文档库 最新最全的文档下载
当前位置:文档库 › 钢丝绳断裂

钢丝绳断裂

钢丝绳断裂
钢丝绳断裂

钢丝绳断裂,钢渣四溅,烫死一人2003年10月11日9时45分,大连A钢铁集团有限责任公司第一炼钢厂2号电炉,吊运钢渣斗的钢丝绳断裂,渣斗翻倒,将一名作业人员烫伤致死。

二、故详细经过

2003年10月11日早晨,大连A钢铁集团有限责任公司(以下简称钢铁公司)第一炼钢厂一车间2号电炉丁班在进行炼钢作业。上午9点40分,负责吊渣斗的电炉工陈*要来车间正在运行的2号桥式起重机,把吊渣斗专用钢丝绳吊索具挂在2号吊车小钩头上,欲将丙班留在渣坑中装有热钢渣的渣斗子运走。

9点45分左右,陈*在坑下将绳扣挂在渣斗子上端两个耳轴上,走到东端梯子处(渣坑为东西方向,渣斗距渣坑东墙9.6米),此时操作台车上东端电炉工侯*发现陈*站在渣坑东墙根不上来,便喊“老陈,快上来”,陈*没理睬,并挥动双手做着起吊手势。站在台车西端的王*,面向西侧,感觉陈*有时间上到坑上后,便指挥吊车慢慢将绳子抻紧。就在绳子抻紧、稍做水平移动时,吊渣斗子钢丝绳突然断裂,渣斗倾翻,液体钢渣沿着渣坑自西向东流淌,钢渣前沿距渣坑东墙0.8米。渣斗子倾翻后坑上人看到陈*的状态是:站在梯子第二凳上欲上攀。由于台车东端距渣坑东墙 1.5米,形成通道,高温气流迅速抬升,陈*恰置于其间,致使呼吸系统吸入性损伤、窒息,同时衣裤被烤燃后烧伤,经大化医院抢救无效后死亡。二、事故原因分析

经过事故调查组的现场勘察取证,调阅相关材料,询问有关人员,认定

此起起重伤害事故是由于吊索具有缺陷加之作业人员违章作业,安全管理不善等造成的生产安全责任事故,发生的具体原因如下:

(一)、直接原因

1. 用于吊运钢渣斗子的钢丝绳(吊索具)有缺陷,事故发生前,所使用的钢丝绳(吊索具)在吊车钩头反复挤压下已有70%的钢丝受到创伤,并呈扁状,且已断丝严重;破损的钢丝绳承受不了渣斗重量,在起吊的瞬间突然断裂,致使渣斗子翻倒,上千度高温钢渣流淌出来,是造成此起死亡事故发生的直接主要原因。

2.电炉工陈*安全意识淡薄,违章作业。违反钢铁公司《第一炼钢厂安全技术操作规程》第133条“吊运渣斗子的钢丝绳使用前必须认真检查”的规定,在没有对用于吊钢渣斗子的钢丝绳(吊索具)进行检查,将已断丝严重钢丝绳(吊索具)继续用作吊钢渣斗子用,造成吊车司机在刚开始起吊时,破损的钢丝绳承受不了渣斗重量而突然断裂,致使渣斗子翻倒,上千度高温钢渣流淌出来。同时,违反钢铁公司《起重作业安全操作管理暂行规定》第6条“坑下司索作业,人上坑后方可指挥吊车作业”的规定,在下到渣坑挂钢丝绳后没有按规定回到地面。也是造成此起死亡事故发生的直接原因。

(二)、间接原因

1.钢铁公司第一炼钢厂对用于吊钢渣斗子的钢丝绳(吊索具)管理有漏洞,对长期用于吊运钢渣斗子的吊索具存在的缺陷和安全隐患认识不足,对吊索具管理不严,缺乏对吊索具日常保养、检查、更换的详细规定;长期违反起重作业有关安全规定,使用单根钢丝绳吊运钢渣斗子,造成钢丝

绳在钩头处受挤压,产生应力集中,导致破损严重,致使在使用前因检查不够而导致钢丝绳发生断裂,是造成此起事故发生的间接原因。

2.钢铁公司第一炼钢厂长期用于吊钢渣斗子的钢丝绳(吊索具)工艺设计上有缺陷,使钢丝绳扣在开始使用时,操作者可以站在地面上将吊索具套在渣斗耳轴上,当使用一定时间后,绳扣在重力作用下,扣口距离变窄且小于耳轴直径,操作者就得下到坑下冒着随时被一千多度高温钢渣烫伤的危险用双手掰开绳扣将其套在渣斗耳轴上,才能完成吊装作业,致使挂钩作业处于不安全的状态,也是造成此起事故发生的间接原因。

3.钢铁公司第一炼钢厂对炼钢作业的安全管理有漏洞。对从事吊装作业的安全管理不到位,造成无特种作业操作证的人员,指挥吊车作业;对职工的安全教育不到位,对炼钢作业现场的安全监督检查不到位,致使作业人员的违章作业得不到及时纠正,是造成此起事故发生的间接原因。

十三、预防事故重复发生的措施

1.钢铁公司必须从此起事故中汲取深刻教训,将生产过程中使用的吊索具纳入生产设备的管理,明确吊索具从设计、制造、使用及维护保养等各环节的责任。同时安全环保处必须加大对吊索具安全使用监督检查的力度,避免类似事故的再次发生。

2.加大对员工安全教育培训力度,开展以起重为重点的安全教育与培训,重点讲解起重规程和吊索具使用规定。由炼钢厂每季度一次培训考试,增加到每月车间再进行一次安全培训考试。安全培训不参加者、安全考试不合格者,停工待岗。待岗期间停发工资,由所在车间培训,直到安全考试合格后方可上岗。

钢丝绳断裂引发的事故

钢丝绳断裂引发的事故 1.事故经过 2003年1月28日下午,某厂大修车间组织职工吊运43号电解槽的阴极内衬。根据测算,阴极内衬重约6.2吨。 14时30分,吊车吊起阴极内衬,当重物被起吊到4米高时,移动到了东风卡车上方。此时,系挂阴极内衬的钢丝绳突然断了,阴极内衬重重地砸在了卡车后厢板上,致使厢板以及汽车大梁严重变形,汽车报废。当时,破碎物四处飞溅,幸亏在场的职工注意力比较集中,四处散开,才没有造成人员伤亡。 2.事故原因 43号电解槽进行大修工作时已临近春节,大修车间现场安全生产管理工作十分松懈。 对于吊运阴极内衬这样重要的工作,车间既没有按照惯例通知安全管理部门和设备管理部门派人到现场监督,也没有安排起重专业工人到现场进行指挥,竟然让没有从业资格的临时工在现场系挂钢丝绳,指挥起吊。临时工不懂起重专业技术,采用了错误的钢丝绳系挂方法,作业中本应该使用4根钢丝绳,实际却只用了2根,而且钢丝绳之间的夹角也过大,造成应力集中。天车操作工的技术水平也较低,没有能够发现、纠正错误。车间领导疏于管理,对工作细节问题根本没有过问。

