淡化厂,每天可以生产几千、几万甚至近百万吨淡水。 淡化水的成本在不断地降低,有些国家已经降低到和自来水的价格差不多。某些地区的淡化水量达到了国家和城市的供水规模,目前淡化水已经完全可用于农田灌溉。 4、海水淡化历史

地球表面2/3 的面积被水覆盖,但水储量的97%为海水和苦,这些水是很丰富 的。但是,要利用海水必须经过淡化。目前,全世界有一百二十多个国家和地区采用海水或苦咸水淡化技术取得淡水。 第一个海水淡化工厂于1954年建于美国,现在仍在的(Freeport )运转着的(Key West) 市的海水淡化工厂是世界上最大的一个,它供应着城市用水。 表面看海水淡化很简单,只要将咸水中的盐与淡水分开即可。最简单的方法,一个是蒸馏法,将水蒸发而盐留下,再将水蒸气冷凝为液态淡水。这个过程与海水逐渐变咸的过程是类似的,只不过人类要攫取的是淡水。另一个海水淡化的方法是冷冻法,冷冻海水,使之结冰,在淡水变成固态的冰的同时,盐被分离了出去。两种方法都有难以克服的弊病。 1953 年,一种新的海水淡化方式问世了,这就是反渗透法。这种方法利用半透膜来达到将淡水与盐分离的目的。在通常情况下,半透膜允许溶液中的溶剂通过,而不允许溶质透过。 由于海水含盐高,如果用半透膜将海水与淡水隔开,淡水会通过半透膜扩散到海水的一侧,从而使海水一侧的液面升高,直到一定的高度产生,使淡水不再扩散过来。这个过程是渗透。 在新兴的反渗透法研究方兴未艾的时候,古老的蒸馏法也改弦易辙,重新焕发了青春。常识告诉我们,水在常温常压下要加热到100C 才沸腾,产生大量的。 传统的蒸馏法只考虑了通过升高温度获得水蒸气的方式,耗能甚巨。而新的方法是将气压降下来,把经过适当加温的海水,送入人造的真空蒸馏室中,海水中的淡水会在瞬间急速蒸发,全部变成水蒸气。许多这样的真空蒸馏室连接起来,就组成了大型的海水淡化工厂。如果海水淡化工厂与热电厂建在一起,利用热电厂的余热给海水加温,成本就更低了现在世界上的大型海水淡化工厂,大多采用新的蒸馏

反向流化床连续逆流离子交换技术(一)

第!"卷第!期铀矿冶#$%&!"’$&! !""(年)月*+,’-*..-’-’/,’0.12,33*+/4.56!""( 反向流化床连续逆流离子交换技术7一8 赵伯毅 7核工业北京化工冶金研究院9北京("((:;8 摘要<常规7或称重力8流化床体系中9树脂在介质中所受的重力与介质的密度成反比9而反向7或 称浮力8流化体系中9树脂在介质中所受的浮力与介质密度成正比=因此9反向流化床体系更适合 高密度的介质=论述了反向流化床连续逆流离子交换设备研制的背景9体系流体力学参数的数学 表达式以及体系中树脂流态化特性的试验研究结果= 关键词<反向流化床设备>矿浆吸附>离子交换 中图分类号<2?@":&A文献标识码<,文章编号<("""B@"C A7!""(8"!B""@)B"@ 前言 反向流化床连续逆流矿浆离子交换技术是一项直接从矿浆或高密度介质中提取金属或有用组分的颇有发展前景的技术= 直接从矿浆或高密度介质中提取金属或有用组分的离子交换7简称矿浆离子交换8技术9可以全部7或部分8省去昂贵的固液分离过程9提高劳动生产率9降低用水量9提高金属回收率9减少对环境的污染9经济效益和社会效益十分显著=以年处理矿石量!"万D的铀水冶厂为例9该法若与悬浮吸附流程相比9仅减少废水排放量一项计9(5就可多回收金属!EA D9节约用水或减少废水排放量F"E;"万G A=此外9对于铀水冶厂9单就固液分离部分9节省投资和经营费的幅度分别可达()HEA)H和("HE!"H= 矿浆离子交换技术早就引起人们的重视9各国学者为它的开拓和发展作了不懈的努力9目前已被广泛应用于铀矿和金矿的湿法治金中= 实施矿浆离子交换技术的主要设备为吸附设备9现有的吸附设备按自身结构形式可分为槽式和塔式!种9按物料运动形式可分为搅拌床和流态化床!种= 在铀矿加工中最早使用的框篮式设备属槽式搅拌设备9曾处理过固体质量分数为F H的矿浆= 槽式搅拌床设备是目前能处理较高固体质量分数矿浆的主要设备9黄金冶炼中的炭浆法和树脂矿浆法主要采用这种设备=这类设备工作时9吸附剂和矿浆的混合系采用机械搅拌7机械搅拌槽8或空气搅拌7帕丘卡槽8的形式9前者多为西方国家采用9后者多为独联体国家采用=而吸附剂与矿浆的分离皆依赖级间分离筛进行=因此9采用这种设备的作业往往也称筛混法=该法处理铀矿时矿浆中固体质量分数一般在!"HE!)H之间9处理金矿时可达:"H=与传统 收稿日期

