文档库 最新最全的文档下载
当前位置:文档库 › 高压电缆故障指示器

高压电缆故障指示器

高压电缆故障指示器
高压电缆故障指示器

https://www.wendangku.net/doc/567990106.html,/604

高压电缆故障指示器

一、电缆故障指示器工作原理

鼎升电力研发中心依据工作经验研发的DFDL-SI 10kV电缆故障指示器由传感器和显示器两部分组成,传感器负责探测电缆通过的电流,显示器负责对传感器传送来的电流信息进行判断及做出故障指示动作。

正常情况下,故障指示器不动作,故障指示灯不亮。当通过电缆的电流达到故障指示器设定的故障电流值,显示器会对由传感器传来的电流进行判断,如果过电流持续不到100~200ms,则此电流可能是电机起动等因素引起的瞬间起动过电流,不是故障电缆,因策显示器不动作。如果过电流持续超过100~200ms,则

https://www.wendangku.net/doc/567990106.html,/604 判断为故障电流,显示器动作,指示灯闪烁显示。显示器动作后再作一次判断,如果2s内电缆电流已恢复正常,说明上级开关重合闸成功,故障点已被排除,恢复正常供电状态,显示器回复初始状态,指示灯熄灭。如果2s内电缆电流消失,说明故障已引发上级开关跳闸而导致电缆失压,则确定为故障,显示器保持动作,指示灯继续闪烁,直到达到预设的时间限制或收到人工手动复位为止。

DFDL-SI 10kV电缆故障指示器因安装方便灵活的特别被广泛安装在架空线、电力电缆配电线路上、箱式变、环网柜、分支箱中,它能够迅速指明故障线路和故障点,减小停电面积,缩短故障排除和查找时间。准确指示瞬间故障,不仅利于排除供电隐患;为查找隐蔽永久性故障点提供了技术手段,避免传统多次拉路合闸巡线给电力设备带来的影响,同时也减轻了巡线人员劳动强度,提高售电量和供电可靠性。

https://www.wendangku.net/doc/567990106.html,/604 DFDL-SI 10kV电缆故障指示器主要包括检测电路、逻辑分析电路、信号触发电路、通信传输电路、电源电路等你模块,通过将检测到的上电、断电、接地、短路等信号通过无线射频方式传送到信号传输终端,最后驱动故障指示器的显示部分。

二、电缆故障分析

对于短路故障,故障指示器利用线路出线故障时电出现正突变以及线路停电的原理来检测故障。借助电磁感应法检测线路中通过的电流突变量和持续时间确定故障。通过检测电流突变量,能够减小误动作的概率,可以有效的避免出于线路继电保护在装置整定值改动或者是电力负荷突然增加而造成的故障指示器误动作。

因此故障指示器短路故障的判定依据为:

1、线路中通过的电流值突然升高。当线路出现短路故障时,导线中通过的电流值会突然增大,该在值得大小与电缆的长度、型号、敷设方式、环境温湿度等因素有关。

2、线路中的电流等于零。当电缆线路出现短路故障时,变电站线路出口保护动作,开关跳闸后线路停电,线路中的电流为零。

3、突变电流持续时间。为了提高故障指示器的动作准确性,需要和变电站的继电保护装置相配合,确定一个突变电流时间宽度。

以上述三个依据同时满足的条件下,故障指示器就判断电缆线路出现了短路

https://www.wendangku.net/doc/567990106.html,/604 故障。

对于接地故障,故障指示器利用小电流接地系统单相接地选线的原理来检测故障,具体包括半波法、5次谐波法、电容电流脉冲幅值法、零序电波检测法、可变负荷法等。故障指示器接地故障的依据为:

1、电压值突然下降。当电缆线路发生单相接地故障时,故障钳的对地电压会突然下降。由于受接地点接地电阻的影响,对应的电压值不一定都下降为零。另外在系统的负荷增加时,电压值也会出现降低的现象。为了鉴别因系统负荷升高而引起电压值下降的假接地现象,又不误判因非金属性接地引起的真接地现象,一般选取一个合适的接地点啊降百分数。

2、较大的接地电流。当线路出现单相接地故障时,故障点会流过较大的接地电流。其大小为系统正常运行时单相对地电容电流值得3倍。接地电流和大小与网络结构、系统电压和频率、电缆线路长度和型号等因素有关。

