文档库 最新最全的文档下载
当前位置:文档库 › 发电厂电气主接线设计

发电厂电气主接线设计

发电厂电气主接线设计
发电厂电气主接线设计

火力发电厂电气主接线设计教学提纲

火力发电厂电气主接 线设计

原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 6.3kV),凝汽式机组2 ? 100MW(U N = 10.5kV),厂用电率6.2%,机组年利用小时 T max = 6500h。 系统规划部门提供の电力负荷及与电力系统连接情况资料如下: (1) 6.3kV电压级最大负荷30MW,最小负荷25MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷260MW,最小负荷210MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MWの电力系统连接,系统归算到本电厂500kV母线上の电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

摘要 根据设计要求,本课程设计是对2*100MW+2*50MWの发电厂进行电气主接线进行设计。首先对给出の原始资料和数据进行分析和计算,对发电厂の工程情况和电力系统の情况进行了解。在设计过程中根据发电厂の各部分厂用电の要求,设计发电厂の各电压等级の电气主接线并选择各变压器の型号;进行参数计算,设计两个及以上の方案,进行方案の经济比较最后对厂用电の电气主接线の方案进行确定。 关键词:发电厂主接线变压器

目录 1 前言 (1) 2 原始资料分析 (1) 3 主接线方案の拟定 (2) 3.1 6.3kV电压级 (2) 3.2 220kV电压级 (2) 3.3 500kV电压级 (3) 3.4主接线方案图 (3) 4 变压器の选择 (4) 4.1 主变压器 (4) 4.2 联络变压器 (5) 5 方案の经济比较 (6) 5.1 一次投资计算 (6) 6 主接线最终方案の确定 (7) 7 结论 (8) 8 参考文献 (9)

火力发电厂电气主接线设计

辽宁工程技术大学 发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部)电气与控制工程学院 专业班级 学号 姓名 日期

课程设计成绩评定表

原始资料 某火力发电厂原始资料如下:装机4台,分别为供热式机组2?50MW(U N= 10.5kV),凝汽式机组2?600MW(U N = 20kV),厂用电率6.5%,机组年利用小时Tmax = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷26.2MW,最小负荷21.2MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷256.2MW,最小负荷206.2MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

本设计是电厂主接线设计。该火电厂总装机容量为2 ? 50+2 ? 600=1300MW。厂用电率6.5%,机组年利用小时T max = 6500h。根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案进行可靠性、经济性和灵活性比较后,保留一种较合理的方案,最后通过定量的技术经济比较确定最终的电气主接线方案。在对系统各种可能发生的短路故障分析计算的基础上,进行了电气设备和道题的选择校检设计。在对发电厂一次系统分析的基础上,对发电厂的配电装置布置做了初步简单的设计。此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,巩固和加深对本专业的理解,建立了工程设计的基本观念,提升了自身设计能力。 关键字:电气主接线;火电厂;设备选型;配电装置布置

发电厂主接线设计

目录 一、题目分析 (1) 二、电气主接线方案比较 (1) 三、短路电流计算 (4) 四、电气设备的选择 (12) 五、电气主接线图 (22)

一、题目分析 某水库电站是一座以灌溉为主,兼顾发电的季节性电站,冬、春季有三个多月因水库不放水或放水量少,电站停止运行不发电。电站设计容量为三台立式机组,总装机 2000KW ( 2 × 800KW+1 × 400KW ),装机年利用小时为 3760h ,多年平均发电量为 752 万 KW.h 。根据金塔县的用电负荷情况,该电站距城南变电所较近,因此,除厂用电外全部电能就近送至城南 35KV 变电所联入系统。 鉴于以上特点,本电站电气主接线采用三台发电机两台变压器,高压侧送电电压为35KV,一回出线。 二、电气主接线方案比较 方案一:3台发电机共用一根母线,采用单母线接线不分段; 设置一台变压器; 方案二:1、2号发电机-变压器扩大单元接线;3号发电机-变压器单元接线; 设置了2台变压器; 35KV线路采用单母线接线不分段。

电气主接线方案比较: (1)供电可靠性 方案一供电可靠性较差; 方案二供电可靠性较好。 (2)运行上的安全和灵活性 方案一母线或母线侧隔离开关故障或检修时,整个配电装置必须退出运行,而任何一个断路器检修时,其所在回路也必须退出运行,灵活性也较差; 方案二1、2号发电机-变压器扩大单元接线与3号发电机-变压器单元接线相配合,使供电可靠性大大提高,提高了运行的灵活性。 (3)接线简单、维护和检修方便 很显然方案一最简单、维护和检修方便。 (4)经济方面的比较 方案一最经济。 各种方案选用设备元件数量及供电性能列表:

