文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛讲义一元二次方程公共根问题定稿版

初中数学竞赛讲义一元二次方程公共根问题定稿版

初中数学竞赛讲义一元二次方程公共根问题定稿版
初中数学竞赛讲义一元二次方程公共根问题定稿版

初中数学竞赛讲义一元二次方程公共根问题精

编W O R D版

IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一元二次方程公共根问题

若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题,

解题方法:

1、直接求根法,再讨论根与根之间的公共关系。

2、由题意用以下解题步骤:若两个一元二次方程只有一个公共根,则:

(1).设公共根为α,则α同时满足这两个一元二次方程;

(2).用加减法消去α2的项,求出公共根或公共根的有关表达式;

(3).把共公根代入原方程中的任何一个方程,然后通过恒等变形求出公共根.或求出字母系数的值或字母系数之间的关系式.

例1 已知一元二次方程x2-4x+k=0有两个不相等的实数根,

1.求k的取值范围.

2.如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有

一个相同的根,求此时m的值.

解:

(1)b2-4ac=16-4k>0, k<4;

(2)由题意得:k=3.∴x2-4x+3=0,即(x-1)(x-3)=0,解方程,得x1=3,x2=1,

当x=3时9+3m-1=0, m=-8/3,

当x=1时,1+m-1=0,m=0。

∵m2+4>0 ∴此时 m 的值为m=0,或m=-8/3.

例2 若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值

解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα+1=0 ②

①-②得(1-a)α+a-1=0,即(1-a)(α-1)=0因为只有一个公共根,所以

a≠1,所以α=1

把α=1代入x2+x+a=0得12+1+a=0,a=-2

又解:两个方程相减,得:x+a-ax-1=0,整理得:x(1-a)-(1-a)=0,即(x-1)(1-a)=0,若a-1=0,即a=1时,方程x2+x+a=0和x2+ax+1=0的b2-4ac都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2.

例3、已知a>2,b>2,试判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根,请说明理由.

解:不妨设关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有公共根,设为x0,

则有x

02(a+b)x

+ab=0① x

2abx

+(a+b)=02

整理可得(x

0+1)(a+b-ab)=0.∵a>2,b>2,∴a+b≠ab,∴x

=-1;

把x

=-1代入①得1+a+b+ab=0,这是不可能的.所以关于x的两个方程没有公共0

根.

又解:x2- (a+b)x + ab = (x-a)(x-b) = 0?

所以其两根分别是a 和 b?

若方程:x2- abx + (a+b) = 0 有1根x = a,代入,得:

a2– a2b + a + b = 0?

(b-1)a2 - a - b = 0?

( (b-1)a - b ) ( a + 1 ) = 0?

得:a = b/(b-1) ,或 a = -1(a < 2 ,舍去)

由a = b/(b-1) > 2,(其中b-1>0),得:

b > 2(b-1)

即:b < 2?

这与 b > 2 矛盾?

同理,方程:x2 - abx + (a+b) = 0 有1根x = b,也能推出同样的矛盾?

所以两个方程没有公共根

例4、求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.

解答:

不妨设a 是这两个方程相同的根,由方程根的定义有

a 2+ka-1=0,①

a 2+a+(k-2)=0.②

①-②有ka-1-a-(k-2)=0,

即(k-1)(a-1)=0,所以k=1,或a=1.

(1)当k=1时,两个方程都变为x 2+x-1=0,所以两个方程有两个相

同的根,

没有相异的根;

(2)当a=1时,代入①或②都有k=0,

此时两个方程变为x 2-1=0,x 2+x-2=0.

解这两个方程,x 2

-1=0的根为x 1=1,x 2=-1; x 2+x-2=0的根为x 1=1,x 2=-2.

∴x=1为两个方程的相同的根.

例5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和

222

(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值。

解答:

由方程(a-1)x 2-(a 2+2)x+(a 2+2a )=0得,[(a-1)x-(a+2)](x-a )=0

x 2=a ;

同理可由方程(b-1)x 2-(b 2+2)x+(b 2+2b )=0?解得

x 2=b ;

∵a,b 为不相等的正整数,而两个方程有一个公共根.

所以a-1只能为1或3,即a=2,b=4,或a=4,b=2.