所以,当阴极内衬被移动到东风卡车上方时,系挂阴极内衬的钢丝绳承受不了过大的应力,突然断了,造成车辆报废。 3.防范措施 起重作业从业人员必须要经过严格认真的安全培训,一定要持证上岗。通过这起事故可以看出,许多起重作业人员对钢丝绳系挂等基础知识还没有完全掌握,有关管理部门一定要严把培训质量关。 在进行重大起重作业前,一定要有施工方案,必须要有安全与设备管理人员在现场进行监督。而且,在施工前,要进行事故预想,制定应急预案。 4.经验教训 节假日前后正是事故的多发期,在此期间更应该加强对生产现场的安全生产管理,提高职工的安全意识,防止事故发生。

起重伤害事故树分析

起重伤害事故的事故树分析 第一章概述 1.1绪论 起重机械是用来起重、搬运或在某个距离内运送物品的专门机械,它是企业实现机械化、自动化,提高劳动生产率,减轻劳动强度和改善劳动条件不可缺少的设备,是生产过程中联系的纽带,是生产的重要组成部分,各种原辅材料以及半成品、成品、机械设备、物品搬移等都离不开起重设备。目前各类起重设备,如桥式起重机、悬臂吊、龙门吊、电动葫芦等,由于其数量多、种类多、分布广、作业频繁,涉及的从业人员多,而且作业环境条件复杂,如空中吊运的物品有的属于易燃易爆危险物品,有的是高温的熔融铁水、钢水、500℃以上的钢坯等,稍有疏忽极易发生重大人身伤害事故。因而,在为生产服务的同时,也对人身安全构成了极大威胁。 1.2事故类型 起重伤害事故是指起重机械在作业过程中由于机具、吊物等所引起的人身伤亡或设备损坏事故。据统计,在冶金、机电、铁路、港口、建筑等生产部门,起重机所引发的事故占有很大比例,高达25%左右,其中死亡事故占15%左右,主要有坠落事故、挤压碰撞事故、触电事故和机体毁坏。 (1)坠落事故。指在作业中,人、吊具、吊载的重物从空中坠落所造成的人身伤亡或设备损坏事故。吊物坠落造成的伤亡事故占起重伤害事故的比例最高,其中因吊索存在缺陷(如钢丝绳拉断、平衡梁失稳弯曲、滑轮破裂导致钢丝绳脱槽等)造成的坠落最为严重;还有因捆扎方式不妥(如吊物重心不稳、绳扣结法错误等)造成的坠落。 (2)挤压碰撞事故。常发生的挤压碰撞事故主要有以下四种:吊物(具)在起重机械运行过程中摇摆挤压碰撞人;吊其摆放不稳发生倾倒碰砸人;在指挥或检修移动式起重机作业中被挤压碰撞;在巡检或维修桥式起重机作业中挤压碰掩。 (3)触电事故。绝大多数发生在使用移动式起重机作业场所尤其在建筑工地或码头上,起重臂或吊物意外触碰高压架空线路的机会较多,容易发生触电事故。 (4)机体毁坏。山于操作不当(如超载、臂变幅或旋转过快等)、支腿未找平或地基沉陷等原因使倾翻力增大.导致起重机倾翻。 1.3 起重作业中的危险因素 1、起重机在运行中对人体造成的挤压或撞击。 2、起重机吊钩超载停裂,吊运时钢丝绳从吊钩中滑出。 3、吊运中重物坠落造成物体打击,重物从空中落到地面又反弹伤人。

钢丝断裂原因分析

钢丝断裂原因分析

一、夹杂物引起断裂 线材中非金属夹杂物的存在,破坏了组织的连续性,起到了一个显微裂纹的作用。当受到外力作用时,在夹杂物的顶端首先产生附加的应力集中。尤其在原奥氏体晶粒交界处出现的大块状、条状或片状碳化物,这些异常碳化物在材料冷变形时,严重地阻塞了位错的移动,致使该处产生应力集中。当应力集中达到一定大小时便会使碳化物开裂,或在碳化物与基体交界处产生裂纹。当裂纹达到失稳状态尺寸,地瞬时产生断裂。 非金属夹杂物的多少是衡量帘线钢质量高低的一个重要因素。在用SEM对断口进行分析的过程中,经常发现非金属夹杂物。在典型的杯锥状断口上有时候就能发现夹杂物,SEM表明大多为三氧化二铝夹杂或其它高熔点脆性夹杂物。其避免主要是通过精炼,使夹杂物变为塑性低熔点夹杂物。 脆性夹杂物是引起钢丝断裂的重要原因之一,而夹杂物引起断裂分为以下几种形势: 1、夹杂物与钢基体之间界面脱开 拉伸过程中,在夹杂物周围的局部加剧了应力集中;裂纹优先在与拉应力垂直的夹杂物与基体的界面产生并沿着夹杂物与钢基体界面扩展,致使夹杂物与基体界面脱开。 2、夹杂物本身开裂

由于脆性较矮杂物本身具有缺陷,在拉伸过程中,在缺陷处产生严重的应力集中,由于局部应力升高而导致夹杂物本身开裂。; 3、混合开裂 钢中非金属夹杂物的形状、分布是没有规律的,因此夹杂物在钢中引起裂纹也是随机性的,取决于夹杂物的性质、尺寸、形状及分布,对于同类型的夹杂物,由于形状、分布和受力方向不同,往往产生断裂的情况也不尽相同,有时两种断裂方式同时存在,有时两种断裂方式交替进行。4、沿两种不同类型夹杂物的相界开裂 钢中经常出现几种夹杂物相共生在一起的复合夹杂物,由于各类夹杂物之间的力学性能和物理性质不同,相界结合力较弱,在拉应力作用下容易从相界开裂。 二、偏析引起的钢丝断裂 在一定程度上,中心偏析对钢丝拉断的危害必脆性夹杂物。因为偏析在更大程度上影响了钢丝的延伸性,从而使塑性变形不能在存在偏析的地方产生。在钢丝最初的拉拔过程中偏析导致小的裂纹的出现,等进入了最终拉拔时就导致了人字形断口(chevroncracks) 在连铸过程中减少中心偏析的途径有以下几个: 1、中心偏析随着中包过热度的降低而降低,因此中包的钢液温度应该尽可能的低;