国内外海水淡化技术的发展现状

国内外海水淡化技术的发展现状 发布时间:2011-11-11信息来源:中国膜技术网 目前,世界上脱盐水产量近4x107m3/d,其中多级闪蒸(MSF)和反渗透(RO)各占市场的45%左右,解决了l亿多人口的供水问题。世界最大的反渗透海水淡化厂建于以色列南部地中海岸工业区的阿什凯隆海水淡化厂,日产淡水33万m3 。另外,世界上最大的热膜联产海水淡化厂是阿联酋富查伊拉海水淡化厂,发电量为656MW ,日产水量为45.4万m3,其中,MSF产水28.4万m3/d,反渗透(RO)产水17万m3/d 。 典型的大规模反渗透海水淡化吨水成本己从1985年的1.O2美元降至2005年的48美分。且在成本的组成上,运行及维护,能源消费和投资成本均逐年下降,目前各占总成本的1/3。海水淡化已是解决全球水资源危机问题的重要途径,尤其在中东地区和一些岛屿地区,淡化水在当地经济和社会发展中发挥了重要作用,已成为其基本水源。 国外海水淡化现状 规模 随着社会的需求和技术的发展,国外海水淡化工程不断向大型化、规模化方向发展,无论是多级闪蒸,还是多效蒸馏和反渗透,其规模均已从最初的几百 m3/d 发展到现在的几十万m3/d 。 目前,世界上最大的多级闪蒸海水淡化厂建于沙特阿拉伯的shuaiba海水淡化厂,日产淡水46万m3;世界上最大的低温多效海水淡化厂建于塔维拉酋长国,日产淡水24万m3.世界最大的反渗透海水淡化厂建于以色列南部地中海岸工业区的阿什凯隆海水淡化厂,日产淡水33万m3。另外,世界上最大的热膜联产海水淡化厂是阿联酋富查伊拉海水淡化厂,发电量为656MW ,日产水量为45.4万m3,其中,MSF产水28.4万m3/d,反渗透(RO)产水17万m3/d。 成本 在海水淡化规模不断增加的同时,海水淡化成本也逐渐降低其中,典型的大规模反渗透海水淡化吨水成本己从1985年的1.O2美元降至2005年的48美分。且在成本的组成上,运行及维护,能源消费和投资成本均逐年下降,目前各占总成本的1/3。 我国海水淡化的现状 我国海水淡化技术的研究起步较早,1967年~1969年全国组织海水淡化会战,同时开展了电渗析、反渗透和蒸馏等多种海水淡化技方法的研究。

各海域海水淡化方案及水质参数

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中国渤海、黄海、东海、南海4个海域海

水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为12.7~30.8 ℃、pH为7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为30.7~32.1 g/L、浊度为2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受渤海湾海水泥沙含量的影响,特别在有潮汐和风浪时会大幅升高。此外还发现海水温度升

海水淡化技术分析

海水淡化技术分析 1.基本概念 1.1 淡水:含盐量应在1000mg/L(NaCL)以下。 通常船用海水淡化装置对所产淡水含盐量的要求皆以锅炉补给水标准为依据。我国船用锅炉给水标准规定补给水的含盐量应小于10mg/L(NaCL)。 1.2 海水含盐量:大洋中海水平均含盐量约为35g/L。 1.3 海水盐的成分:当海水含盐量为35g/L时,各种盐类的含量如下表所示,其中含 。 量最多的是NaCL和MgCL 2 表1 海水中各种盐类的含量 淡水总产量与加热器所消耗的蒸汽量之比。 2海水淡化技术介绍 图1 海水淡化方法的分类