30MW热电厂电气主接线设计

摘要 电气主接线系统是关乎发电厂运行安全的重要一环,系统设计必须做到安全可靠、运行切换灵活、检修方便、减少投资及占地。本文对某30MW机组电气主接线和厂用分支系统进行了讨论,确定了电压等级,优选了设计方案,对主要设备、导体进行了初步选型。并作出了电气主接线系统和厂用电系统的原则性系统图。 关键词:电气主接线,厂用分支,设计方案

目录 第1章前言 (1) 1.1 电气主接线的设计、意义…………………………………………………………错误!未定义书签。 1.2 厂用电接线的设计、和意义 (1) 1.3 本文的主要工作 (2) 第2章电气主接线设计的要求及方案确定 (2) 2.1 电气主接线设计的要求 (2) 2.1.1保证必要的供电可靠性 (2) 2.1.2保证电能质量 (2) 2.1.3具有一定的灵活性和方便性 (2) 2.1.4具有一定的经济性 (3) 2.2 电气主接线方案的确定 (3) 2.2.1不分段单母线接线型式 (3) 2.2.2单母线分段接线 (3) 2.2.3 单母线分段带旁路接线 (4) 2.3 电气主接线方案的论证 (4) 第3章厂用电系统的方案选择及论证 (5) 3.1 厂用电源方案设计 (5) 3.1.1厂用电压等级的选择 (5) 3.1.2 高压厂用电接线方案 (5) 3.1.3低压厂用电接线设计 (5) 3.1.4全厂辅助系统厂用电接线 (5) 3.2 厂用电接线方案的论证 (6) 第4章主要设备选型 (6) 4.1 发电机的选择 (6) 4.2主变压器的选择 (6) 4.2.1主变压器容量的选择 (6) 4.1.2主变型式的选择 (7) 4.3 高压启动、备用变压器 (7) 4.4电抗器的选择 (8) 4.5 导体的选择 (8) 第5章结论 (9) 参考文献 (10) 致谢 (11) 附录1电气主接线图 (12) 附录2厂用电接线图 (13)

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

电气主接线设计原则和设计程序

电气主接线设计原则和设计程序 4.5.1电气主接线的设计原则 电气主接线的设计是发电厂或变电站电气设计的主体。它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。 电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。 4.5.2 电气主接线的设计程序 电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。 电气主接线的设计步骤和内容如下: 1.对原始资料分析 (1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引

火电厂电气部分设计

发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

课程设计标准评分模板课程设计成绩评定表

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1. 对原始资料的分析 2. 主接线方案的拟定 3. 方案的经济比较 4. 主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2 ~ 3天:分析原始资料,拟定主接线方案 第4天:方案的经济比较 第5 ~ 6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1. 设计必须按照设计计划按时完成 2. 设计成果包括设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 3. 答辩时本人务必到场 指导教师: 教研室主任: 时间:2013年1月13日

设计原始数据及主要内容 一、原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 10.5kV),凝汽式机组2 ? 300MW(U N = 15.75kV),厂用电率6%,机组年利用小时T max = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷23.93MW,最小负荷18.93MW,cos?= 0.8,电缆馈线10回; (2) 220kV电压级最大负荷253.93MW,最小负荷203.93MW,cos?= 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MV A),500kV架空线4回,备用线1回。 二、主要内容 1. 对原始资料的分析 2. 主接线方案的拟定 (1) 10kV电压级 (2) 220kV电压级 (3) 500kV电压级 3. 方案的经济比较 (1) 计算一次投资 (2) 计算年运行费 4. 主接线最终方案的确定

燕山大学发电厂电气部分课程设计 大型骨干电厂电气主接线

目录 第一章原始资料的分析 0 1.1电压等级 0 第二章电气主接线方案 0 2.1 电气主接线设计的基本原则 0 2.2 具体方案的拟定 (1) 第三章主要电气设备的选择 (3) 3.1 发电机 (3) 3.2 主变压器 (3) 3.4 断路器和隔离开关 (4) 3.5电压互感器 (7) 3.6电流互感器的选择 (8) 3.7 母线的导体 (9) 第四章方案优化 (10) 第五章短路电流计算 (11) 5.1 等效阻抗网络图 (11) 5.2阻抗标幺值计算 (11) 5.3 短路点短路电流计算 (13) Q的计算 (14) 5.4 短路电流热效应 K 第六章校验动、热稳定(设备) (16) 6.1断路器稳定校验 (16) 6.2 隔离开关稳定校验 (17) 6.3电流互感器稳定校验 (18) 6.4 母线导体稳定校验 (19) 第七章心得体会 (19) 参考资料 (20)