钢丝绳破断拉力计算公式

钢丝绳是工程施工中最常用的应力材料之一。对于技术人员或安全管理人员来说,掌握钢丝绳的最小断裂力是非常必要的。下面,介绍钢丝绳最小断裂力的简单计算公式。钢丝绳的最小断裂力:通过理论计算得到的钢丝绳的断裂力。计算公式:F0=k'*D2*r/1000F0-钢丝绳的最小断裂力(KN)r-钢丝绳中钢丝的名义抗拉强度(n/mm2)d-钢丝的公称直径钢丝绳(mm)k'-钢丝绳的最小断裂力系数,也称为抗拉强度。一般将其分为与钢丝材料有关的1570、1670、1770、1870和1960,常用的有1770和1870两种。K'是张力系数。有关各种钢丝绳的张力系数,请参见下表。在常规工程构造中,通常使用6×19和6×37钢丝绳。6×19较硬,单根线较粗,一般用作波浪风绳和拉丝;6×37型比较柔软,单根线比较细,通常用于磨削绳索和绞车绳索,需要穿过滑轮弯曲角度大的部分。钢丝绳的断裂力不等于许用拉力,该拉力是根据不平衡系数,动载荷系数和安全系数,根据不同的工况计算确定的。允许的拉力等于最小断裂力,连续除以不安全因素,不平衡因素和动载荷系数。电力安全规程中明确规定了钢丝绳的安全系数。钢丝绳安全系数的书面定义很难理解。其计算公式如下:安全系数=钢丝绳的断裂力/钢丝绳的允许拉力。我们尝试以更简单的描述来理解它。钢丝绳的断裂力是指断裂钢丝绳所需的力。钢丝绳的允许拉力是我在现实中可以用它拉起的最大力。如果描述不清楚,例如:一根绳子,我用两只手抓住两端,用力拉,我用10kg的力将其折断,这10kg的力称为折断力;我用这根绳子悬挂2kg的东西,根据安全系数的公式,将2kg的力称为允许拉力:安全系数=10/2=5

某矿平衡钢丝绳断绳事故分析报告

某矿平衡钢丝绳断绳事故分析报告 一、某矿副立井提升系统概况: 某矿副立井井深1050米,双层四车罐笼提升,采用六根主绳、三根平衡钢丝绳。平衡钢丝绳采用宁夏钢丝绳厂生产的4×8×9-143×24-140型扁平衡钢丝绳,全长1024米。3#平衡钢丝绳于2000年9月27日更换使用,截止断绳为止,该绳的使用周期为28个月。某矿平衡钢丝绳断绳事故分析报告。 二、事故经过: 2003年1月1日检查3#平衡钢丝绳时发现锈蚀情况逐渐加重,并且有散股现象,用铁丝进行捆绑后继续使用;并加大对平衡钢丝绳检查力度,由规定的每周检查一次改为每4天检查一次。2003年2月3日检查发现在距大罐26米处有3根断丝,此后改为每天检查一次;并开始准备平衡钢丝绳更换工作。2月8日平衡钢丝绳已到位,其它准备工作已基本完成。2003年2月9日检查发现散股点增多,在距大罐26米处3#平衡钢丝绳断一边股,在距大罐20米处又断一边股。2月10日专业根据日报表组织检查,发现平衡钢丝绳状态不良,距大罐26米处断股增加至两股;断股面积占总截面的6.3%(规定不得超过10%),要求更换平衡钢丝绳。矿在2月10日下午4:00生产

会上决定于2003年2月12日早8点到18点停产更换平衡钢丝绳。2月11日早5:40大罐正常运行到井口停车位置正常停车后,在距大罐26米处3#平衡钢丝绳发生断裂,造成断绳事故。事故发生后,矿立即组织有关部门进行处理,于13日晚23:00将断绳处理完毕,造成直接事故影响时间41小时。13日凌晨开始巡查井筒装备,除泄漏通讯和下井打卡电缆损坏外,供电电缆、罐道等井筒装备均未损伤。随后开始更换平衡钢丝绳,鉴于另两根平衡钢丝绳均已锈蚀较严重,于2月15日早9点三根平衡钢丝绳全部更换完毕正常运行。 三、事故原因: 1、矿专业领导对钢丝绳的锈蚀情况认识不足,采取措施不及时、不得力,是事故的主要责任。 2、机电部对钢丝绳检查记录所表现的问题没有引起足够的重视,更没有提出专业的主导意见,专业管理不到位,是事故的重要原因。 3、工区安全管理责任制落实不好,未及时总结钢丝绳使用周期及变化规律,3#平衡钢丝绳使用周期较长,锈蚀较严重;未引起充分重视,现场管理不到位,也是事故的重要原因。 4.查绳工虽然是多年从事这项工作,技术业务不熟练,对绳的损坏程

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

矿平衡钢丝绳断绳事故分析报告

矿平衡钢丝绳断绳事故 分析报告 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

某矿平衡钢丝绳断绳事故分析报告一、某矿副立井提升系统概况: 某矿副立井井深1050米,双层四车罐笼提升,采用六根主绳、三根平衡钢丝绳。平衡钢丝绳采用宁夏钢丝绳厂生产的4×8×9-143×24-140 型扁平衡钢丝绳,全长1024米。3#平衡钢丝绳于2000年9月27日更换使用,截止断绳为止,该绳的使用周期为28个月。某矿平衡钢丝绳断绳事故分析报告。 二、事故经过: 2003年1月1日检查3#平衡钢丝绳时发现锈蚀情况逐渐加重,并且有散股现象,用铁丝进行捆绑后继续使用;并加大对平衡钢丝绳检查力度,由规定的每周检查一次改为每4天检查一次。2003年2月3日检查发现在距大罐26米处有3根断丝,此后改为每天检查一次;并开始准备平衡钢丝绳更换工作。2月8日平衡钢丝绳已到位,其它准备工作已基本完成。2003年2月9日检查发现散股点增多,在距大罐26米处3#平衡钢丝绳断一边股,在距大罐20米处又断一边股。2月10日专业根据日报表组织检查,发现平衡钢丝绳状态不良,距大罐26米处断股增加至两股;断股面积占总截面的6.3%(规定不得超过10%),要求更换平衡钢丝绳。矿在2月10日下午4:00生产会上决定于2003年2月12日早8点

到18点停产更换平衡钢丝绳。2月11日早5:40大罐正常运行到井口停车位置正常停车后,在距大罐26米处3#平衡钢丝绳发生断裂,造成断绳事故。事故发生后,矿立即组织有关部门进行处理,于13日晚23:00将断绳处理完毕,造成直接事故影响时间41小时。13日凌晨开始巡查井筒装备,除泄漏通讯和下井打卡电缆损坏外,供电电缆、罐道等井筒装备均未损伤。随后开始更换平衡钢丝绳,鉴于另两根平衡钢丝绳均已锈蚀较严重,于2月15日早9点三根平衡钢丝绳全部更换完毕正常运行。 三、事故原因: 1、矿专业领导对钢丝绳的锈蚀情况认识不足,采取措施不及时、不得力,是事故的主要责任。 2、机电部对钢丝绳检查记录所表现的问题没有引起足够的重视,更没有提出专业的主导意见,专业管理不到位,是事故的重要原因。 3、工区安全管理责任制落实不好,未及时总结钢丝绳使用周期及变化规律,3#平衡钢丝绳使用周期较长,锈蚀较严重;未引起充分重视,现场管理不到位,也是事故的重要原因。

