文档库 最新最全的文档下载
当前位置:文档库 › linux中open函数使用

linux中open函数使用

linux中open函数使用
linux中open函数使用

linux中open函数使用

int open(const char *path, int access,int mode)

path 要打开的文件路径和名称

access 访问模式,宏定义和含义如下:

O_RDONLY 1 只读打开

O_WRONLY 2 只写打开

O_RDWR 4 读写打开

还可选择以下模式与以上3种基本模式相与:

O_CREAT 0x0100 创建一个文件并打开

O_TRUNC 0x0200 打开一个已存在的文件并将文件长度设置为0,其他属性保持

O_EXCL 0x0400 未使用

O_APPEND 0x0800 追加打开文件

O_TEXT 0x4000 打开文本文件翻译CR-LF控制字符

O_BINARY 0x8000 打开二进制字符,不作CR-LF翻译

mode 该参数仅在access=O_CREAT方式下使用,其取值如下:

S_IFMT 0xF000 文件类型掩码

S_IFDIR 0x4000 目录

S_IFIFO 0x1000 FIFO 专用

S_IFCHR 0x2000 字符专用

S_IFBLK 0x3000 块专用

S_IFREG 0x8000 只为0x0000

S_IREAD 0x0100 可读

S_IWRITE 0x0080 可写

S_IEXEC 0x0040 可执行

返回值:成功则返回文件描述符,否则返回 -1

FILE *fopen(char *filename, char *mode)

filename 文件名称

mode 打开模式:

r 只读方式打开一个文本文件

rb 只读方式打开一个二进制文件

w 只写方式打开一个文本文件

wb 只写方式打开一个二进制文件

a 追加方式打开一个文本文件

ab 追加方式打开一个二进制文件

r+ 可读可写方式打开一个文本文件

rb+ 可读可写方式打开一个二进制文件

w+ 可读可写方式创建一个文本文件

wb+ 可读可写方式生成一个二进制文件

a+ 可读可写追加方式打开一个文本文件

ab+ 可读可写方式追加一个二进制文件

open和fopen的区别:

前者属于低级IO,后者是高级IO。

前者返回一个文件描述符,后者返回一个文件指针。

前者无缓冲,后者有缓冲。

前者与 read, write 等配合使用,后者与 fread, fwrite等配合使用。

后者是在前者的基础上扩充而来的,在大多数情况下,用后者。

1.缓冲文件系统

缓冲文件系统的特点是:在内存开辟一个“缓冲区”,为程序中的每一个文件使用,当执行读文件的操作时,从磁盘文件将数据先读入内存“缓冲区”,装满后再从内存“缓冲区”依此读入接收的变量。执行写文件的操作时,先将数据写入内存“缓冲区”,待内存“缓冲区”装满后再写入文件。由此可以看出,内存“缓冲区”的大小,影响着实际操作外存的次数,内存“缓冲区”越大,则操作外存的次数就少,执行速度就快、效率高。一般来说,文件“缓冲区”的大小随机器而定。

fopen, fclose, fread, fwrite, fgetc, fgets, fputc, fputs, freopen, fseek, ftell, rewind等

2.非缓冲文件系统

缓冲文件系统是借助文件结构体指针来对文件进行管理,通过文件指针来对文件进行访问,既可以读写字符、字符串、格式化数据,也可以读写二进制数据。非缓冲文件系统依赖于操作系统,通过操作系统的功能对文件进行读写,是系统级的输入输出,它不设文件结构体指针,只能读写二进制文件,但效率高、速度快,由于ANSI标准不再包括非缓冲文件系统,因此建议大家最好不要选择它。本书只作简单介绍。