3、5次谐波电流值突然增大。当线路出现单相接地故障时,系统会产生电弧并诱发高次谐波。出于3此谐波的含量较小,一般采用5此写不怕电流进行分析。

4、接地持续时间。为了区别瞬间接地故障,指示器必须检测连续接地时间。

5、对接地瞬间的电容电流首半波和电压首半波进行分析比较。当接地瞬间的电容电流首半波和电压首半波的相位一致时,判断电缆线路发生了单相接地故障。

https://www.wendangku.net/doc/567990106.html,/604 三、电缆故障指示器安装

在安装DFDL-SI 10kV电缆故障指示器时,短路传感器必须安装在电缆的单相分支上,并进行紧固,防止滑动造成滑落。指示器应便于观察,不能倾斜。在架空电缆线路混合系统,故障指示器应安装在杆塔的电源侧,而不要安装在杆塔的负荷侧,以便杆塔上的设备发生故障时,该指示器也可以准确指示。

安装接地传感器时,应将电缆的三根导线包围起来,电缆的接地线必须回穿传感器并紧固,防止滑动造成滑落。此外,故障指示器安装时必须装设于电缆屏蔽层接地内侧,防止电缆发生单相绝缘击穿通过屏蔽层接地时,故障指示器不能够正确动作。

电缆的故障几种类型

电缆的故障几种类型 从今年已查找的低、中、高压电缆故障的结构特点分析,电缆单相接地故障较为普遍,多是因为电缆遭受外力破坏原因造成。也不排除本体质量造成,但这种内部短路从外表看不出痕迹较少见。电缆相间短路故障中较少,这是因为相间短路一般都是在运行中发生,发生故障时会产生强大的短路电流造成速断保护动作而跳闸。强大的电流所造成的高温一般都会把电缆烧断造成开路性故障。电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。 从电缆的故障位置看,一条电缆最薄弱的地方是中间接头,一般的电缆都有一个或几个中间接头,在做电缆中间接头时由于环境条件限制,加上电缆敷设后不进行防潮处理,制作时中间接管压接不紧密,都可能造成电缆中间接头受潮、工艺缺陷的出现。当运行中长期在高压电场的作用下产生电晕及游离放电,使绝缘本体形成水树直至绝缘老化并击穿。 从电缆故障的性质区分可分为开路、低阻、高阻和闪络性 故障四种:开路故障就是工作电压不能传输到终端,或虽然终端有电压,但带负载能力差。 低阻故障就是电缆相间或对地的绝缘受损,其绝缘电阻减小到100KΩ以下。 高阻故障就是电缆相间或对地的绝缘电阻大于100kΩ。 闪络性故障就是在高压保压过程中,突然击穿,在此电压下又能保压的故障。有别于高阻故障,在高压达到一定的电压肯定能击穿的故障。 故障性质Rf 间隙的击穿情况 开路∞ 在直流或高压脉冲作用下击穿 低阻小于100Z0 Rf不是太低时,可用高压脉冲击穿 高阻大于100Z0 高压脉冲击穿 闪络∞ 直流或高压脉冲击穿 说明:表中Z0为电缆的波阻抗值,电力电缆波阻抗一般在10-40Ω之间。) 以上分类的目的也是为了选择测试方法的方便,根据目前流行的故障测距技术,开路与低阻故障可用低压脉冲反射法,高阻故障要用冲击闪络法,而闪络性故障可用直流闪络法测试。以上几种故障都可以用二次脉冲法测试,这是目前世界上最先进的故障测试技术,国外以德国、奥地利为代表。现场人员有Rf<100KΩ的故障称为低阻故障的习惯,主要是因为传统的电桥法可以测量这类故障。 综合以上分析掌握以下几点是我们查找电缆故障的关键: 1、确定电缆故障到底属于开路故障、低阻故障还是高阻故障;