常见起重事故类型

常见的起重事故类型 1、脱绳事故 脱绳事故是指重物从捆绑的吊装绳索中脱落溃散发生的伤亡毁坏事故。造成脱绳事故的主要原因是重物的捆绑方法与要领不当,造成重物滑脱;吊装重心选择不当,造成偏载起吊或因吊装中心不稳造成重物脱落;吊载遭到碰撞、冲击、振动等而摇摆不定,造成重物失落等。 2、脱钩事故 脱钩事故是指重物、吊装绳或专用吊具从吊钩钩口脱出而引起的重物失落事故。造成脱钩事故的主要原因是吊钩缺少护钩装置;护钩保护装置机能失效;吊装方法不当及吊钩钩口变形引起开口过大等原因所致。 3、断绳事故 造成起升绳破断的主要原因多为超载起吊拉断钢丝绳;起升限位开关失灵造成过卷拉断钢丝绳;斜吊、斜拉造成乱绳挤伤切断钢丝绳;钢丝绳因长期使用又缺乏维护保养造成疲劳变形、磨损损伤等达到或超过报废标准仍然使用等造成的破断事故。

造成吊装绳破断的主要原因多为吊装角度太大>120度,使吊装绳抗拉强度超过极限值而拉断;吊装钢丝绳品种规格选择不当,或仍使用已达到报废标准的钢丝绳捆绑吊装重物造成吊装绳破断;吊装绳与重物之间接触处无垫片等保护措施,因而造成棱角割断钢丝绳而出现吊装绳破断事故。 4、吊钩破断事故 吊钩破断事故是指吊钩断裂造成的重物失落事故。造成吊钩破断事故原因多为吊钩材质有缺陷,吊钩因长期磨损断面减小已达到报废极限标准却仍然使用或经常超载使用,造成疲劳破坏以致于断裂破坏。 起重机械失落事故主要是发生在起升机构取物缠绕系统中,除了脱绳、脱钩、断绳和断钩外,每根起升钢丝绳两端的固定也十分重要,如钢丝绳在卷筒上的极限安全圈是否能保证在2圈以上,是否有下降限位保护,钢丝绳在卷筒装置上的压

板固定及楔块固定结构是否安全合理。另外钢丝绳脱槽(脱离卷筒绳槽)或脱轮(脱离滑轮〉事故也会发生失落事故。

螺栓断裂原因分析

螺栓断裂原因分析 螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。 静态紧固用螺栓很少会自行松动,也很少出现断裂情况。但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。 所以我认为螺栓损坏的真正原因是松动。螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。受径向力作用的螺栓可能会被剪断。 因此设计时,对于关键的运动部位的连接紧固要注意防松设计。 自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。 对于弹簧垫片的放松效果,一直存在争议。 弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。

以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。所以,弹簧垫圈对螺栓的防松作用可以忽略。另外,在螺栓与被连接件之间增加一个垫圈,如果垫圈质量有问题,相当于给螺栓连接又增加了一个安全隐患。

钢丝绳断裂处理报告

****13#栋塔吊钢丝绳断裂 调查处理报告 建设单位:******************* 监理单位:********************** 施工单位:************************* 事件发生时间:2015年8月5日晚7点15分 事件发生地点:*********************** 事件发生经过: 2015年8月5日晚7点15分13#栋塔吊(QTZ63)在13#栋西单元屋面现浇起吊施工作业过程中,当塔吊起吊横臂旋转至12#栋西侧时,吊钩钢丝绳突然断裂,使混凝土料斗跌落在车库顶板上面未造成严重后果的安全事故。 事件原因分析: 主要原因是13#栋塔吊司机观察能力不强,安全意识淡薄,检查不到位,致使钢丝绳起了折痕而未被发现导致钢丝绳突然断裂。次要原因是租赁单位对塔吊司机安全教育、培训、学习教育不够,安全管理、日常保养和维修保养检查落实不到位应负主要管理责任以及项目部管理人员、安全员未及时巡视检查,对塔吊日常保养和维修保养制度监管不力。 事件整改措施: 根据事故原因分析,租赁单位(**********************)对本公司塔吊司机的安全知识、有关安全生产的法律、法规和塔式起

重机械的安全技术操作规程教育不到位,安全意识淡薄,忽视了安全生产的重要性。虽此次事故未造成人员伤害和财产损失,但性质严重。根据发生事故后四不放过的原则对事故的责任人塔吊司机处以600.00元罚款,对事故管理责任单位租赁公司罚款2000.00元一以及项目部安全员罚款600.00元。事故发生后引起项目部的高度重视,立即召集塔吊租赁方、塔吊司机、项目部主管生产安全负责人、安全员及劳务公司负责人立即安排专人对12#、13#、15#三台塔吊进行全面检查,排除一切事故隐患,把事故消灭在萌芽状态,确保塔吊安全正常运转。这次塔吊事故的发生,说明了租赁方和项目部在塔吊安全管理方面存在一定的问题,管理不到位,租赁方和项目部生产、安全部门加强对塔吊的安全管理力度,对忽视安全生产、违章指挥、违章操作,违反劳动纪律的人和事要严重处罚,决不手软,确保施工安全。 ************************* ******************* 2015年8月8日