(若有也是同样的结果)

当a=2,b=4,

(把a=4,b=2代入计算的结果一样)

例6已知关于x 的两个一元二次方程:方程①:01)2()2

1(2=-+++x k x k 方程②:032)12(2=--++k x k x

(1)若方程①有两个相等的实数根,求解方程②;

(2)若方程①和②中只有一个方程有实数根,请说明此时哪个方程

没有实数根,并化简

(3)若方程①和②有一个公共根a ,求代数式a a k a a 53)24(22++-+的值. 解答:

练习:

1.已知关于x 的一元二次方程062=+-k x x 有两个实数根。

(1)求k 的取值范围;

(2)如果k 取符合条件的最大整数,且一元二次方程062=+-k x x 与012=-+mx x 有一个相同的根,求常数m 的值。

解(1) ∵,

∴k≤9;

(2) ∵k 是符合条件的最大整数且k≤9,

∴k=9,

当k=9时,方程x2-6x+9=0的根为x1=x2=3;

把x=3代入方程x2+mx-1=0得9+3m-1=0,

∴m=-8/3

2.已知一元二次方程042=+-k x x 有两个实数根。

(1)求k 的取值范围;

(2)如果k 取符合条件的最大整数,且一元二次方程042=+-k x x 与012=-+mx x 有一个相同的根,求此时m 的值。

解答:

(1)△>0

解得k<4

(2)k 是最大整数,说明k=3

x 2-4x+k=0的根是1和3

x 2+mx-1=0的根是1时,m=0

x 2+mx-1=0的根是3时,m=-8/3

3.已知21,x x 是一元二次方程032)1(2=-+++k kx x k 有两个不相等的实数根。

(1)求k 的取值范围;

(2)在(1)的条件下,当k 取符合条件的最小整数时一元二次方程02=+-k x x 与022=-+m mx x 只有一个相同的根,求m 的值。

解答:

(1)∵方程有两个不相等的实数根,

∴△=b 2-4ac=(2k )2-4(k+1)(k-3)>0

解得k >-3/2

∵方程是一元二次方程

∴k+1≠0,

∴k≠-1.

∴实数k 的取值范围为:k >-3/2且k≠-1.

(2)由(1)可得:k 取最小整数时k=0.

∴x 2-x+0=0,

解得x 1=0,x 2=1.

①把x=0代入x 2+mx-m 2=0,m=0.

②把x=1代入x 2+mx-m 2=0得,

m 2-m-1=0,解得

m=

4、已知方程072=--kx x 与方程0)1(62=+--k x x 有公共根,求k 的值及两方程的所有公共根和所有的相异根。

解答:设两个方程公共根为x ,依题意得

X2kx7=0①

X26x(k+1)=0②

②-①得,(-6+k)x+(6-k)=0,

当-6+k=0,即k=6时,x取任意值,两个方程得解都相同.两个方程是同一个式

子.方程得解是x

1=7,x

2

=-1;

当k≠6时,解得x=1.

把x=1代入x2-kx-7=0得,1-k-7=0,k=-6.

于是两方程为:x2+6x-7=0③,x

1=1,x

2

=-7.

X2-6x+5=0④,x

1=1,x

2

=5.

故答案为:k=-6;其公共根为1,相异根为:-7和5.

5.关于x的方程x2+bx+1=0与x2-x-b=0有且只有一个公共根,求b的值.解:设方程的公共根为x=t,则

T2+bt+1=0 (1)

T2tb=0 (2),

由(2)得b=t2-t(3)

将(3)代入(1)得:t 3+1=0,解得,t=-1,当t=-1时,b=2.

●变式:若两个方程x 2+ax+b=0和x 2+bx+a=0只有一个公共根,则( )

A .a=b

B .a+b=0

C .a+b=1

D .a+b=-1.

解:设公共根为x 0,则?x 02+ax 0+b=0 ① x 02+bx 0+a=0 ②.

①-②,得(a-b )(x 0-1)=0,

当a=b 时,方程可能有两个公共根,不合题意;当x 0=1时,所以1+a+b=0,a+b=-

1.故选D .