大型骨干电厂电气主接线 第一章原始资料的分析 1.1电压等级 根据原始资料的分析可知,需要设计的是一个大型骨干凝汽电厂,共有两个电压等级:220KV,500KV 发电机容量和台数为6× 300MW (QFSN-300-2) 因此主变压器的台数选为6台。 1.4 联络变压器 选择三绕组变压器,连接两个电压等级,剩余一端引接备用电源。 第二章电气主接线方案 2.1 电气主接线设计的基本原则 电气主接线设计的基本原则是以设计任务书为依据,以国家的经济建设方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下、兼顾运行、维护方便,尽可能的节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要

发电厂电气部分课程设计主接线设计

1 需求分析 1.1主接线设计依据 1.1.1变电所在系统中的地位 变电所在电力系统中的地位和作用是决定电气主接线的主要因素。变电所有枢纽变电所(电压等级为330~500kv)、地区变电所(电压等级为220~330kv)、一般(终端)变电所(电压等级为100kv)三类,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求也不同。 由原始设计参数知本设计变电所为110kv一般性变电所。 1.1.2变电所近远期发展规模 变电所电气主接线的设计,应根据5-10年电力发展规划进行。根据负荷的 大小、分布、增长速度,根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源数和出线回数。一般装设两台主变压器。 1.1.3 负荷大小和重要性 对一级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般要有两个电源供电,且当一个电源失去后,应保证大部分二级负荷供电;三级负荷一般只需要一个电源供电。 由原始设计参数知本设计110kv变电所一二级负荷占50%以上,所以主接线必须保证一二类负荷的可靠性。 1.1.4系统备用容量 装有2台(组)及以上主变压器的变电所,其中一台(组)主变压器事断开,其余主变压器的容量应保证70%的全部负荷,在计及过负荷能力后的允许时间内,应保证一二级用户负荷。 1.2主接线基本要求 根据有关规定:变电站电气主接线应根据变电站在电力系统的地位,变电站的规划容量,负荷性质线路变压器的连接、元件总数等条件确定。并应综合考虑供电可靠性、运行灵活、操作检修方便、投资节约和便于过度或扩建等要求。 1.2.1 供电可靠性

中型发电厂电气主接线设计

电气主接线设计 1.1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW 发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1.2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。 发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。由于两台100MW机组均接于10.5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。 (2)110kV电压级:出线回数大于4回,为保证检修出线断路器不致对该回路停电,采取双母线带旁路母线接线形式,以保证其供电的可靠性和灵活性。 (3)220kV电压级:出线4回,考虑现在断路器免维护减小投资,采用双母线分段接线。通过两台三绕组变压器联系10.5kV及110kV电压,以提高可靠性。2台300MW机组与变压器组成单元接线,直 页脚内容2

火力发电厂电气主接线设计

原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 6.3kV),凝汽式机组2 ? 100MW(U N = 10.5kV),厂用电率6.2%,机组年利用小时T max = 6500h。 系统规划部门提供の电力负荷及与电力系统连接情况资料如下: (1) 6.3kV电压级最大负荷30MW,最小负荷25MW,cos? = 0.8,电缆馈线10回; (2) 220kV电压级最大负荷260MW,最小负荷210MW,cos? = 0.85,架空线5回; (3) 500kV电压级与容量为3500MWの电力系统连接,系统归算到本电厂500kV母线上の电抗标么值x S* = 0.021(基准容量为100MVA),500kV架空线4回,备用线1回。

根据设计要求,本课程设计是对2*100MW+2*50MWの发电厂进行电气主接线进行设计。首先对给出の原始资料和数据进行分析和计算,对发电厂の工程情况和电力系统の情况进行了解。在设计过程中根据发电厂の各部分厂用电の要求,设计发电厂の各电压等级の电气主接线并选择各变压器の型号;进行参数计算,设计两个及以上の方案,进行方案の经济比较最后对厂用电の电气主接线の方案进行确定。 关键词:发电厂主接线变压器