煤矿井下钢丝绳断绳事故分析及防范措施

煤矿井下钢丝绳断绳事故分析及防范措施 发表时间:2018-07-09T09:58:28.767Z 来源:《电力设备》2018年第6期作者:唐云鹏侯龙华周志宏 [导读] 摘要:当前我国煤矿产业在不断进行产业升级,而煤矿生产安全是社会各界异常关注的问题,本文针对煤矿井下钢丝绳短绳事故发生的原因进行了分析,同时提出了相应的预防措施,并就煤矿提升钢丝绳安全的策略进行了探究。 (山西兰花科技创业股份有限公司唐安煤矿分公司山西 048407) 摘要:当前我国煤矿产业在不断进行产业升级,而煤矿生产安全是社会各界异常关注的问题,本文针对煤矿井下钢丝绳短绳事故发生的原因进行了分析,同时提出了相应的预防措施,并就煤矿提升钢丝绳安全的策略进行了探究。 关键词:煤矿井下钢丝绳;断绳事故分析;防范措施 引言 钢丝绳作为挠性构件,主要被应用在矿山与建筑等领域,作为提升设备与起重设备等提升辅助材料。钢丝绳在实际应用的过程中,受到弯曲作用与力作用等,长期以往则会造成磨损与断丝等问题,轻则造成经济损失,重则造成安全事故,甚至人员伤亡。钢丝绳作为机械损耗部件,是设备主要的安全部件。我们应该就钢丝绳的短绳等事故问题进行分析,并提早采取措施进行防范。 1煤矿井下钢丝绳断绳的主要原因和预防措施 1.1过载 井下刚采出的煤中含有较多的水分和矸石,使煤的比重增大,这样会导致箕斗过载。斜井提升出现的超挂车、刮卡车辆、拉掉道车辆都会导致过载。过载会增加钢丝绳的变形量,降低钢丝绳的使用寿命,最终导致断丝。 钢丝绳过载的预防措施: 箕斗提升实行定量装载,常用的定量装载类型有定量斗箱式和定量输送机式两种。斜井提升杜绝超挂车现象。 1.2锈蚀 煤矿矿井井筒条件比较恶劣,提升钢丝绳受淋水、酸性气体、杂散电流等作用会发生电化学腐蚀。钢丝绳被腐蚀后会出现应力集中、韧性降低、抗拉强度和抗冲击度降低等现象,钢丝绳一旦受到较小的冲击力就会引起断裂事故。 钢丝绳锈蚀的预防措施: ①矿水酸碱度较高且处于出风井中的提升钢丝绳腐蚀严重,应选用镀锌钢丝绳。②定期润滑钢丝绳。润滑既可以保护钢丝绳外部钢丝不被腐蚀,又能补充绳芯缺失的润滑油,防止水分浸入绳芯造成内部钢丝腐蚀生锈。缠绕式提升机使用的钢丝绳润滑油要符合钢丝绳制造厂提出的要求,钢丝绳必须每月涂油一次;摩擦提升机使用的钢丝绳只能涂专用的润滑油,钢丝绳每季度涂油一次。涂油时应先除掉钢丝绳表面的锈迹,润滑油才能从钢丝绳表面充分渗入到绳芯,消除绳芯干燥现象。润滑油要黏性好、抗振动、抗淋水,有较好的黏温性、防锈性和润滑性,具有一定的透明度,以方便检查钢丝绳断丝和损坏情况。③尾绳的接头处浇铸过巴氏合金后应解开扎圈浸油防护。④定期调整上下绳,按《规程》做绳头和剁绳头试验。 1.3磨损 磨损的机理可分为以下几种: ①外部磨损。滚筒或天轮在缠绕钢丝绳过程中,钢丝绳外周会与绳槽、挡绳板、相邻钢丝绳等之间发生摩擦导致钢丝绳外部磨损。钢丝绳发生外部磨损后其直径将变细,抗拉强度会随之降低,容易发生断绳事故。②内部磨损。钢丝绳经过滚筒或天轮时会发生弯曲,由于各根钢丝曲率半径不相同,其内部钢丝之间会相互摩擦从而导致钢丝绳内部磨损。当反复拉伸、弯曲钢丝绳时,其内部钢丝会因疲劳磨损而折断。③变形磨损。钢丝绳发生相互缠绕、打结和“咬绳”会引起钢丝绳发生变形,变形部位更加容易磨损,会出现钢丝硬化、强度降低,最终缩短钢丝绳的使用寿命。 钢丝绳磨损的预防措施: ①避免钢丝绳在滚筒上打缠以及遭受撞击。②多层缠绕时,为了减轻“咬绳”造成的磨损,钢丝绳应每两个月调四分之一圈。③钢丝绳选型要合理,通常选用同向捻钢丝绳,绳的捻向与绳在滚筒上的缠绕螺旋线方向一致。为防止内部磨损,提升钢丝绳应采用线接触钢丝绳,有特殊用途的地方采用面接触钢丝绳。④以磨损为主要损坏的环境,如斜井提升,应选用外层钢丝较粗的钢丝绳或面接触钢丝绳。⑤每天检查钢丝绳的断丝情况,断丝严重时应及时处理。 1.4疲劳 钢丝绳在使用过程中发生疲劳破坏时,容易使钢丝绳韧性下降,最终导致断丝。钢丝绳在起动和制动时变化的拉伸应力,滚筒缠绕钢丝绳时钢丝绳受到变化的弯曲和扭转应力,是产生疲劳破坏的主要原因。在钢丝绳绳股弯曲程度最高一侧的外层钢丝最容易发生疲劳断丝。 钢丝绳疲劳的预防措施: ①选择符合规定的绳轮直径和绳径比,以减小钢丝绳的弯曲应力。②提升机应缓慢启动或制动(降低加速度),防止拉伸应力变化过大,降低疲劳强度。③以弯曲疲劳为主要损坏时,优先选用线接触式或三角股钢丝绳。 2煤矿提升钢丝绳机械损伤防护措施 2.1选择性能较高的提升钢丝绳 煤矿钢丝绳机械损伤发生后,则很难判断是因为使用因素还是自身因素造成的,对此在进行钢丝绳选择的过程中,则需要选择优质的提升钢丝绳,并且需要加强运输与存储等环节的质量保证,合理的采取安装技术,减少安装问题与异常情况的发生,通常情况下提升钢丝绳在磨合期发生损伤的几率相对较小,但是若使用劣质钢丝绳或者不合适的钢丝绳,则极有可能发生损伤问题,对此需要尽量选择使用寿命以及安全性较高的钢丝绳,以减少钢丝绳机械损伤问题。按照产品保存与运输等相关标准,做好运输与存储,进行安装时则需要进行磨合处理,在进行安装的过程中,则需要加强对钢丝绳性能的检测与检查。 2.2利用无损检测技术 在提升钢丝绳日常维护过程中,利用无损检测技术,来进行提升钢丝绳机械磨损问题检测工作,主要利用 LWA 法与LF 法。 LMA 法检测原理是:当提升钢丝绳基于一定速度经过磁场后,钢丝绳轴向会被磁化饱和,于磁回路可以感应的范围内,其磁通量和轴向面积之间是存在正比关系的,而且提升钢丝绳上方传感器所测量出的磁通量变化,其与横轴截面积变化是相互对应的。 LMA 方法能够准确的检测出提升钢丝绳的内部磨损问题以及锈蚀问题等,同时可以精确的计算缺陷面积。 LF 法检测原理:当磁饱和的提升钢丝绳发生局部缺陷后,断丝周围便会出现散漏磁场,利用磁场畸变信号,进行扫描,获得图谱,则能够直接检测出提升钢丝绳局部缺陷的位置。在利用此技术时,为了能够确保检测的准确性,则需要技术人员按照相关标准,开展检测作业,以确保检测的准确性以及安全性。

钢丝绳失效原因分析——钢丝绳疲劳

钢丝绳失效原因分析 ——钢丝绳疲劳 钢丝绳在使用过程中主要承受弯曲疲劳和拉伸、扭曲、振动引起的疲劳。钢丝绳疲劳破坏的过程是在循环载荷作用下,绳中钢丝的局部最高应力处,最弱的及应力最大的钢丝内部晶粒上形成微裂纹,然后裂纹慢慢发展,最终导致疲劳断丝。所以,疲劳破坏经历了裂纹形成、扩展和突然断裂三个阶段。 l)弯曲疲劳。钢丝绳重复通过滑轮或卷筒中挠上挠下,无数次的弯曲,容易使钢丝产生疲劳,韧性下降,而内部钢丝之间互相挤压出现细微变形也会产生弯曲应力,导致断丝。钢丝绳弯曲疲劳对破断拉力有一定的影响,当出现第一根疲劳断丝时,点接触钢丝绳破断拉力下降4%一8%,线接触钢丝绳下降约12%。通常情况下,疲劳断丝的出现意味着钢丝绳已经接近使用后期。 拉伸、扭曲、振动引起的疲劳。钢丝绳在起动和制动的始末,捆扎钢丝绳在承受载荷的前后,变化的拉伸应力会引起金属疲劳。此外,钢丝绳经常受到扭曲和振动也是产生疲劳的原因。疲劳损伤的原理是在变应力的作用下,细钢丝表面首先由于各种滑移形成初始裂纹,然后裂纹尖端在切应力的作用下反复塑性变形,使裂纹扩展直至断裂,疲劳引起的断丝一般断口平齐,多半出现在表层钢丝上。他们很有规律。 防止钢丝绳疲劳损伤措施 为防止钢丝绳疲劳损伤,可从以下几方面着手: 1)在条件许可的情况下,应尽可能使卷筒和滑轮的直径加大。直径的增大,增大了弯曲角度,减少了钢丝绳中钢丝的弯曲应力,可显著提高钢丝绳的疲劳寿命。 2)在更换新绳时,应遵守“上出上进,下出下进”的原则,尽量避免使钢丝绳反向弯曲。试验数据表明,反向弯曲的破坏约为同向弯曲的2倍。 3)尽可能选择丝径较粗的线、面接触钢丝绳。使用这些钢丝绳能成倍地提高使用寿命。 注: 应力:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。 塑性:力学专业术语,英文专业名:Plasticity. Ductility,Briquettability.是指在外力作用下,材料能稳定地发生永久变形而不破坏其完整性的能力。