open, close, read, write, getc, getchar, putc, putchar 等

linux定时器详解

Linux内核定时器详解 80X86体系结构上,常用的定时器电路 实时时钟(RTC) RTC内核通过IRQ8上发出周期性的中断,频率在2-8192HZ之间,掉电后依然工作,内核通过访问0x70和0x71 I/O端口访问RTC。 时间戳计时器(TSC) 利用CLK输入引线,接收外部振荡器的时钟信号,该计算器是利用64位的时间戳计时器寄存器来实现额,与可编程间隔定时器传递来的时间测量相比,更为精确。 可编程间隔定时器(PIT) PIT的作用类似于微波炉的闹钟,PIT永远以内核确定的固定频率发出中断,但频率不算高。 CPU本地定时器 利用PIC或者APIC总线的时钟计算。 高精度时间定时器(HPET) 功能比较强大,家机很少用,也不去记了。 ACPI电源管理定时器 它的时钟信号拥有大约为3.58MHZ的固定频率,该设备实际上是一个简单的计数器,为了读取计算器的值,内核需要访问某个I/O端口,需要初始化 定时器的数据结构 利用timer_opts描述定时器 Timer_opts的数据结构 Name :标志定时器员的一个字符串 Mark_offset :记录上一个节拍开始所经过的时间,由时钟中断处理程序调用 Get_offset 返回自上一个节拍开始所经过的时间

Monotonic_clock :返回自内核初始化开始所经过的纳秒数 Delay:等待制定数目的“循环” 定时插补 就好像我们要为1小时35分34秒进行定时,我们不可能用秒表去统计,肯定先使用计算时的表,再用计算分的,最后才用秒表,在80x86架构的定时器也会使用各种定时器去进行定时插补,我们可以通过cur_timer指针来实现。 单处理器系统上的计时体系结构 所有与定时有关的活动都是由IRQ线0上的可编程间隔定时器的中断触发。 初始化阶段 1. 初始化间,time_init()函数被调用来建立计时体系结构 2. 初始化xtime变量(xtime变量存放当前时间和日期,它是一个timespec 类型的数据结构) 3. 初始化wall_to_monotonic变量,它跟xtime是同一类型的,但它存放将加在xtime上的描述和纳秒数,这样即使突发改变xtime也不会受到影响。 4. 看是否支持高精度计时器HPET 5. 调用select_timer()挑选系统中可利用的最好的定时资源,并让 cur_timer变量指向该定时器 6. 调用setup_irq(0,&irq0)来创建与IRQ相应的中断门。 时钟中断处理程序 1. 在xtime_lock顺序锁产生一个write_seqlock()来保护与定时相关的内核变量,这样防止中断让该进程被阻止。 2. 执行cur_timer定时器对象的mark_offset方法(记录上一个节拍开始所经过的时间,由时钟中断处理程序调用) 3. 调用do_timer_interrupt函数,步骤为 a) 使jiffies_64值增1 b) 调用updata_times()函数来更新系统日期和时间。

linux系统编程试卷(答案)

凌阳教育 嵌入式培训系统编程部分测试试题 注:考试为闭卷,程序题需上机操作运行出结果,考试时间为120分钟 一:选择题(本题共4小题,每题3分共12分) 1)下列不是Linux系统进程类型的是( D ) A 交互进程 B 批处理进程 C 守护进程 D 就绪进程(进程状态) 2)以下对信号的理解不正确的是( B ) A 信号是一种异步通信方式 B 信号只用在用户空间进程通信,不能和内核空间交互 C 信号是可以被屏蔽的 D 信号是通过软中断实现的 3)进程有三种状态( C ) A 准备态、执行态和退出态 B 精确态、模糊态和随机态 C 运行态、就绪态和等待态 D 手工态、自动态和自由态 4)不是进程和程序的区别( B) A 程序是一组有序的静态指令,进程是一次程序的执行过程 B 程序只能在前台运行,而进程可以在前台或后台运行 C 程序可以长期保存,进程是暂时的 D 程序没有状态,而进程是有状态的 二:填空题(本题共6小题,2)、3)两题每空四分,其余每空一分。共23分) 1) 列举八种常见的进程间通信方式无名管道、有名管道、消息队列、信号量、共享内存、信号、套接字 网络上两个主机的进程间通信方式为套接字 2) 命名管道比无名管道的优势提供了一个可以访问的路径名,实现没亲缘关系的进程 间通信 3) 消息队列比命名管道和无名管道的优势可以按类型实现消息的随机查询,没必要先 进先出 4) 按照逻辑结构不同进行数据库划分,Sqlite 数据库属于哪一类关系型数据库 5) 在C语言中操作sqlite数据库,常用的2中方式是sqlite_exec(回调)、