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.wendangku.net/doc/567990106.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.wendangku.net/doc/567990106.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.wendangku.net/doc/567990106.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 随着我国的市场经济与现代化科技水平的不断发展提升,加快促进了我国城乡基础设施的建设。而对于高压电缆而言,其主要作用为连接电气设备与传输电能,因具备优质的稳定性与安全性的特点,得到了我国全国范围内广泛应用与普及。但是高压电缆在日常运作中也会受到诸多因素的影响,例如不可预判的自然雷电灾害、忽略了使用年限超龄等,极易引发高压电缆故障,对城乡稳定供电产生困扰。基于此,为了有效及时的采取科学合理的措施解决高压电缆故障,我国电力工作者需要对高压电缆故障的分析判断能力与精确定位故障点能力进行提升。 标签:高压电缆;故障成因;故障点判断;故障点定位 高压电缆在电力系统中因占地面积小与送电可靠性高,电力工作者为了加强供电安全性与电厂规划布局、外观美化等性能方面逐渐深入了高压电缆的应用,并且高压电缆的正确合理运用还会对后续的电力系统维护保养工作提供基础保障。然而由一些因素导致可能会对稳定工作中的高压电缆造成一系列的负面影响,从而造成危害高压电缆正常供电运行的故障出现,为了有效排除故障,电力工作者将高压电缆故障的成因进行深度分析与探究对保证社会大众的生活生产用电极具现实意义[1]。 一、高压电缆故障成因 1机械损伤 电力工作者对高压电缆工作实际操作前,未对相关区域单位部门上报与获得批准,私自进行人工打桩或者机械开挖,其过程中发生人为误操作等情况,皆可能导致高压电缆断线故障。另外,电力工作者完成对线缆或线管的敷设安装后,对高压电缆标志牌未明确标明,一旦电缆受到过大的外力时,也会造成高压电缆的断线。经相关调查,这类高压电缆线路故障成因最为普遍。 2绝缘胶层老化变质 电力系统在经过长时间运行后会发生电流流经电缆发热现象,而后长期发热现象得不到有效缓解就会导致电流流经电缆的温度不断升高,从而对电缆的绝缘胶层造成一定程度的破坏;除此之外,铁塔地下土壤中存在的酸碱性物质等自然因素,久而久之也会腐蚀电缆的绝缘外套。 3电缆施工技术 一方面,在高压电缆安装时,电力工作者未根据相关技术标准进行违规造作。另一方面,在电力建筑工程中也会出现不同程度的下沉情况,让电缆承受了较大的压力,皆会导致高压电缆断线与短路的故障发生。

电缆故障测试仪漏电预防措施

电缆故障测试仪漏电预 防措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电缆故障测试仪漏电预防措施电缆故障测试仪在试验过程中及上电后,任何人不得进入高压区。试验现场要整洁、干净,不应存放其他无关的物品。在高压区间的地面上不应有杂乱的金属小块,被试品、升压变压器、耦合电容等应与周围保持适当距离。被试品、升压变压器、耦合电容等表面应保持干燥清洁,因为表面的湿气和污垢会引起表面的局部放电,导致测量异常。局部放电测试仪试验现场电压高达几万伏,试验人员应严格遵守所有安全预防措施。电缆故障测试仪试验区域应有明显、清晰的警示牌,现场任何人都应该知道高压区域。直接从事的测量人员应了解测量回路中所有带电元件、高压元件,不直接从事测量的人员应被隔离在试验区域之外。 电缆故障测试仪继续降低阻值对于A、B两相为高阻接地故障,最大限度地降低接地电阻值,可大大进步丈量,的正确度。对高压电缆利用高压脉冲法,效果很好。因低压电缆无法耐受高电压,在此情况下,我们想到利用直流发生器并联低压电容器充放电的方法进行直流冲击,既不伤害尽缘又能降低阻值。经过半小时的冲击放电后,A相对地尽缘电阻值降至39kΩ,再经过半小时的冲击放电,尽缘电阻值降至31kΩ后基本稳定,无降低趋势,停止冲击。 试验操作人员按规程要求连接线路,试验区各种金属物体应牢固接地,检查并改善试验区内一切可能放电的部位,特别注意各种地线是否

良好接地。在试验开始加压前,试验人员必须详细而全面地检查一遍线路,以免线路接错。特别应关注接地线、高压线和强电回路的连线是否牢固连接。 一般情况下,在试验过程中,被试品在耐压、预升压时局部放电量都比正常值大很多,电缆故障测试仪此时仪器的仪表必然会超出满刻度。为防止仪器损坏,应将仪器的增益粗调旋钮逆时针旋转一档或更多档,以不超出满刻度为标准。当电压降至测量电压时,再将增益粗调开关顺时针旋转一档或更多档,以便记录测量值。试验异常时,应首先切断电源,再作进一步处理。电缆故障测试仪在试验以前,操作人员应掌握测试线路、测试方法、测试步骤和测试目的。 电缆故障测试仪在试验开始加压以前,试验人员必须详细而全面地检查一遍线路,以免线路接错。测试仪器处的接地线是否与接地体牢固连接,若连接不牢或在准备工作时掐头去尾线被脚踢断,这将可能引起人身和设备事故。对于连接线应避免将尖端暴露在外,防止尖端电晕放电,尤其对于电压等级较高的局部放电试验,必要时要加粗高压连接线及加装防电晕罩,减小因场强过高引起的电晕放电。屏蔽罩不能与试品的瓷裙相接触。

浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法 发表时间:2019-04-11T14:01:57.313Z 来源:《河南电力》2018年19期作者:周荣斌[导读] 本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴 周荣斌 (福建省万维新能源电力有限公司福建福州 350003)摘要:本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴。 关键词:高压电缆;故障分析;电力1.高压电缆故障原因分析 按照故障产生的原因进行分类,高压电缆故障大致分为以下几类:厂家制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。下面进行分类介绍: 1.1厂家制造原因 厂家制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因两类。 一是电缆本体制造原因。一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。 二是电缆接头制造原因。高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。 1.2施工质量原因 因为施工质量导致高压电缆系统故障的事例很多,主要原因有以下几个方面:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 1.3设计原因 因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 2.高压电缆头制作技术 电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。 2.1高压电缆头的基本要求 良好的电缆附件应具有以下性能,线芯联接好,主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。绝缘性能好:电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。 2.2电场分布原理 高压电缆每一相线芯外均有一接地的(铜)屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。也就是说,正常电缆的电场只有从(铜)导线沿半径向(铜)屏蔽层的电力线,没有芯线轴向的电场(电力线),电场分布是均匀的。 在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线)。在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。那么在屏蔽层断口处就是电缆最容易击穿的部位。电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108~1012Ω?cm 材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。 为尽量使电缆在屏蔽层断口处电场应力分散,应力管与铜屏蔽层的接触长度要求不小于20mm,短了会使应力管的接触面不足,应力管上的电力线会传导不足(因为应力管长度是一定的),长了会使电场分散区(段)减小,电场分散不足。一般在20~25mm左右。 预制式安装要求比热缩的高,难度大。管式预制件的孔径比电缆主绝缘层外径小2~5mm。中间接头预制管要两头都套在电缆的主绝缘层外,各与主绝缘层连接长度不小于10mm。电缆主绝缘头上不必削铅笔头(在电缆芯线上尽量留半导体层)。铜接管表面要处理光滑,包适量填料。 关键技术问题是附件的尺寸与待安装的电缆的尺寸配合要符合规定的要求。另外也需采用硅脂润滑界面,以便于安装,同时填充界面的气隙,消除电晕。预制附件一般靠自身橡胶弹力可以具有一定密封作用,有时可采用密封胶及弹性夹具增强密封。预制管外面同热缩的一样,半导体层和铜屏蔽层,最外面是外护层。 3.电缆终端电应力控制方法

电力电缆故障原因及其普通地检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。

电桥电缆故障测试仪

电桥电缆故障测试仪基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点(低阻、高阻及闪络型击穿)及没有击穿但绝缘电阻偏低点的定位:如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。当然,也可用于电缆厂内各种线缆的缺陷点定位。粗测电缆故障定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。高压电桥电缆故障测试仪内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥置于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。与波反射法相比,高压电桥电缆故障测试仪特别适用于: 1.敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点,如电缆中间接头的线性高阻击穿(这种主要是由于电缆接头制作工艺不过关造成的。施加高压时只泄露爬弧不击穿放电)。 2. 高压电桥平衡法没有测试盲区,用于判断短电缆及靠近电缆端头的击穿点。 3. 高压电桥法仅仅要求电缆相线电阻的均匀性即可进行测量。而行波传输特性不好的电缆,如介质损耗很大的PVC低压电缆; ◎设备采用高频高压开关电源构成高压恒流源,电压高,电流稳定,体积小,重量轻。 ◎采用高灵敏度放大器及检流计指示平衡,与比例电位器构成平衡电桥,整体置于高电位。面板上的操作钮处于低电位,通过绝缘杆操作电桥。

电缆故障点查找方法

电缆故障点查找方法 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。 3、电容电流测定法电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1~2kV A单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。 测量步骤 (1)首先在电缆首端分别测出每芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。(2)在电缆的末端再测量每相芯线的电容电流Ia’、Ib’、Ic’的数值,以核对完好芯线与断线芯线的比容之比,初步可判断出断线距离近似点。 (3)根据电容量计算公式C=1/2πfU可知,在电压U、频率f不变时C与I成正比;因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长L,芯线断线点距离为x,则Ia/Ic=L/x,x=(Ic/Ia)L。测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。 4、零电位法零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接线如图5所示。测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加压E时,相当于在两个并联的均匀电阻丝两端