钢锭_坯_在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径

甘肃冶金 2001年3月 第1期钢锭(坯)在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径 贾 静 (兰州钢铁公司 甘肃省 兰州市 730020) 摘 要 分析了钢锭(坯)轧制过程中出现翘皮、裂纹、断裂等常见缺陷的原因,并且提出了解决问题的途径。 关键词 分析解决 缺陷 途径 1 前言 钢锭(坯)在轧制过程中会出现翘皮、裂缝、断裂等多种缺陷而致废。由于种种原因,90年代初以来,特别是近几年里,钢锭(坯)轧裂和翘皮的数量骤然上升并有居高不下之势。为此,我们将近几年来发生的钢锭(坯)轧废情况统计分析结果列于表1(数据以每年退换钢锭的数量为依据)。 表1 钢锭(坯)轧裂退换统计表 年 份钢 种废品数量致 废 原 因小 时(t) 1995 1996 1997 1998 1999Q195—Q235沸钢258钢锭重接19.08t,翘皮、断裂Q235镇静钢—  Q195—Q235沸钢118翘皮、断裂 150220M nSi连铸坯70夹杂、断裂 20M nSi钢47断裂 Q195—Q235沸钢44翘皮、断裂 150220M nSi连铸坯80夹杂、断裂 1502Q235连铸坯40脱方 Q235镇静钢100纵裂纹、发纹 Q195—Q235沸钢220翘皮、断裂 Q235镇静钢110裂纹、断裂 Q195—Q235沸钢20断裂、裂口 Q235镇静钢240纵裂纹、裂口、断裂 258 235 264 330 260 9 收稿日期:2000-12-28

表1的统计结果表明: 早期镇静钢锭质量比沸腾钢锭的好,但近两年来质量有下滑趋势。 钢锭(坯)在轧制过程中退废的主要缺陷是翘皮、裂纹和断裂。平均每年退换钢锭293t ,由此造成的经济损失30余万元。 根据金属学和钢的热塑性变形原理,结合现场生产的实际情况,作者对这些缺陷的成因从炼钢工艺和轧钢工艺两方面进行分析。2 炼钢工艺对钢锭质量的影响2.1 化学成分的影响 对于碳素结构钢来讲,就元素影响而言造成轧制过程中出现裂纹、断裂极为有关的元素有S 、M n 、P 、Cu 。2.1.1 元素S 、M n 的影响及S 的“ 热脆”缺陷对大量轧裂钢锭化学成分的分析结果表明,元素S 的超标准上限及元素Mn 的低标准下限是钢锭轧裂的重要原因。 高硫钢锭经轧制后通身四面都有严重裂缝,有时只经过粗轧几道就断成碎块。其致废的机理是:S 是生铁或燃料中天然存在的杂质,由于S 在固态Fe 中的溶解度很小,几乎不能溶解。它在钢中以FeS 的形式存在,而FeS 和Fe 易形成熔点较低(仅有985℃)的共晶体,当钢在1100~1200℃进行热加工时,分布于晶界的低熔点共晶体固熔化而导致开裂,这就是通常所说的S 的“热脆”现象。在冶炼中为了清除S 的有害作用,必须增加钢中的含M n 量,使Mn 与S 优先形成高熔点的M nS,其熔点高达1620℃而且呈粒状分布于晶粒中,从而可以有效地防止或避免S 在钢中的“热脆”现象。2.1.2 元素P 的影响及P 的“冷脆”缺陷 通常,元素P 超标的钢锭在热轧过程中不出现裂纹或断裂,但成品坯(材)冷却至室温就会发生“冷脆”现象,在远远小于钢材力学指标力的作用下就发生脆断。 其机理是:室温下钢中的P 可全部溶于钢的铁素体中,使钢的强度、硬度增加,塑性、韧性显著降低。这种钢坯(材)的“冷脆”现象在我厂的生产中偶有发生。2.1.3 元素Cu 的影响及富Cu 轧制的网状裂纹 1997年10月,我厂轧制的Q 235镇静钢68方坯有两批总重量101.36t 成品钢坯表面出现了严重的裂纹,其症状如图1所示,可见钢坯通身有网状裂纹。经取样做成分分析发现Cu 含量在0.6%~0.8%,严重超标。 图1 富铜轧制的网状裂纹 元素Cu 超标造成钢锭热轧开裂的原因是:由于西域废钢资源的特点,含Cu 量有时较高。当钢中含Cu 量超过0.4%且它在加热炉中的氧化性气氛中较长时间加热时,由于选择性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富Cu 合金,这层合金在约1100℃时熔化并浸蚀钢的表层,使钢在热加工时开裂并多形成网状裂纹。 因此,在技术标准中对碳素结构钢中残余铜元素的含量有明确规定,应该不高于0.3%。2.2 炼钢脱氧操作及浇注工艺的影响 我厂轧制钢锭从脱氧方式上分沸腾钢和镇静钢。由于钢液脱氧方式及结晶热力学的条件10