sqlite_gettable(非回调) 6) 列举四种进程调度算法先来先调度(FCFS)、短进程优先调度(SPF)、高优先级调度 (HPF)、时间片轮转调度 三:问答题(本题共7题,每题5分,共35分) 1) 什么是系统调用?系统调用是通过什么方式陷入内核态的?请写出你对系统调用的理解。什么是文件I/O和标准I/O库?文件I/O和标准I/O库的区别? 系统调用是指操作系统提供给用户程序调用的一组特殊接口,用户程序可以通过这组接口获得操作系统内核提供的服务。 系统调用是通过软件中断方式陷入内核的 linux的文件I/O是由操作系统提供的基本IO服务, 标准I/O库通过封装系统调用,提供了一个到底层I/O的接口。 标准I/O默认采用了缓冲机制,还创建了一个包含文件和缓冲区相关数据的数据结构;文件I/O一般没有采用缓冲模式,需要自己创建缓冲区。一种是标准库封装系统调用而成,更高级,一种是系统提供的,比较低级;标准I/O可移植性高、文件I/O可移植性低。 2) 什么是进程?用fork()创建一个子进程时,系统会做什么工作 进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配的单位,不仅是系统内部独立运行的实体也是独立竞争资源的实体。 用fork()时系统会分配子进程一个ID号然后继承父进程的地址空间,包括进程上下文进程堆栈打开的文件描述符等等,他就是父进程的一个复制品。 3) 进程和线程有什么区别? 每个独立的进程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在进程程中,由进程提供多个线程执行的控制。 进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。 4) 什么是线程的互斥和同步,程序应怎样写才能达到互斥或同步? 互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。 同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。 在写程序时可以用互斥锁和信号量实现线程同步,一个线程访问共享资源时给这个资源上锁其他线程就不能访问了直到上锁的进程释放互斥锁为止。 5) 什么是僵尸进程?孤儿进程?守护进程? 僵尸进程:僵尸进程是指它的父进程已经退出(父进程没有等待(调用wait/waitpid)它),而该进程dead之后没有进程接受,就成为僵尸进程,也就是(zombie)进程。 孤儿进程:一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成