电缆故障测试仪说明书

电缆故障测试仪说明书 第一节概述 有线通信的畅通和电力的输送有赖于电缆线路的正常运行。一旦线路发生障碍,就会造成通信及时查出故障并迅速予以排除,就会造成很大的经济损失和不良的社会影响。因而,电缆故障测试仪是维护各种电缆的重要工具。电缆故障智能测试仪采用了多种故障探测方式,应用当代最先进的电子技术成果和器件,采用计算机技术及特殊性电子技术,结合本公司长期研制电缆测试仪的成功经验而推出的高科技,智能化,功能全的全新产品。 电缆故障智能测试仪是一套综合性的电缆故障探测仪器。能对电缆的高阻闪络故障,高低阻性的接地,短路和电缆的断线,接触不良等故障进行测试,若配备声测法定点仪,可准确测定故障点的精确位置。特别适用于测试各种型号、不同等级电压的电力电缆及通信电缆。

第二节功能介绍及技术指标 一、功能介绍 1.功能齐全 测试故障安全、迅速、准确。仪器采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置。 2.试精度高 仪器采用高速数据采样技术,A/D采样速度为100MHz,使仪器读取分辨率为1m,探测盲区为1m。 3.智能化程度高 测试结果以波形及数据自动显示在大屏幕液晶显示屏上,判断故障直观。并配有全中文菜单显示操作功能,无需对操作人员作专门的训练。 4.具有波形及参数存储,调出功能 采用非易失性器件,关机后波形、数据不易失。 5.具有双踪显示功能。 可将故障电缆的测试波形与正常波形进行对比,有利于对故障进一步判断。 6.具有波形扩展比例功能。 改变波形比例,可扩展波形进行精确测试。 7.可任意改变双光标的位置,直接显示故障点与测试

10kV电力电缆常见故障及处理方法

10kV电力电缆常见故障及原因分析: 1、故障类型 电缆故障可概括为接地、短路、断线三大类,其故障类型主要有以下几方面: (1)闪络故障。 电缆在低压电时处于良好的绝缘状态,不会存在故障。可只要电压值升高到一定范围,或者一段时间后某一电压持续升高,那么就会瞬间击穿绝缘体,造成闪络故障。 (2)一相芯线断线或多相断线。 在电缆导体连续试验中,电缆的各个导体的绝缘电阻与相关规定相符,但是在检查中发现有一相或者多相不能连续,那么就说明一相芯线断线或者多相断线。 (3)三芯电缆一芯或两芯接地。 三芯电缆的一芯或者两芯导体用绝缘摇表测试出不连续,然后又进行一芯或者两芯对地绝缘电阻遥测。如果芯和芯之间存在着比正常值低许多的绝缘电阻,这种绝缘电阻值高于1000欧姆就被称之为高电阻接地故障;反之,就是低电阻接地故障。这两张故障都称为断线并接地故障。 (4)三相芯线短路。 短路时接地电阻大小是电缆的三相芯线短路故障判断的依据。短路故障有两种:低阻短路故障、高阻短路故障。当三相芯线短路时,低于1000欧姆的接地电阻是低阻短路故障,相反则是高阻短路故障。 2、原因分析 电缆故障的最直接原因就是绝缘降低而被击穿,归纳起来主要有以下几种情况: (1)外力损坏。 电缆故障中外力损坏是最为常见的故障原因。电缆遭外力损坏以后会出现大面积的停电事故。例如地下管线施工过程中,电缆因为施工机械牵引力太大而被拉断;电缆绝缘层、屏蔽层因电缆过度弯曲而损坏;电缆切剥时过度切割和刀痕太深。这些直接的外力因素都会对电缆造成一定的损坏。 (2)绝缘受潮。 电缆制造生产工艺不精会导致电缆的保护层破裂;电缆终端接头密封性不够;电缆保护套在电

高压电缆故障指示器

https://www.wendangku.net/doc/567990106.html,/604 高压电缆故障指示器 一、电缆故障指示器工作原理 鼎升电力研发中心依据工作经验研发的DFDL-SI 10kV电缆故障指示器由传感器和显示器两部分组成,传感器负责探测电缆通过的电流,显示器负责对传感器传送来的电流信息进行判断及做出故障指示动作。 正常情况下,故障指示器不动作,故障指示灯不亮。当通过电缆的电流达到故障指示器设定的故障电流值,显示器会对由传感器传来的电流进行判断,如果过电流持续不到100~200ms,则此电流可能是电机起动等因素引起的瞬间起动过电流,不是故障电缆,因策显示器不动作。如果过电流持续超过100~200ms,则