●变式:已知实数a,b 满足a2+b2=1,且方程x2+ax+b=0和x2+bx+a=0至少有一个公共根,求a 、b 的值

解:第一种情况:有两个相同的根,则a=b,即a=b=±2

第二种情况:有一个相同的根,则x2+ax+b=0和x2+bx+a=0,两式作差,得(a-b )(x-1)=0可得x=1可得a+b+1=0

加上a 2+b 2=1,可解得a=-1,b=o 或a=0,b=-1

6.若方程02=++b ax x 和02=++a bx x 只有一个公共根,求2012)(b a +的值。 解答:设公共根为t ,

则t 2+at+b=0,t 2+bt+a=0,

∴(a-b )t=a-b ,

∵t 有唯一的值,

∴a -b≠0,

∴t=1,

把t=1代入x 2+ax+b=0得a+b+1=0.a+b=-1 故答案是(-1)2012=1

7.当p 是什么实数时,方程032=-+px x 与方程0)1(42=---p x x 有一个公共根。 解答:

X 2-4x-p+1=0.(1)

x 2+px-3=0.(2)

(2)-(1):(x+1)p+4x-4=0?

p=4(1-x)/(x+1)

代入(2):

x 2+4x(1-x)/(1+x)-3=0?

x 3-3x 2+x-3=0?

(x 2+1)(x-3)=0?

x=3?

p=4(1-3)/(1+3)=-2

8.设a 、b 、c 为三个互不相等的实数,且1≠c ,已知关于x 的方程012=++ax x 和方程02=++c bx x 有一个公共根,方程02=++a x x 和方程02=++b cx x 有一个公共根,试求c b a ++的值。

分析:设x12+ax1+1=0,x12+bx1+c=0,得x1=,同理,由x22+x2+a=0,x22+cx2+b=0,得x2=(c≠1),再根据韦达定理即可求解.

解答:解:设x12+ax1+1=0,x12+bx1+c=0,两式相减,得(a-b )x1+1-c=0,解得x1=,

同理,由x22+x2+a=0,x22+cx2+b=0,得x2=(c≠1),

∵x2=,

∴是第一个方程的根,

∵x1与是方程x12+ax1+1=0的两根,

∴x2是方程x2+ax+1=0和x2+x+a=0的公共根,

因此两式相减有(a-1)(x2-1)=0,

当a=1时,这两个方程无实根,

故x2=1,从而x1=1,

于是a=-2,b+c=-1,

所以a+b+c=-3.

9.已知方程①:02=++c bx ax ,(其中0≠c )有整数根,是否存在整数p ,使得方程②:0)()(23=+++++c x p b x p a x 与方程①有相同的整数根?如果存在,请求出p 的值及相应的公共根,若不存在,请说明理由。

解答:

x3+(a+P )x2+(b+P )x+c=0

则x3+Px2+Px+ax2+bx+c=0而ax2+bx+c=0

∴x3+Px2+Px=0则方程必有一个根为0,而ax2+bx+c=0,(其中c≠0)无0根 ∴x2+Px+P=0与ax2+bx+c=0有相同的整数根

而方程x2+Px+P=0的根为

从而P=0或4,而P=0时方程x3+(a+P )x2+(b+P )x+c=0的根为0,而ax2+bx+c=0,(其中c≠0)无0根,不合题意

∴P=4,此时方程x2+Px+P=0的根为-2

●已知关于x 的方程x2+x-3m=0与x2-mx+3=0只有一个相同的实数根,求m 的值. 解:将方程x2+x-3m=0和x2-mx+3=0组成方程组得,

x2+x?3m =0

x2?mx+3=0,

解得x=3,m=4.

10.是否存在某个实数m ,使得方程022=++mx x 和方程022=++m x x 有且只有一个公共根?如果存在,求出这个实数及两方程的公共根;若不存在,请说明理由。

解:假设存在实数m ,使这两个方程有且只有一个公共实数根a ,由方程根的定义,得

(1)-(2)得:(m-2)a+(2-m)=0,

解得:m=2,或a=1,

当m=2时,两个已知方程为同一方程,且没有实数根,

所以,m=2舍去,

当a=1时,代入(1)得m=-3,当m=-3时,求得第一个方程的根为

第二个方程的根为

所以,存在符合条件的m,当m=-3时,两个方程有且只有一个公共根x=1。

11.如果方程062=--bx ax 和方程01522=-+bx ax 有一个公共根是3,求b a ,的值,并分别求出两个方程的另外一个根。

答案:

把x=3分别代入两个方程,

9a-3b-6=0

9a+6b-15=0

解得

a=1

b=1

把a=1,b=1代入ax2-bx-6=0得x2-x-6=0,

(x-3)(x+2)=0,

解得:x1=3,x2=-2.

方程ax2-bx-6=0的另一个根为-2.

把a=1,b=1代入ax2+2bx-15=0得

x2+2x-15=0,

即(x-3)

(x+5)=0,

解得x1=3,x2=-5.