Linux文件系统分析

Linux文件系统分析 一、什么是文件系统 . 文件系统是包括在一个磁盘(包括光盘、软盘、闪盘及其它存储设备)或分区的目录结构;一个可应用的磁盘设备可以包含一个或多个文件系统;如果您想进入一个文件系统,首先您要做的是挂载(mount)文件系统;为了挂载(mount)文件系统,您必须指定一个挂载点;一旦文件系统被挂载。文件系统是在一个磁盘(包括光盘、软盘、闪盘及其它存储设备)或分区组织文件的方法,如NTFS或FAT;文件系统涉及两个非常独特的事情,目录树或在磁盘或分区上文件的排列;文件系统是基于操作系统的,建立在磁盘媒质上的可见体系结构,例如这种结构对于一个Unix用户来说可以用ls 或其它工具可以看到;文件系统是基于被划分的存储设备上的逻辑上单位上的一种定义文件的命名、存储、组织及取出的方法;在计算机业,一个文件系统是有组织存储文件或数据的方法,目的是易于查询和存取。文件系统是基于一个存储设备,比如硬盘或光盘,并且包含文件文件物理位置的维护;也可以说文件系统也是虚拟数据或网络数据存储的方法。 二、常见的文件系统 Linux系统核心支持十多种文件系统类型:jfs、 ReiserFS、ext、ext2、ext3、iso9660、xfs、 minx、msdos、umsdos、Vfat、NTFS、Hpfs、Nfs、smb、sysv、proc等。这里我们对最常用的几个文件系统的发展情况和优缺点作详细介绍:ext、ext2、ext3、jsf、、xfs、ReiserFS。一、 ext ext是第一个专门为Linux的文件系统类型,叫做扩展文件系统。它在1992年4月完成的。它为Linux的发展取得了重要作用。但是在性能和兼容性上存在许多缺陷。现在已经很少使用了。二、 ext2 ext2是为解决ext文件系统的缺陷而设计的可扩展的高性能的文件系统。又被称为二级扩展文件系统。它是在1993年发布的,设计者是Rey Card。ext2是Linux文件系统类型中使用最多的格式。并且在速度和CPU利用率上较突出,是 GNU/Linux 系统中标准的文件系统,其特点为存取文件的性能极好,对于中小型的文件更显示出优势,这主要得利于其簇快取层的优良设计。Ext2 可以支持256字节的长文件名,其单一文件大小与文件系统本身的容量上限与文件系统本身的簇大小有关,在一般常见的Intel x86兼容处理器的系统中,簇最大为 4KB, 则单一文件大小上限为 2048GB, 而文件系统的容量上限为 6384GB。尽管Linux可以支持种类繁多的文件系统,但是2000年以前几乎所有的Linux发行版都用ext2作为默认的文件系统。 ext2的缺点:ext2的设计者主要考虑的是文件系统性能方面的问题。ext2在写入文件内容的同时并没有同时写入文件的meta-data (和文件有关的信息,例如:权限、所有者以及创建和访问时间)。换句话说,Linux先写入文件的内容,然后等到有空的时候才写入文件的meta- data。这样若出现写入文件内容之后但在写入文件的meta-data之前系统突然断电,就可能造成在文件系统就会处于不一致的状态。在一个有大量文件操作的系统中出现这种情况会导致很严重的后果。另外但由于目前核心 2.4 所能使用的单一分割区最大只有 2048GB,尽管文件系统的容量上限为 6384G但是实际上能使用的文件系统容量最多也只有 2048GB。三、 ext3 ext3是由开放资源社区开发的日志文件系统,主要开发人员是Stephen tweedie。ext3被设计成是ext2的升级版本,尽可能地方便用户从ext2fs向ext3fs迁移。ext3在ext2的基础上加入了记录元数据的日志功能,努力保持向前和向后的兼容性。这个文件系统被称为ext2

linux下的时间转换函数

linux下的时间函数 我们在编程中可能会经常用到时间,比如取得系统的时间(获取系统的年、月、日、时、分、秒,星期等),或者是隔一段时间去做某事,那么我们就用到一些时间函数。 linux下存储时间常见的有两种存储方式,一个是从1970年到现在经过了多少秒,一个是用一个结构来分别存储年月日时分秒的。 time_t 这种类型就是用来存储从1970年到现在经过了多少秒,要想更精确一点,可以用结构struct timeval,它精确到微妙。 struct timeval { long tv_sec; /*秒*/ long tv_usec; /*微秒*/ }; 而直接存储年月日的是一个结构: struct tm { int tm_sec; /*秒,正常范围0-59,但允许至61*/ int tm_min; /*分钟,0-59*/ int tm_hour; /*小时,0-23*/ int tm_mday; /*日,即一个月中的第几天,1-31*/ int tm_mon; /*月,从一月算起,0-11*/ int tm_year; /*年,从1900至今已经多少年*/ int tm_wday; /*星期,一周中的第几天,从星期日算起,0-6*/ int tm_yday; /*从今年1月1日到目前的天数,范围0-365*/ int tm_isdst; /*日光节约时间的旗标*/ };