https://www.wendangku.net/doc/567990106.html,/604 判断为故障电流,显示器动作,指示灯闪烁显示。显示器动作后再作一次判断,如果2s内电缆电流已恢复正常,说明上级开关重合闸成功,故障点已被排除,恢复正常供电状态,显示器回复初始状态,指示灯熄灭。如果2s内电缆电流消失,说明故障已引发上级开关跳闸而导致电缆失压,则确定为故障,显示器保持动作,指示灯继续闪烁,直到达到预设的时间限制或收到人工手动复位为止。 DFDL-SI 10kV电缆故障指示器因安装方便灵活的特别被广泛安装在架空线、电力电缆配电线路上、箱式变、环网柜、分支箱中,它能够迅速指明故障线路和故障点,减小停电面积,缩短故障排除和查找时间。准确指示瞬间故障,不仅利于排除供电隐患;为查找隐蔽永久性故障点提供了技术手段,避免传统多次拉路合闸巡线给电力设备带来的影响,同时也减轻了巡线人员劳动强度,提高售电量和供电可靠性。

https://www.wendangku.net/doc/567990106.html,/604 DFDL-SI 10kV电缆故障指示器主要包括检测电路、逻辑分析电路、信号触发电路、通信传输电路、电源电路等你模块,通过将检测到的上电、断电、接地、短路等信号通过无线射频方式传送到信号传输终端,最后驱动故障指示器的显示部分。 二、电缆故障分析 对于短路故障,故障指示器利用线路出线故障时电出现正突变以及线路停电的原理来检测故障。借助电磁感应法检测线路中通过的电流突变量和持续时间确定故障。通过检测电流突变量,能够减小误动作的概率,可以有效的避免出于线路继电保护在装置整定值改动或者是电力负荷突然增加而造成的故障指示器误动作。 因此故障指示器短路故障的判定依据为: 1、线路中通过的电流值突然升高。当线路出现短路故障时,导线中通过的电流值会突然增大,该在值得大小与电缆的长度、型号、敷设方式、环境温湿度等因素有关。 2、线路中的电流等于零。当电缆线路出现短路故障时,变电站线路出口保护动作,开关跳闸后线路停电,线路中的电流为零。 3、突变电流持续时间。为了提高故障指示器的动作准确性,需要和变电站的继电保护装置相配合,确定一个突变电流时间宽度。 以上述三个依据同时满足的条件下,故障指示器就判断电缆线路出现了短路

电缆故障点的四种实用检测方法

电缆故障点的四种实用检测方法 1 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。 ②二相芯线间短路。 ③三相芯线完全短路。 ④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。 2 电缆故障点的查找方法 (1) 测声法: 所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。