1 前言 (1) 2 原始资料分析 (1) 3 主接线方案の拟定 (2) 3.1 6.3kV电压级 (2) 3.2 220kV电压级 (2) 3.3 500kV电压级 (2) 3.4主接线方案图 (2) 4 变压器の选择 (4) 4.1 主变压器 (4) 4.2 联络变压器 (5) 5 方案の经济比较 (6) 5.1 一次投资计算 (6) 6 主接线最终方案の确定 (7) 7 结论 (8) 8 参考文献 (9)

中型发电厂电气主接线设计

电气主接线设计 1、1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18、6%,超过了电力系统的检修备用8%~15%与事故备用容量10%的限额,说明该厂在未来电力系统中的作用与地位至关重要,但就是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10、5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV 与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1、2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。发电、供电可靠性就是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10、5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。由于两台100MW机组均接于10、5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。 (2)110kV电压级:出线回数大于4回,为保证检修出线断路器不

水电站电气主接线设计

百龙滩水电站为低水头径流式水电站,无调节能力,只能按上游来水情况发电,电站在系统的基荷和腰荷区运行。 根据电力系统的要求,百龙滩水电站以220 kV和110 kV两级电压接入广西电网,220 kV出线三回,两回就近“π”接入大化至恶滩220 kV线路,一回备用;110 kV出线一回至都安。 2 灯泡贯流式机组的特点 与常规机组相比,灯泡贯流式机组的最大特点是整个机组横卧在流道中,由于受水力条件的限制,发电机的外径比较小,因而具有以下特点: (1)机组单机容量小、电站机组台数多。灯泡贯流式机组的单机容量较小,目前世界上单机容量最大的灯泡贯流式机组仅为65 MW。在电站总装机容量一定的条件下,机组单机容量越小,电站机组台数越多。 (2)机组转动惯量小。由于发电机的外径小,定子铁心内径受限制,转动惯量相应减少,因而机组在甩负荷后速率上升很快,容易发生飞逸,运行稳定性较差。 (3)发电机功率因数高。发电机转子直径小,转子空间有限,机组转速低,因而发电机转子极距小,磁极铁心的高宽比大,使得铁心漏磁大,发电机的功率因数比常规机组高。 (4)机组自用电负荷大,对供电可靠性要求高。由于发电机的外径小,转子铁芯长度较长,机组转速低,使得发电机的通风冷却比常规机组要困难得多,发电机冷却风机容量较大;另一方面为了防止调速装置失灵时机组发生飞逸,机组调速环的一侧悬挂有重约40 t的重锤,机组导叶的开启,需克服重锤的重力,使得发电机调速装置主电机容量较大。机组自用电负荷对供电可靠性要求较高,没有厂用电机组无法启动;机组润滑油泵供电中断时间大于5 s时,保护装置将动作停机。 3 电气主接线设计 3.1 发电机电压接线 发电机电压接线分别比较过单元接线、两机一变和三机一变的扩大单元接线方案。单元接线方案接线简明清晰,变压器故障或检修不影响其他发电机的运行,但由于电站机组台数多,若采用单元接线,电站的主变压器以及发电机电压母线竖井的数量较多,不利于厂房电气设备布置;三机一变扩大单元接线方案主变台数最少,可减少相应的高压出线回路数,但主变压器故障或检修,3台机组出力受阻,另一方面,发电机出口短路电流高达56.7 kA,发电机断路器选择困难;两机一变扩大单元接线方案主变容量大小适中,发电机出口短路电流较小(约36.9 kA),所有发电机配电装置可选成套开关柜,大大简化电气设备布置,因而发电机电压接线采用两机一变的扩大单元接线方案。 3.2 220 kV侧接线 220 kV侧接线分别对单母线断路器分段和单母线断路器分段兼旁路两种不同的接线方案进行比较。由于本电站220 kV侧的穿越功率较大,如果不设旁路母线,一旦出线断路器故障或检修,将会影响大化电厂向恶滩方向送电。而增加旁路设施,开关站设备投资仅增加4.3%,占地面积增加27.7%,因此,根据本电站的实际情况,220 kV侧采用单母线断路器分段兼旁路接线。 3.3 110 kV侧接线

发电厂电气主接线设计

发电厂电气主接线设计 设计者王健 班级 10电42 指导教师 2013年11月

目录 第一章电气主接线设计 1.1 对原始资料的分析 (4) 1.2 主接线方案的拟定 (4) 1.3 发电机及变压器选择 (5) 1.4 年运行费用的计算 (5) 1.5 电气主接线图 (6) 第二章短路电流计算 2.1 概述 (6) 2.2 系统电气设备电抗标幺值计算 (7) 2.3 短路电流计算 (7) 第三章电气设备的选择 3.1 断路器的选择 (9) 3.2 电抗器选择 (12) 3.3 隔离开关的选择 (13) 3.4 电流互感器的选择 (14) 3.5 电压互感器选择 (16) 3.6导体的选择 (17) 第四章厂用电 4.1厂用电接线原则 (18) 4.2厂用电接线 (19) 附录一 (20) 附录二 (21)