海水淡化技术经过半个多世纪的发展,从技术上讲已经比较成熟,目前在商业上成功应用的主要有多效蒸馏(MED)、多级闪蒸(MSF)、压汽蒸馏(VC))和反渗透法(SWRO)。 2.1多效蒸馏(MED) 多效蒸馏是由单效蒸馏组成的系统,加热蒸汽被引入第一效冷凝后,使海水产生比蒸汽温度低的几乎等量蒸发。产生的蒸汽被引入第二效作为加热蒸汽,并使海水以比第一效更低的温度蒸发。这个过程一直重复到最后一效,在最后一效蒸汽被海水冷凝器冷凝。第一效的冷凝液返回锅炉,而来自其它效的冷凝液被收集后作为产品水输出。 多效蒸馏海水淡化技术是最早的海水淡化方法之一,早在1898年就建成了日产1200-1500吨淡水的竖管多效蒸馏大型海水淡化工厂,但早期多效蒸馏系统的蒸发器为浸没管式,传热系数低,结垢严重,严重影响了产水量及装置寿命。20世纪60年代开始了降膜蒸发器(横管降膜及竖管降膜)的研究,使传热效率有了很大提高。70年代为了降低结垢和腐蚀,低温蒸馏技术进入人们的视野,到80年代初期,低温横管喷淋技术正式用于工业性的海水淡化装置。80年代中期大型低温高效海水淡化装置研究成功,其原理是以75℃左右的低温蒸汽作为加热热源,远低于多级闪蒸110℃左右的蒸汽温度,所以管壁的结垢倾向减小,并且使低温废热的利用成为可能,至此多效蒸馏海水淡化技术进入比较成熟阶段。 目前世界上应用的多效蒸馏海水淡化装置大都为低温多效蒸馏,此类装置的典型代表为以色列IDE公司开发的一种横管蒸发装置,在低温下操作,最高操作温度62.90℃,共7效,造水比可达 5.8-6.2,折合电耗9.4-8.2KWh/m3,当使用废热时总能耗仅为2.5KWh/m3。目前已有数百台1000t/d以上的此类装置在世界各地运行,最大的装置产水量为25000t/d。 低温多效蒸馏技术除在防腐防垢方面有突出优点外,低廉的造水成本也是其得以迅速发展的原因。A.N.Rogers,C.D.siebenthal,R.F.Battey and L.Awerbuch通过对大型海水淡化装置的计算得出多效蒸馏海水淡化方法单位淡化水成本最低的结论。美国人G.F.Leiiner也曾撰文《当今海水脱盐的费用》,对大型海水淡化装置进行比较,结果表明单位淡化水价低温多效较反渗透和多级闪蒸都低。低温多效蒸馏技术的低成本主要归结于它灵活的运行方式,可以利用各种形式的低位热源,如柴油发电机冷却水、工业废气、