当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 (2) 电桥法: 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 发表时间:2019-05-31T09:44:15.230Z 来源:《电力设备》2019年第1期作者:刘海龙[导读] 摘要:随着我国经济快速发展,我国加快了现代化社会建设,面对城市和农村日益增长的用电需求,高压电缆的安全性能受到了人们的高度关注。 (内蒙古电力(集团)有限责任公司鄂尔多斯电业局内蒙古鄂尔多斯 017000)摘要:随着我国经济快速发展,我国加快了现代化社会建设,面对城市和农村日益增长的用电需求,高压电缆的安全性能受到了人们的高度关注。高压电缆相较于传统电缆,安全性更高、稳定性更好、维护方便,是当前电气设备、电能传输、电能分配的首选电缆,在我国现代化社会建设过程中得到了广泛应用。随之而来的高压电缆故障对供电造成了较大的影响,通过分析常见的高压电缆故障,为准确分 析判断高压电缆故障,准确定位故障点提供基础依据,以便于及时有效的解决故障,保证电能正常供应,避免对人们生活、生产造成较大困扰。 关键词:高压电缆;故障分析;故障点查找 一、高压电缆故障原因分析 1.1设计不足 设计师在设计过程中设计水平较低,在重要的设计场所对于电源、贯通电缆、电缆故障等问题没有设计备用电源,方便专业人员快速进行维护的措施场地。配电所的电缆没有进行单独的运行管道设计,较长的电缆没有设计电缆中间站或者对接方式。设计中设计图纸相对于简单,仅仅给出电缆的大体路线、数量、产考标准等,对于重要的电缆没有进行标注和说明。 1.2产品质量存在偏差 厂家在对于电缆生产的质量没有办法进行保证,经常出现绝缘偏心、绝缘厚度不均匀、绝缘内部有杂质、电缆防潮水平不高、电缆密封效果不良等问题。有些问题更加严重的是在运行过程中出现故障,大部分电缆系统在运行过程中都有程度大小不等的故障,导致电缆安全问题一直是电力系统运行的隐在性问题。个别厂家也出现过同种型号电缆两端色标不相对应,按颜色进行施工,竣工后发现无法正常使用。 1.3后期维护不善 在电缆运行中,相关的工作人员没有每年对于电缆进行排查,大部分的电缆都已经超过最大维护期,导致工作人员对于电缆上面重要信息掌握情况不足,如电缆上面的电阻、电压等重要数据,电缆绝缘性能下降未能及时发现,容易发生电力系统故障。在设计时,由于对于电缆、电缆标注等位置标注不清,字迹模糊,导致外部施工破坏电缆。 二、高压电缆常见故障 2.1电缆附件故障 高压电缆应用过程中对其附件有很高的要求,其本身也具备制作工艺复杂的特点。高压电缆终端与接头的附件很容易发生各种故障。究其原因,主要包括质量问题,比如制作电缆接头与终端方面,导体连接和导线压接等制作并没有严格根据工艺要求开展,或是选择制作附件的材料不合理,需求的膨胀系数与本体不符且有较大差异,严重影响密封性,很容易出现短路的情况,还有就是受到周围环境的影响,产生电缆击穿等情况。 2.2电缆老化故障 由于高压电缆使用时间过长,或是受到其他因素如机械、电光热等因素的影响,其绝缘性会明显降低,于是发生故障。高压电缆的使用寿命较长,但通常在应用30年后均会有老化的情况,再加上其他外界因素的影响,有的甚至故障发生时间更短。此外,导致电缆出现老化的原因还有以下几点:一是电缆型号的选择不适合,导致其处于长期超负荷的状态下工作,加快老化;二是线路与热源比较靠近,长期处于高温环境下,于是出现热老化情况;三是应用的环境下存在与运行产生不利化学反应的物质,在这种作用下加速电缆老化时间。 2.3电缆护层故障 电缆护层具备一定的绝缘性能,确保电缆主体尽可能少受侵蚀与损坏,对其性能加以保护,但电缆护层出现故障的概率较高,严重影响传输效果。电缆护层出现故障的主要原因包括生产制作的不合格、电缆护层应用本身存在缺陷;制作不符合相关工艺要求,施工与标准不符,导致出现故障;受到建筑施工外力影响使其受到破坏。 三、高压电缆故障查找与处理方法探究 3.1粗测定位分析 3.1.1低压脉冲法 此方法依据的理论是微波传输理论,工作人员需要加入脉冲信号在电缆故障相上,随后电波在传输的同时如果触碰到故障点,就会将一部分的电波进行反射,对反射的电波进行时间差的测量与计算,就能明确具体的故障范围。长期的应用实践发现,脉冲阀针对低阻故障的测试和金属性短路故障的测试对应的准确度较高,而在电波长度的校准、电缆部分接头位置的显示以及电缆传输速度的校对方面均有较为明显的优势,但与此同时也有一定的缺陷,比如无法对高阻故障以及闪络故障展开测试工作。 3.1.2高压脉冲法 这种方法是在高压作用下电缆故障位置会出现闪络点,对应的高阻故障就会实现转化,出现瞬间短路而发射的情况,工作人员只要分析反射波就能判断具体的故障点,这种方法也可以称为高压闪络法,更多的应用在对泄露性高阻故障情况的诊断测试上。 3.1.3二次脉冲法 方法是工作人员要对故障电缆发射低压脉冲,在特性阻抗不发生较大变化的情况下,脉冲会在出现高阻故障点的位置而不进行反射,直到另一终端以后才会有反射的情况,工作人员则要记录这段波形,随后再次对故障电缆发射高压脉冲,通过击穿故障点使其发生转化并成为低阻故障,于是在应用的仪器中就会出现低压脉冲,一旦遇到这个故障点则直接反射回来,工作人员再次记录这段波形,对比两段波形,有交叉点或是有异常的位置则是故障点所处位置。在这种方法的应用中,操作相对方便,且具有较为全面的功能,得到的两个波形图明了易懂,所以得到很多工作人员的应用和认可。 3.2精测定位分析

电缆故障测试仪的四种实用测定方法

https://www.wendangku.net/doc/567990106.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.wendangku.net/doc/567990106.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.wendangku.net/doc/567990106.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