第一章电气主接线设计 1.1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1.2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。 发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。由于两台100MW机组均接于10.5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。

发电厂电气主接线课程设计

发电厂电气主接线课程设计 题目:2*300MW火电厂主接 线设计 学生姓名: 学号: 专业: 班级: 指导教师:

摘要 随着我国经济发展,对电的需求也越来越大。电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。 电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。 本文将针对某火力发电厂的设计,主要是对电气方面进行研究。对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:发电厂;火电厂;电气主接线; 目录 摘要 (2) 发电厂课程设计任务书 (4) 第一章引言 (5) 1.1研究背景及意义 (5) 1.2电气主接线的基本要求及形式 (6) 第二章电气主接线设计 (9) 2.1设计步骤 (9) 2.2设计方案 (9) 2.3方案分析 (10) 第三章厂用电设计 (11) 3.1厂用电 (11) 3.2厂用电分类 (12) 3.3厂用电设计原则 (13) 3.4厂用电源选择 (13) 3.5厂用电接线形式 (14) 第四章电气设备的选择 (15)

发电厂电气主接线设计说明

发电厂电气主接线设计 作者:卢平

摘要 随着我国经济的不断发展,对电的需求也越来越大。电力工业是我国经济发展中最为重要的一种能源,主要是它可以方便、高效地转换其它能源形式。电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。而火力发电是电力工业发展中的主力军。截止2006年底,火电发电量达到48405万千瓦,约占总容量的77.82%。由此可见,火力发电在我国这个发展中国家的国民经济中的重要性。 本次设计是针对2*300MW火力发电厂电气部分的设计,电气主接线是发电厂、变电站电气设计的首要部分,也是构成电力系统的主要环节。所以本次设计电气部分主接线方案为一台半断路器接线。 该设计主要从理论上在电气主接线设计、短路电流计算、电气设备的选择、配电装置的布局、防雷设计、发电机、变压器和母线的继电保护等方面做详尽的论述,同时,在保证设计可靠性的前提下,还要兼顾经济型和灵活性,通过计算论证火电厂实际设计的合理性与经济型。采用软件绘制电气图和查阅相关书籍,进一步完善了设计。 关键词:电气主接线;短路电流;配电装置;电气设备选择

Abstract As China's economic development,the demand for electricity is growing。Electric power industry in China's economic development is one of the most important energy,mainly it can be easily and efficiently convert other forms of energy。As an advanced productivity in the electrical industry, is the most important foundation in the development of energy industry of the national economy。Thermal power is the main force in the development of the electric power industry。By the end of 2006, thermal power generating capacity reached 484.05 million-kilowatt,77.82% per cent of total capacity。 Thus,thermal power generation in China,the importance of developing the national economy。This design is designed for electrical parts of the 2*300MW thermal power plant,main electrical connection is the primary part of the electric design of power plant and substation,constitute the main part of power system。 Design of main electrical connection scheme for one and a half circuit breaker connection。The design theory in the design of main electrical wiring,electrical equipment for short-circuit current calculations,selection and distribution equipment for lightning protection design,layouts,generators,transformers and relay protection of Busbar in elaborate on these,at the same time,ensure the reliability design of premise,also consider economic and flexibility through calculations justify the actual design of thermal power plant and cheap。Draw electrical diagrams software and check out books,further improved the design。 Key words:main electrical wiring;short circuit current;distribution equipment;electrical equipment selection

(最新版)110KV变电站电气主接线设计(毕业课程设计)

110KV变电站电气主接线设计 目录 1.电气主接线设计 1.1 110KV变电站的技术背景 (3) 1.2 主接线的设计原则 (3) 1.3主接线设计的基本要求 (3) 1.4高压配电装置的接线方式 (4) 1.5主接线的选择与设计 (8) 1.6主变压器型式的选择 (9) 2.短路电流计算 2.1 短路电流计算的概述 (11) 2.2短路计算的一般规定 (11) 2.3短路计算的方法 (12) 2.4短路电流计算 (12) 3.电气设备选择与校验 3.1电气设备选择的一般条件 (15) 3.2高压断路器的选型 (16) 3.3高压隔离开关的选型 (17) 3.4互感器的选择 (17) 3.5短路稳定校验 (18) 3.6高压熔断器的选择 (18) 4.屋内外配电装置设计 4.1设计原则 (19) 4.2设计的基本要求 (20) 4.3布置及安装设计的具体要求 (20)