海水淡化技术现状的应用和发展

海水淡化技术现状的应用和发展 发表时间:2017-10-12T16:00:50.780Z 来源:《基层建设》2017年第16期作者:王雅雯 [导读] 摘要:淡水资源的匮乏问题已经是世界各个国家所必须面对的难题。我国地域辽阔、物产丰富,但是水资源仍旧属于稀缺资源,想要解决淡水稀缺的问题,需要积极推广海水淡化技术,海水淡化是解决我国淡水资源不足的有效技术手段。 天津市华泰龙淡化海水有限公司天津 300480 摘要:淡水资源的匮乏问题已经是世界各个国家所必须面对的难题。我国地域辽阔、物产丰富,但是水资源仍旧属于稀缺资源,想要解决淡水稀缺的问题,需要积极推广海水淡化技术,海水淡化是解决我国淡水资源不足的有效技术手段。随着淡水资源的紧缺问题日益严重,海水淡化技术在工程上的应用越来越多。海水淡化技术的应用已经推广到世界上多个国家,我国也逐渐认识到了海水淡化的重要性。近年来,开始在沿海地区推广海水淡化技术,已经颇见成效。本文主要介绍海水淡化技术现状的应用和其发展前景。 关键词:海水淡化;技术现状;应用;发展 引言:从江河取水净化的传统手段已不无法满足巨大的淡水需求。中水再利用、海水淡化制造饮用水的技术日益为各国重视和推进。特别是海水淡化领域,在热源丰富的中东地区,已建成投入使用的蒸发法海水淡化工厂,每日可处理淡化1800万立方米的海水。近年来,国际上对低碳、节能的呼声越发提高,进入21世纪,新建的海水淡化工厂开始加大对海水淡化技术的研究力度。 1 海水淡化技术应用的现状分析 1.1 蒸馏法 顾名思义,蒸馏法的原理就是将海水加热到沸腾状态后,将海水中的淡水将变成水蒸气蒸发出来,再将得到的水蒸气冷却变为液态得到淡水的过程。蒸馏法是海水淡化最古老的方法。蒸馏法得到的淡水资源水质较好,整个操作流程也十分简便。蒸馏法可以分为很多类型,如太阳能蒸馏、多级闪蒸、多效蒸馏。 1.1.1 太阳蒸馏法 太阳蒸馏法是利用太阳能蒸馏器将海水蒸发得到淡水。通过将太阳能吸收转化成热能使海水蒸发,在进行冷却得到淡水资源的过程。 1.1.2 多效蒸馏(MED) 液体受热后会蒸发为蒸汽,蒸汽遇冷又会冷凝为液体,基于此原理,蒸馏技术是一种常用的分离技术。多效蒸馏是一种特殊的蒸馏技术,其由多个管式蒸发器串联组成,加热蒸汽从第一效蒸发器进入,加热蒸发器中的海水使其蒸发形成蒸汽,而自身冷凝称为淡水,海水受热后的蒸汽作为下一效蒸发器的加热蒸汽,自身又被冷凝成为淡水,如此重复,最终将各效产生的冷凝水收集起来,从而得到远多于初始加热蒸汽量的淡水,多效蒸馏的最高蒸发温度往往低于70℃。 1.1.3 多级闪蒸法 多级闪蒸法是将海水加热后,进入压力较低的闪蒸室内,使盐水由于温度过高而进行蒸发得到水蒸气,冷却后得到淡水资源。这种方法是蒸馏法当中应用最广泛的方法,他的优点很多,如水质好、效率高、维护量小等,缺点是耗电量大,因此多与发电站相邻建立。 1.2 反渗透法(SWRO) 人们最初发现了渗透现象,即被半透膜分开的淡水和盐水的液面不一样高,其高度差就是两种溶液之间的渗透压。若在盐水一侧施加大于渗透压的压力,则盐水中的水分子就会透过半透膜进入淡水侧,此过程为反渗透。反渗透法海水淡化就是利用半透膜的渗透原理,在半透膜的一侧对海水施加大于渗透压的压力,海水中的水分子会透过半透膜到另一则,称为淡水侧,而盐份则不能透过半透膜留在原海水中,这种与自然渗透相反的水迁移过程连续产出淡水的方法称为反渗透海水淡化。 1.3 冷冻法 当海水处于低温状态结成固态时,水分子能够结合形成冰晶将盐类分离,这种通过水变成冰的相变过程就是冷冻法。冷冻法按照导热的方式不同可以分为两类:直接和间接冷冻法。间接冷冻法是向海水中添加冷冻剂使海水与冷冻剂间接接触最后结冰的方法,但是由于换热面较大,一般不会使用。而直接冷冻法利用冷冻剂直接与海水接触使海水结冰。直接冷冻法又能够可以分为两种真空蒸发式直接冷冻法和外界加入冷冻剂的二次冷媒直接接触法等。外界加入冷冻剂的二次冷媒直接接触法一般加入的冷冻剂为丁烷,虽然丁烷不会溶于水,但是无法避免水中含有少量丁烷分子,会污染水。 1.4 电渗析法 电渗析是利用具有选择透过性的离子交换膜在外加直流电场的作用下,使水中的离子定向迁移,并有选择地通过带有不同电荷的离子交换膜,从而达到溶质和溶剂分离的过程。电渗析过程中所能除去的仅是水中的电解质离子,而对于不带荷电的粒子如水中的硅、硼以及有机物粒子则不能去除,若水中溴含量高时,电渗析的脱除效果也不理想。适用于中小型海水淡化工程如海岛、工程用水等。 1.5 海水淡化RO膜 RO膜,是一种能将溶解盐类分子分离的薄膜,用于将纯水从含有高分子、各种溶解盐类的溶液中分离。用于海水淡化时,薄膜两侧分别为高浓度海水和淡水液体,膜间会因此产生较高的渗透压(2Mpa以上),此时若在海水一侧施加高于这个渗透压的反向压力,则淡水会从海水中反向渗透出来。作为RO膜的材料,最开始使用的是醋酸纤维素,此后高分子材料技术的进步,演进为聚酰胺类的复合材料。聚酰胺的分离性能优于醋酸纤维素,但对水分子的透过阻力也不低。为减小阻力,就必须尽可能减小分离机能层的厚度,故而在实际的淡化设备中,都加入多孔质支持膜和无纺布作为强度支撑材料制成复合膜。将这类复合膜与网状导水材料交错叠加,形成环状渗透膜元件,再将多个元件连接组成渗透模块,海水淡化时,一般将6-8个渗透元件组成模块,再将若干模块并行排列装填入圆柱形压力容器,由压力泵施加足够压力,而获取渗透淡水。 2 海水淡化技术的发展前景分析 海水淡化不仅仅是一项技术,它是一个完整的产业。海水淡化产业是以生产海水淡化水为主要目的,包括相关技术研发、设备制造、工程设计与建设、生产运营、原材料生产与销售、市场咨询服务、宣传培训和交流等工序和环节在内的,具有完整产业链的生产体系,还包括原海水的预处理和浓海水的综合利用,是战略性新兴产业的一部分,是新的经济增长点。 在2010年10月,国务院发布了《国务院关于加快培育和发展战略性新兴产业的决定》(国发〔2010〕32号),积极推动战略性新兴