高压电缆故障原因分析及对策措施

高压电缆故障原因分析及对策措施 发表时间:2018-09-10T09:19:13.923Z 来源:《河南电力》2018年6期作者:王玉妍 [导读] 一旦高压电缆运行出现了故障,所造成的影响不仅仅是电力企业本身,同时它还会对人民日常生活的正常进行造成影响 王玉妍 (山西省电力公司技能培训中心山西临汾 041000) 摘要:一旦高压电缆运行出现了故障,所造成的影响不仅仅是电力企业本身,同时它还会对人民日常生活的正常进行造成影响,对国家经济的发展带来阻碍,通过对高压电缆运行故障进行分析,并制定出相应的预防措施和应对措施加以实施,可以将高压电缆运行故障带来的损失降到最低。 关键词:高压电缆;故障;对策 1 引言 高压电缆发生故障主要是由于人为或自然灾害等的破坏导致绝缘损坏,使相与相或相与地之间发生短接。这种短接会使电流急剧增大,电压大幅度下降并进一步造成电缆损坏等严重的后果。高压电缆的故障主要包括单相接地故障(约占80%)和相间短路故障(约占15%),其他故障(约占5%)。当发生这些故障时线路中的保护元件会迅速切断线路以保证安全。此时检修人员应及时查找、处理故障,尽快恢复正常供电,保证生产的正常进行。 2 对高压电缆运行故障进行分析的重要性 随着我国经济的发展和改革开放的不断深入,电力企业作为一个具有社会公用事业性质的行业,在近年来也得到了迅猛的发展,为人民的日常生活提供了电力资源,使人民的生活更加丰富多彩,同时也为国家的经济发展做出了重大的贡献,使我国的经济得以快速发展。然而,伴随着电力企业的发展,却还是存在着一些问题,比如说电力生产安全问题、高压电缆运行问题等。高压电缆运行故障的存在,对人民而言,不仅会使人民的日常生活的正常进行受到影响,同时也会给国家的经济发展带来阻碍。一旦高压电缆的运行出现故障,那么将给电力企业为人民、为社会的电力传输造成影响,使人民、使社会的供电得不到正常供应,因而也就给人民的日常生活的正常进行造成了影响;同时,由于电力企业为人民、为社会的供电不能够正常进行,将使得社会的企业不能够正常运转,这就给国家的经济发展带来了阻碍。此外,由于高压电缆运行出现了故障,这也将给电力企业的正常发展造成阻碍,降低了电力企业本身的竞争力,难以在如今竞争激烈的经济市场下生存下来。而通过对高压电缆运行故障进行分析,可以预先预防高压电缆运行故障的出现。通过对以往的高压电缆出现的运行故障事例进行收集,并对收集结果进行分析,分析造成高压电缆运行出现故障的原因,并制定出科学、合理、有效地应对方法和措施,对高压电缆运行故障进行预防性的防护,同时对出现了运行故障的高压电缆及时采取应对措施,将因高压电缆运行故障带来的损失降到最低。因此,对高压电缆运行故障进行分析是非常重要的,它是人民日常生活正常进行的需要,也是国家经济发展的需要,同时它也是电力企业本身发展的需要。 3 高压电缆故障原因分析 3.1 厂家制造原因 3.1.1电缆本体制造原因 一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。 3.1.2电缆接头制造原因 电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题等原因。 3.2 施工质量原因 因为施工质量导致高压电缆系统故障的事例很多:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度变化、湿度、灰尘都不好控制。二是在电缆敷设时野蛮拖拉,损伤电缆外护层,引起主绝缘受损。三是由于工作人员的粗心在电缆头制作过程中绝缘表面难免会留下细小的刀痕,半导电层清理不干净,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分受潮,这些都给长期安全运行留下隐患。四是安装时,工作人员没有严格按照工艺施工或工艺规定尺寸要求去做。五是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。六是因密封处理不善,导致电缆受潮。中间接头必须采用金属铜外壳外加PE 或 PVC 绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 3.3 外力破坏原因 一是机械开挖,人工打桩时未经核对,破坏电缆而接地短路。二是车辆碾压,地面下沉,造成电缆错位、变形,导致电缆故障 3.4 设计原因 因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 4 对策分析 4.1 加强对电缆敷设施工人员的技术培训与考核 对电缆敷设施工人员,必须进行必要的业务素质与技术的培训和考核,无相应级别资质的人员不得进行电缆安装施工,同时加强现场施工质量的监督管理,及时制止、纠正不符合标准的施工作业,杜绝为抢工程进度而牺牲工程质量的行为。确保电力电缆安装质量符合有关标准要求。加强有关技术资料管理施工竣工图要与现场实际情况相符且绘制规范并做到及时存档。在电缆中间接头及电缆走向位置一定要标明坐标,以便于日后对电缆进行及时有效的维护、检修。 4.2 控制电缆附件的安装质量 剥除电缆各层时要仔细,下刀是一定要小心。特别是在剥外半导电屏蔽层时,不得划伤主绝缘及半导体层。必须严格按电缆头制

相关文档