方程ax2+bx-15=0的另一个根为-5.

12.已知两个方程02=++b ax x ,02=++d cx x 有一个公共根为1,求证一元二次方程也有一个根为1.

证明:∵x=1是方程x2+ax+b=0和x2+cx+d=0的公共根, ∴a+b+1=0,c+d+1=0,

∴a+c+b+d+2=0,

∴b+d=-a-c-2?①

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

初中数学一元二次方程知识点总结与练习

知识点总结:一元二次方程 知识框架 知识点、概念总结 1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 2.一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax 2 +bx+c=0(a≠0)的形式,则这个方程就为一元二次方程; (4)将方程化为一般形式:ax 2 +bx+c=0时,应满足(a ≠0); 3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,?都能化成如下形式ax 2 +bx+c=0(a ≠0)。一个一元二次方程经过整理化成ax 2 +bx+c=0(a ≠0)后,其中ax 2 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。 4.一元二次方程的解法 (1)直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是 b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法

配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配 方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有 222)(2b x b bx x ±=+±。 配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2 =q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02 ≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x (4)因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。5.一元二次方程根的判别式 根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02 ≠=++a c bx ax 的根的 判别式,通常用“?”来表示,即ac b 42-=? 6.一元二次方程根与系数的关系 如果方程)0(02 ≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x - =+21,a c x x =21。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 7.分式方程 分母里含有未知数的方程叫做分式方程。 8.分式方程的一般解法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。 知识点1.只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。 例题: 1、判别下列方程是不是一元二次方程,是的打“√”,不是的打“×”,并说明理由. (1)2x 2-x-3=0. (2) 4 y -y 2 =0. (3) t 2=0. (4) x 3-x 2=1. (5) x 2-2y-1=0. (6) 21 x -3=0.

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

初中数学竞赛专题分类解析第四讲:平行四边形和梯形讲义

初中数学竞赛公益讲座:平行四边形和梯形 2018/4/7 一、基础知识: 1)平行四边形:平移、中点、中心对称(旋转180度)2)特殊的平行四边形:矩形、菱形、正方形 3)梯形:梯形问题转化、分割、拼接 三角形或者平行四边形问题 二、例题分析 例1、如下左图,在等腰△ABC中,延长边AB到点D,延长边CA到点E,连 接DE,恰有AD=BC=CE=DE,求∠BAC的度数。 例2、如上右图,在RT△ABC中,∠ACB是直角,CD⊥AB于D,AE平分∠ABC,交CD于K,F在BE上且BF=CE,求证:FK?AB。 例3、如下左图,△ABC内部一点P,满足∠PBA=∠PCA,作平行四边形PBQC,求证:∠QAB=∠PAC。

例4、如上右图,已知A、B是两个定点,C是位于直线AB某一侧的一个动点,分别以AC、BC为边,在△ABCDE外部作正方形CADI、CBEF,求证无论C点 在什么位置上,DE的中点M的位置不变。 例5、如下左图,梯形ABCD中,AB?CD,BC⊥CD,AB=2,CD=4,点E是BC上的一个动点,连接并延长EA到点F,使得EF:AE=2:1,连接并延长ED到点G,使得EG:ED=3:2,以EF和EG为临边作平行四边形EFHG,连接EH交AD于点P,1)求EH的最小长度;2)求证:P是定点。 例6、如上右图,四边形ABCD中,点E、F分别在边AB、CD上,连接BF、CE交于点P,连接AF、DE交于点Q,若四边形EQFP是平行四边形,求证: 四边形ABCD是梯形。 例7、如下图,等腰梯形ABCD,对角线AC与BD交于点O,M 、N分别为腰AB和CD上的点,且AM=CN,连接MN分别交BD、AC于点P、Q,求证: MP=QN。

初中数学一元二次方程的解法

解一元二次方程: 例1 x 2 -4-(2x+4)=0 (因式分解法)解:(x+2)(x-2)-2(x+2)=0 (x+2)[(x-2)-2]=0 (x+2)(x-4)=0 所以 x 1=-2 , x 2=4. (配方法)解:x 2 -2x-8=0 X 2-2x=8 X 2 -2x+(-1)2 =8+(-1)2 即(x-1)2=9 X-1=±3 所以 x 1=4 , x 2=-2. (公式法)解:x 2 -2x-8=0 →Δ=(-2)2 -4×1×(-8) =36>0 所以 x 1,2=1 236)2--?±( 即x 1=4 , x 2=-2. (“x 2 +(a+b)x+ab=0→(x+a)(x+b)=0”法) 解:x 2-2x+(-4)2?=0 (X-4)(x+2)=0 所以 x 1=4 , x 2=-2. 1