我国海水淡化技术发展历程

我国海水淡化技术的发展历程我国的天然淡水资源量为2.7万亿立方米,居世界第六位。然而,我国淡水资源人均水量只相当于世界人均占有量的1/4,居世界第110位。目前,我国有200多个城市严重缺水。因此,为了满足生活和生产淡水资源的供给,海水淡化早已成为科技研究的热点课题。 地球表面79%是海水。海水资源丰富,但是其中含盐量高,不能被直接饮用。海水淡化技术就是要利用人工方法去除海水盐分,将海水转化为可以饮用的淡水资源。 海水淡化的源头可以追溯到古代。那时候就有人尝试从海水去除盐分。但是,直到16世纪,人们才真正开始对海水淡化技术的研究与应用。特别是在二战后,资本主义工业发展迅猛,淡水需求量大增,也促使海水淡化技术成为现代科技研究的重要方向。 到目前为止,海水淡化技术主要有两种方法,即蒸馏法和反渗透法。21世纪以前,反渗透膜技术都是被国外所垄断,而中国是直到90年代末期才开始掌握了反渗透膜的生产技术。 早在1958年,石松研究员等首先在我国开展离子交换膜电渗析海水淡化研究。随后1967年,国家科委组织全国在水处理和分析化学、材料化学、流体力学等各个学科的精英会战。1970

年,我国第一个海水淡化研究室在杭州成立。这个研究室曾研制成功海洋监测专用微孔滤膜,建成了世界最大的电渗析海水淡化站——西沙永兴岛海水淡化站,为我国海水淡化技术的发展做出了巨大贡献。 1982年,中国海水淡化与水再利用学会,经中国科协批准在杭州成立。1984年,国家海洋局以海水淡化研究室为主体,组建国家海洋局杭州水处理技术研究开发中心,开始对反渗透膜技术的研究。 2001年,国际海洋局杭州水处理技术研究开发中心实行集团化分体管理。同年,由此分化出来的杭州北斗星膜制品有限公司正式成立。该公司研制出的反渗透产品,标志着中国有了享有完全自主知识产权的反渗透技术。由中国制造的高性能复合膜元件开始投放市场,中国成为世界上第四个掌握自主海水淡化反渗透膜技术的国家。 反渗透海水淡化技术,工程造价和运行成本低,效率高,是最受欢迎的海水淡化方法之一。目前,反渗透海水淡化技术的主要发展趋势为降低反渗透膜的操作压力,提高反渗透系统回收率,廉价高效预处理技术,增强系统抗污染能力等。现在,我国海水淡化反渗透技术,处于国际领先位置,并早已经普及到生产和生活中。

相关文档