4.4配电装置选择 (21) 5.变电站防雷与接地设计 5.1雷电过电压的形成与危害 (22) 5.2电气设备的防雷保护 (22) 5.3避雷针的配置原则 (23) 5.4避雷器的配置原则 (23) 5.5避雷针、避雷线保护范围计算 (23) 5.6变电所接地装置 (24) 6.无功补偿设计 6.1无功补偿的概念及重要性 (24) 6.2无功补偿的原则与基本要求 (24) 7.变电所总体布置 7.1总体规划 (26) 7.2总平面布置 (26) 结束语 (27) 参考文献 (27) 1.电气主接线设计 1.1 110KV变电站的技术背景 近年来,我国的电力工业在持续迅速的发展,而电力工业是我国国民经济的一个重要组成部分,其使命包括发电、输电及向用户的配电的全部过程。完成这些任务的实体是电力系统,电力系统相应的有发电厂、输电系统、配电系统及电力用户组成。110KV变电所一次部分的设计,是主要研究一个地方降压变电所是如何保证运行的可靠性、灵活性、经济性。而变电所是作为电力系统的一部分,在连接输电系统和配点系统中起着重要作用。我们这次选题的目的是将大学四年所学过的《电力工程》、《电力系统自动化》、《电机学》、《电路》等有关电力工业知识的课程,通过这次毕业设计将理论知识得以应用。 1.2 主接线的设计原则 在进行主接线方式设计时,应考虑以下几点: 变电所在系统中的地位和作用;

4200MW火力发电厂的电气部分设计

摘要 由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。 电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。本文是对配有4台200MW汽轮发电机的大型火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。 关键词:发电厂;变压器;电力系统;继电保护;电气设备

目录 1 绪论 (1) 1.1电力系统概述 (1) 1.2毕业设计的主要内容及基本思想 (1) 1.2.1毕业设计的主要内容、功能及技术指标 (2) 1.2.2毕业设计的基本思想及设计工作步骤 (2) 2 4*200MW 火力发电厂电气主接线的确定 (4) 2.1概述 (4) 2.1.1电气主接线设计的重要性 (4) 2.1.2电气主接线的设计依据 (4) 2.1.3电气主接线的主要要求 (5) 2.2电气主接线的选择 (5) 2.2.1主接线的基本形式 (6) 2.2.2主接线的设计 (10) 2.2.3方案的选择 (13) 3 火电厂发电机、变压器的选择 (15) 3.1主变压器和发电机中性点接地方式 (15) 3.1.1电力网中性点接地方式 (15) 3.1.3 发电机中性点接地方式 (16) 3.2发电机的选型 (16) 3.2.1 简介 (16) 3.2.2 选型 (16) 3.3变压器的选型 (17) 3.3.1具有发电机电压母线的主变压器 (17) 3.3.2单元接线的主变压器 (19) 3.4电气设备的配置 (19) 4 火力发电厂短路电流计算 (21) 4.1概述 (21) 4.1.1短路的原因及后果 (21) 4.1.2短路计算的目的和简化假设 (22)

发电厂电气主接线专业课程设计

发电厂电气主接线专业课程设计

发电厂电气主接线课程设计 题目: 2*30 0MW 火电 厂主 接线 设计 学生姓名: 学号: 专业: 班级: 指导教师:

摘要 随着我国经济发展,对电的需求也越来越大。电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。 电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。 本文将针对某火力发电厂的设计,主要是对电气方面进行研究。对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。

关键词:发电厂;火电厂;电气主接线; 目录 摘要 (2) 发电厂课程设计任务书 (4) 第一章引言 (5) 1.1研究背景及意义 (5) 1.2电气主接线的基本要求及形式 (6) 第二章电气主接线设计 (8) 2.1设计步骤 (8) 2.2设计方案 (8) 2.3方案分析 (8) 第三章厂用电设计 (10) 3.1厂用电 (10) 3.2厂用电分类 (10) 3.3厂用电设计原则 (11) 3.4厂用电源选择 (12) 3.5厂用电接线形式 (12) 第四章电气设备的选择 (13) 4.1电气设备选择的一般规则 (13)

相关文档
相关文档 最新文档