例2 用配方法解下列一元二次方程: (1) x 2 -6x+5=0; (2) 2x 2 +4x-3=0; (3) 9x 2 +6x-1=0; (4) 4x 2-12x+m=0 (m 为任意实数). 解:(1) x 2-6x=-5 X 2 -6x+(-3)2 =-5+(-3)2 即(x-3)2 =4 X-3=±2 所以 x 1=5 , x 2=1. (2) x 2 +2x=2 3 X 2 +2x+12 =2 3+12 (X+1)2 =2 5 X+1=± 210 所以 x 1=-1+ 2 10 , x 2=-1- 2 10 (3) (3x)2 +2×3x=1 (3x)2 +2×3x ×1+12 =1+12 (3x+1)2=2 3x+1=2± 所以x 1=32 1-+ ,x 2=-3 2 1+ . 2

5[1].4.4一元二次方程的公共根与整数根.题库学生版

内容 基本要求 略高要求 较高要求 一元二次方程 了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义 能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值 一元二次方程的解法 理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据 能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况 能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的 值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 24b ac ?=-为完全平方数; ⑵ 242b b ac ak -+-=或242b b ac ak ---=,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围. 知识点睛 中考要求 一元二次方程的公共根与整数根

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

初中数学竞赛辅导讲义及习题解答 第1讲 走进追问求根公式

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式a ac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。 【例3】 解关于x 的方程02)1(2=+--a ax x a 。 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。 【例4】 设方程04122=---x x ,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+1111, 试求x 的值。 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==。

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合 基础知识: 1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。 2.排列数的计算:约定:0!=1 排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。 3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。 4.排列与组合的关系:。 5.组合数的计算: 6.排列数与组合数的一些性质: 例题: 例1.4名男生和3名女生站成一排: (1)一共有多少种不同的站法? (2)甲,乙二人必须站在两端的排法有多少种? (3)甲,乙二人不能站在两端的排法有多少种? (4)甲不排头,也不排尾,有多少种排法? (5)甲只能排头或排尾,有多少种排法? 【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略 【解答】

例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种? 【答案】4186种 【解答】至少有3件是次品,分两种情况 第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中, ,然后,从46件正常品中抽2件,总共种。其中, 所以,3件是次品的抽法共种。 第二种情况:4件是次品的抽法共:种。 任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起, 所以,总共是4×23×45+46=23×182=4186种。 总结:有序是排列,无序是组合。 例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种? 【答案】540种 【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为 =3×2×1=6。用乘法原理表示为3!=6。 六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。 所以,不同的分配方法共有种。 例4.有多少个五位数,满足其数位上的每个数字均至少出现两次? 【答案】819 【解答】 方法一: (1)出现一个数字的情况是9种; (2)出现两个数字,首位不能是0,共有9种情况, (i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=54种。 (ii)首位确定之后,如果首位数总共出现2次,则从后面的4个数位中,选出一位,总共种情况,剩下的三个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=36种。 所以,出现两个数字的情况为(36+54)×9=810.

中考数学一元二次方程知识点总结

中考数学一元二次方程知识点总结 知识框架 知识点、概念总结 1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 2.一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行 整理。如果能整理为 ax 2 +bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。 (4)将方程化为一般形式:ax 2 +bx+c=0时,应满足(a≠0) 3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,?都能化成如下形式ax 2 +bx+c=0(a ≠0)。 一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。 4.一元二次方程的解法 (1)直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如 b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±?=,当b<0时,方程没有实数根。 (2)配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式2 2 2 )(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 2 2 )(2b x b bx x ±=+±。 配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方 程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2 =q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02 ≠=++a c bx ax 的求根公式:

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程公共根问题

一元二次方程公共根问题 1、若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值 解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα-1=0 ② ①-②得(1-a)α+a-1=0,即(1-a)(α-1)=0因为只有一个公共根,所以a≠1,所以α=1把α=1代入x2+x+a=0得12+1+a=0,a=-2 解:两个方程相减,得:x+a-ax-1=0,整理得:x(1-a)-(1-a)=0,即(x-1)(1-a)=0,若a-1=0,即a=1时,方程x2+x+a=0和x2+ax+1=0的b2-4ac都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2. 2、若两个方程x2+ax+b=0和x2+bx+a=0只有一个公共根,则() A.a=b B.a+b=0 C.a+b=1 D.a+b=-1 3、关于x的方程x2+bx+1=0与x2-x-b=0有且只有一个公共根,求b的值. 解:设方程的公共根为x=t, 则 t2+bt+10 (1) t2?t?b=0 (2) , 由(2)得b=t2-t (3)将(3)代入(1)得:t3+1=0,解得,t=-1,当t=-1时,b=2. 4、已知关于x的方程x2+x-3m=0与x2-mx+3=0只有一个相同的实数根,求m的值.解:将方程x2+x-3m=0和x2-mx+3=0组成方程组得, x2+x?3m=0 x2?mx+3=0 , 解得x=3,m=4. 4、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为()A.2 B.0 C.-1 D.无法确定

最新中考数学一元二次方程试题及答案

中考数学一元二次方程试题 一、选择题 1、一元二次方程2 210x x --=的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根 2、若关于z 的一元二次方程02. 2=+-m x x 没有实数根,则实数m 的取值范围是( ) A .m-1 C .m>l D .m<-1 3、一元二次方程x 2+x +2=0的根的情况是( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根 D .有两个相等的实数根 4、用配方法解方程2 420x x -+=,下列配方正确的是( ) A .2 (2) 2x -= B .2 (2) 2x += C .2 (2) 2x -=- D .2 (2)6x -= 5、已知函数 2y ax bx c =++的图象如图(7)所示,那么关于 x 的方程 220ax bx c +++=的根的情况是( ) A .无实数根 B .有两个相等实数根 C .有两个异号实数根 D .有两个同号不等实数根 6、(2007广州)关于x 的方程2 0x px q ++=的两根同为负数,则( ) A . 0p >且q >0 B .0p >且q <0 C .0p <且q >0 D .0p <且q <0 7、若关于x 的一元二次方程2 2 430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )(A )-1或 34 (B )-1 (C )3 4 (D )不存在 8、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0 (C )x 2+x +3=0 (D )x 2+2x -1=0 9、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A :200(1+a%)2=148 B :200(1-a%)2=148 C :200(1-2a%)=148 D :200(1-a 2%)=148 10、(2007湖北荆门)下列方程中有实数根的是( ) (A )x 2+2x +3=0 (B )x 2+1=0 (C )x 2+3x +1=0 (D )1 11 x x x = -- 11、已知关于x 的一元二次方程2 2x m x -= 有两个不相等的实数根,则m 的取值范围是( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12、(2007湖北武汉)如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )。 A 、2 B 、-2 C 、4 D 、-4 二、填空题 1、已知一元二次方程01322 =--x x 的两根为1x 、2x ,则=+21x x 2、方程 ()412 =-x 的解为 。 图(7) x y 0 3 -

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

奥数新讲义-一元二次方程-整数根公共根4学

第三讲 一元二次方程4:整数根、公共根 一、 基础知识 1.一元二次方程的根为有理数 对于有理系数的一元二次方程20(0)ax bx c a ++=≠,在240b ac ?=-≥时,方程有实根,且: 方程有有理根??→←?? 24b ac ?=-为完全平方数(有理数平方) 2.一元二次方程的根为整数 (1)对于整系数的一元二次方程20(0) ax bx c a ++=≠,如果有整数根,则必须满足以下两个条件:24b ac ?=-为完全平方数(自然数平方);24b b ac -±-是2a 的整数倍; (2)在首项系数为1的整系数方程20x px q ++=(p 、q 为整数)的判别式24b ac ?=-为一个完 全平方数,则方程的根为整数,反之,亦成立; (3)对于整系数的一元二次方程 20(0)ax bx c a ++=≠,若a 、b 是偶数,c 是奇数,则该方程无整数根; (4)整系数的一元二次方程 20(0)ax bx c a ++=≠,若a 、b 、c 都是奇数,且240b ac ?=->,则方程20(0)ax bx c a ++=≠无整数根. 3. 一元二次方程公共根: 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、 整数根问题 例1已知方程22 4(1)3240x m x m m k --+-+=对任意有理数m 都有有理根,求k 的值. 1.整数根讨论:利用判别式 例2不解方程,判定下列各方程的实数根是否是整数根: ○123180x x +-=;○228590x x +-=;○322450x x +-=;○42323870x x +-=

相关文档
相关文档 最新文档