钢丝绳安全禁忌

仅供参考[整理] 安全管理文书 钢丝绳安全禁忌 日期:__________________ 单位:__________________ 第1 页共6 页

钢丝绳安全禁忌 1、编结接长的钢丝绳作为主绳使用。 后果当使用编结的钢丝绳时,在编结部位会引起钢丝绳直径的变化,当钢丝绳穿绕滑轮组时,会引起二者之间的摩擦,严重时引起滑轮组、钢丝绳的损坏,出现安全事故。且编接的钢丝绳抗拉强度总达不到整根钢丝绳的抗拉强度,在重要设备吊装时,禁止采用编结接长的钢丝绳作为主绳使用,否则可能出现安全事故。 措施(1)不采用编结接长的钢丝绳做主绳。 (2)当现场条件必须要求采取编结时,应在项目工程师的同意下,应采取大接方法,且编结长度为钢丝绳直径的800~1000倍,且经过试拉无问题后方可使用。 2、在钢丝绳与重物的棱角处不采取保护措施而进行吊装作业。 后果吊运的物件边缘处较锋利,会造成捆扎的千斤绳磨断或损伤千斤钢丝绳。由于起吊重物以后,钢丝绳受到张力,特别在荷载较大时钢丝绳塑性加大,在重物的棱角处与钢丝绳子间不加设衬垫,会导致钢丝绳在棱角处弯折以及钢丝被金属棱角切断,而导致钢丝绳提前报废,或者在吊装过程中因钢丝绳被切断而出现事故。 措施加强起重工的责任心的教育,加强吊装前的安全检查,在与钢丝绳接触的重物的棱角处垫上方木或半圆管等,以起到对钢丝绳(或设备)的保护作用。 3、作业时钢丝绳与电焊把线及其他电源线接触。 后果(1)当起重作业时,钢丝绳与电焊把线相接触,则会磨破把线的绝缘层,产生的电火花则会灼伤、熔断钢丝钢绳的钢丝,导致钢丝绳的承载能力下降直至报废,施工时没有发现时则会出现钢丝绳断裂, 第 2 页共 6 页

电梯曳引钢丝绳早期断丝断股的原因分析精编版

电梯曳引钢丝绳早期断丝断股的原因分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电梯曳引钢丝绳早期断丝断股的原因分析 随着电梯的提升速度越来愈快,对配套在电梯上的钢丝绳质量要求也越来越高。电梯在运行过程中,钢丝绳经常会出现早期断丝、断股现象,这直接影响电梯的安全运行。1、捻制质量在钢丝绳的生产过程中,捻制质量是关键,如果控制不好,就容易出现质量异议。如绳芯直径的均匀度直接影响钢丝绳直径的稳定性,绳芯直径一旦出现较大偏差,就会导致局部钢丝绳直径产生较大的公差,电梯在运行过程中,绳径粗的位置,容易与绳轮之间形成不规则的磨损,出现早期疲劳磨损断丝再断股。2、运输保管a、在运输过程中,使用铲车装卸时,如果铲刀铲倒钢丝绳,就会造成钢丝绳局部损伤变形,损伤部位的钢丝机械性能就会降低。如果损伤的钢丝绳装上电梯,经过短期运行后,会出现早期断丝、断股的现象。b、钢丝绳存放在工地,如果保管不善,一旦受到雨水的浸泡或沾上工地上的水泥、沙浆等杂物,会使钢丝绳受到腐蚀,腐蚀部分的表面钢丝的机械性能大大降低。将这样的钢丝绳装上电梯后,会出现早期疲劳断丝、断股,缩短钢丝绳的使用寿命。3、现场安装a、由于现在电梯绕绳比为2: 1的比较多,曳引钢丝绳需要绕过轿顶轮、曳引轮、导向轮、对重轮等多个绳轮,如果在放绳过程中操作不当,会导致钢丝绳出现局部损伤(如起扭、打结、被其他尖锐物刮切等),损伤部位的钢丝绳强度就会降低。如果装在电梯上,会出现早期断丝、断股的现象。b、安装现场焊接构件时,如果电焊渣溅到钢丝绳上,会造成钢丝绳表面钢丝受到灼伤,灼伤后的钢丝绳装上电梯也会引起钢丝绳出现早期断丝、断股。c、如果绳轮槽内有异物(电梯安装时留下的),高速运行中的钢丝绳某点被该异物硌到后,该点的一根或多根钢丝可能会受到损伤,损伤部位的钢丝扭转性能受到影响。随着电梯运行的次数增加,被异物硌过的钢丝损伤也会越严重,经过一定时间后会出现断丝断股的现象。d、曳引轮、导向(反绳)轮之间的位置差异也是一个原因。如果机房内的曳引轮与导向(反绳)轮的平行度和垂直度都超过标准规定的1mm和0.5mm时,会引起钢丝绳与轮槽之间产生侧磨。这不但损坏轮槽,更会造成钢丝绳出现早期磨损断丝、断股。 e、“三分之二理论”也是一根原因。现场曳引绳早期断丝、断股的位置绝大多数出现在电梯提升高度2/3处的对重侧钢丝绳上(人站在轿顶检查),这个位置正好是电梯安装时,曳引绳放到下面经过对重轮穿头打弯的位置。如果上下配合不好,曳引钢丝绳很容易在该处产生扭结,从而导致钢丝绳局部受到损伤变形。变形后的钢丝绳表面钢丝的机械性能损失较大,经过运行,短时间内很日很容易出现断丝、断股的现象。4、张力问题电梯安装完成后,要求曳引绳之间的张力调整到互差值不大于5%,但是对于曳引比为2:1的电梯,很难达到该要求,很容易使得各绳之间受力不均。在此情况下,张力大的绳,容易首先出现疲劳断丝,张力小的钢丝绳则容易在绳槽内打滑、打滚、振动,造成绳与轮之间产生偏磨进而产生磨损断丝。5、维护保养电梯使用一定时间后,曳引钢丝绳

GBT5972-2006起重机械用钢丝绳检验和报废实用规范

起重机械用钢丝绳检验和报废实用规范 GB/T5972-2006/ISO4309:1990 1 范围 a)本标准规定了钢丝绳检验和报废的一般原则,本标准适用于下列起重机: b)钢索及门式缆索起重机 c)悬臂起重机 d)甲板式起重机 e)桅杆及牵索式桅杆式起重机 f)斜撑桅杆式起重机 g)浮式起重机 h)桥式起重机 i)门式或半门式起重机 j)门座或半门座起重机 k)铁路起重机 l)塔式起重机 这些起重机可用吊钩、抓斗、电磁盘、料桶、铲斗、集装箱专用吊具、堆垛叉等作业,并可以手动、机动、电动或液压操纵。 本标准也适用于钢丝绳电动葫芦。 本标准所涉及的起重机词汇可参照ISO 4306-1; 本标准所涉及到的机构分级可参照ISO 4301-1。 2 术语和定义 下列术语和定义适用于本标准 2.1 钢丝绳芯 支撑钢丝绳外部绳股的部分。在6股钢丝绳和8股钢丝绳的结构中绳芯库用一根天然或人造纤维绳、一根钢丝绳股或若干根钢丝绳股(呈螺旋形拧成单根较细的钢丝绳)制成。 2.2 卷筒上换层部分钢丝绳 由于卷筒槽型或底层钢丝绳外型的作用,钢丝绳由一圈绕到另一圈而改变其正常轨迹的绳段。 2.3 钢丝绳的检验记录 由起重设备用户作的记录,附录B给出了典型示例。 2.4 间隙 存在于绳股中的各钢丝绳之间或钢丝绳中同层的各绳股之间的间隙。 2.5 接触点 各绳股之间的接触部分,接触部位的钢丝绳可能因无绳股间隙而出现断裂。 2.6

卷筒上的钢丝绳多层缠绕 钢丝绳在卷筒上连续缠绕形成了多个层面(此多层缠绕为螺旋型或平行型,后者指钢丝绳由一层绕至另一层的缠绕型式与卷筒上钢丝绳在固定处的缠绕型式一致)。 2.7 同向捻 钢丝绳中绳股的捻向与外层钢丝的捻向相同。 2.8 捻距 由各股形成的螺距。 2.9 多层股绳 由若干层绳股缠绕形成的钢丝绳,如果一层或多层绳股缠绕方向与外部绳股的方向相反,则可减小钢丝绳的旋转特性;如果所有绳股缠绕方向相同,则无此优点。 2.10 交互捻 钢丝绳中绳股的捻向与其外层钢丝的捻向相反。 2.11 卷盘 用于运输包装时,缠绕钢丝绳的可转到件,可为木制或钢结构,根据缠绕钢丝绳的质量而定。 2.12 钢丝绳的实际直径 钢丝绳的外接圆直径。 2.13 钢丝绳的公称直径 钢丝绳直径的标称值,单位:毫米。 2.14 抗扭钢丝绳 呈螺旋形缠绕的、外层有8根以上(包括8根)绳股、且外层绳股绳股与内层绳股的缠绕方向相反的钢丝绳。 3 钢丝绳 3.1 安装前的状况 用户应保证钢丝绳状况符合本标准的规定。 新更换的钢丝绳一般应与原安装的钢丝绳同类型、同规格。如采用不同类型的钢丝绳,用户应保证新钢丝绳不低于原选钢丝绳的性能,并与卷筒和滑轮上的槽形相适应。 当起重机上的钢丝绳系由较长的绳上切下时,为防止其松散,应对切断处进行处理。 在重新安装钢丝绳装置之前,应检查卷筒和滑轮上的所有绳槽,确保其完全适合更换的钢丝绳。 3.2 安装 当从卷轴或钢丝绳卷上抽出钢丝绳时,应采取措施防止钢丝绳打环、扭结、弯折或粘上杂物。 如果当钢丝绳空载时与机械的某个部位发生摩擦,则应将能接触到的部位加以适当防护。 在钢丝绳投入使用之前,用户应确保与钢丝绳工作有关的各种装置已安装就绪并运转正常。

起重机钢丝绳断裂事故树

起重机钢丝绳断裂事故树 案例分析题:(40)分 轮式汽车起重吊车,在吊物时,吊装物坠落伤人是一种经常发生的起重伤人事故,起重钢丝绳断裂是造成吊装物坠落的主要原因,吊装物坠落与钢丝绳断脱、吊钩冲顶和吊装物超载有直接关系。钢丝绳断脱的主要原因是钢丝绳强度下降和未及时发现钢丝绳强度下降,钢丝绳强度下降是由于钢丝绳质量不良、钢丝绳腐蚀断股和变形,而未及时发现钢丝绳强度下降主要原因是日常检查不够和未定期对钢丝绳进行检测;吊钩冲顶是由于吊装工操作失误和未安装限速器造成的;吊装物超载则是由于吊装物超重和起重限制器失灵造成的。请用故障树分析法对该案例进行分析,做出故障树,求出最小割集和最小径集。假如每个基本事件都是独立发生的,且发生概率均为0.1,即q1=q2=q3=…q n=0.1,试求钢丝绳裂事故发生的概率。 最小割集计算: T=A1+A2+A3 =B1B2+X6X7+X8X9 =(X1+X2+X3)(X4+X5)+X6X7+X8X9 =X1X4+X1X5+X2X4+X2X5+X3X4+X3X5+X6X7+X8X9 则最小割集有8个,即 K1={X1,X4};K2={X1,X5};K3={X2,X4};K4={X2,X5};K5={X3,X4};K6={X3,X5};K7={X6,X7};K8={X8,X9}。 最小径集计算: T′=A1′·A2′·A3′ =(B1′+B2′)(X6′+X7′)(X8′+X9′) =(X1′X2′X3′+X4′X5′)(X6′+X7′)(X8′+X9′)

= (X 1′X 2′X 3′X 6′+X 1′X 2′X 3′X 7′+X 4′X 5 ′X 6′ +X 4′X 5′X 7′)(X 8′+X 9′) = X 1′X 2′X 3′X 6′X 8′+X 1′X 2′X 3′X 6′X 9′ +X 1′X 2′X 3′X 7′X 8′+ X 1′X 2′X 3′X 7′X 9′ +X 4′X 5′X 6′X 8′+X 4′X 5′X 6′X 9′ +X 4′X 5′X 7′X 8′+ X 4′X 5′X 7′X 9′ 则故障树的最小径集为8个,即 P 1={X 1,X 2,X 3,X 6,X 8}; P 2={X 1,X 2,X 3,X 6,X 9}; P 3={X 1,X 2,X 3,X 7,X 8}; P 4={X 1,X 2,X 3,X 7,X 9}; P 5={X 4,X 5,X 6,X 8}; P 6={X 4,X 5,X 6,X 9}; P 7={X 4,X 5,X 7,X 8}; P 8={X 4,X 5,X 7,X 9}; 起重钢丝绳断裂事故发生概率计算: 根据最小割集计算顶上事件的概率 g =1-(1-q k 1)(1-q k 2)(1-q k 3)(1-q k 4)(1-q k 5) (1-q k 6)(1-q k 7)(1-q k 8) =1-(1-q 1q 4)(1-q 1q 5)(1-q 2q 4)(1-q 2q 5)(1-q 3q 4)(1-q 3q 5)(1-q 6q 7)(1-q 8q 9) 由于q 1=q 2=q 3=q 4=q 5=q 6=q 7=q 8=q 9=0.1 G =1-(1-0.1×0.1)(1-0.1×0.1)(1-0.1×0.1)(1-0.1×0.1) =(1-0.1×0.1)(1-0.1×0.1)(1-0.1×0.1)(1-0.1×0.1) =1-(1-0.1×0.1)8 =1-0. 998 = 0.07726 基本事件的关键重要度(临界重要度) 当各基本事件发生概率不等时, 一般情况下, 改变概率大的基本事件比改变概率小的基本事件容易, 但基本事件的概率重要度系数并未反映这一事实, 因而它不能从本质上反映各基本事件在事故树中的重要程度。 关键重要度分析,它表示第 i 个基本事件发生概率的变化率引起顶事件发生概率的变化率, 因此, 它比概率重要度更合理更具有实际意义。 例如:某事故树共有2个最小割集:E1={X1,X2}, E2={X2,X3}。已知各基本事件发生的概率为: q1=0.4; q2=0.2; q3=0.3;排列各基本事件的关键重要度。 例:某事故树有最小割集K1={X1,X3}, K2={X3,X4}, K3={X1,X5}, K4={X2, X4 ,X5},各基本事件的发生概率分别为q1= q2=0.02, q3= q4=0.03, q5 123()0.116;(1)0.16;(2)0.49;(3)0.120.4(1)(1)0.160.552()0.116 0.2(2)(2)0.490.845 ()0.1160.3(3)(1)0.120.310()0.1(2)(1)(31)6g c c c g g g g g c g g c g g c g g P T I I I q I I P T q I I P I I q I I P T I T >======?===>=?==?=

相关文档
相关文档 最新文档