需要特别注意的是,年份是从1900年起至今多少年,而不是直接存储如2008年,月份从0开始的,0表示一月,星期也是从0开始的,0表示星期日,1表示星期一。 下面介绍一下我们常用的时间函数: #include char *asctime(const struct tm* timeptr); 将结构中的信息转换为真实世界的时间,以字符串的形式显示 char *ctime(const time_t *timep); 将timep转换为真是世界的时间,以字符串显示,它和asctime不同就在于传入的参数形式不一样 double difftime(time_t time1, time_t time2); 返回两个时间相差的秒数 int gettimeofday(struct timeval *tv, struct timezone *tz); 返回当前距离1970年的秒数和微妙数,后面的tz是时区,一般不用 struct tm* gmtime(const time_t *timep); 将time_t表示的时间转换为没有经过时区转换的UTC时间,是一个struct tm结构指针 stuct tm* localtime(const time_t *timep); 和gmtime类似,但是它是经过时区转换的时间。 time_t mktime(struct tm* timeptr); 将struct tm结构的时间转换为从1970年至今的秒数 time_t time(time_t *t); 取得从1970年1月1日至今的秒数。 上面是简单的介绍,下面通过实战来看看这些函数的用法: 下载: gettime1.c 1. /*gettime1.c*/ 2. #include 3. int main()

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

(完整版)linux文件系统管理-权限管理实验4报告

实验报告 课程Linux系统应用与开发教程实验名称linux文件系统管理-权限管理(高级设置) 一、实验目的 1、掌握Linux文件系统权限的设置 2、掌握linux用户帐号与组管理 3、掌握linux 文件共享的设置方法 4、掌握linux 文件共享的权限设置方法 二、实验内容 1、使用root帐号通过系统提供的6个虚拟控制台登陆到linux,或在x-windows开启一个终端。 2、完成以下的实验内容 (1)、假设你是系统管理员:现要在公司linux服务器系统中新增一些用户与一个用户组。 ?使用groupadd account 添加一个名为account的组 ?使用useradd -G account acc-user1,(该命令将添加一个用户名为acc-user1的用户, 同时会建立一个与用户名同名的私有组(该私有组为用户的默认组,这个组中只有一个用户名),并把该用户将加入account的标准组,同时,按同样的方法建立acc-user2、acc-user3、acc-user4。 ?建立用户后,请使用x-window中的用户与组管理工具查看用户与组建立情况,检查用户与组的归属情况。 (2)、开启多个控制台,分别使用acc-user1、acc-user2、acc-user3登陆系统(可以在控制台分别登陆,也可以在X-windows中多开几个终端程序,默认使用root登陆,然后使用su命令通过切换用户的方式登陆,其语法为“su - user-name”,提示可以在登陆成功后运行命令“id”查看当前登陆的用户属于哪些组,当前的默认组是什么?) (3)、为account组建立一个公共共享目录/home/account-share,满足以下的权限设定要求,以及设置何种的umask: ?该目录的拥有者为acc-user1,所属组为account。 ?在该目录下建立一个/home/account-share/full-share的子目录,修改该目录的权限,使得account组的成员均能在对该目录有完全控制权限,account组外的其他用户没有任何权限,即account组的成员都可以在该目录下建立文件,同时在该子目录full-share下建立的文件,只有文件建立者有权限删除,并且每个用户在该子目录full-share下建立的文件也能自动与该account组成员可读共享。 ?在/home/account-share/为每个用户建立一个与用户名同名的子目录(如/home/account-share/acc-user1为用户acc-user1的目录,其拥有者为acc-user1,所在的组为account),配置该子目录的拥有者有完全控制权限,而同组用户只能读取,同时在用户在该目录下建立的文件,可供同组用户读。 (4)、考虑完成以上的共享目录权限设置,应注意哪些设置。包括目录的权限,目录的拥有者,目录所在的组,具体文件的权限,umask设置等。 (5)、实验报告应体现出使用不同身份的用户对所配置目录的访问测试过程。 三、实验环境 安装有vmware或visual pc软件的window主机,系统中有提供turbolinux或redhat的硬盘

linux 内存相关操作函数

Linux内核中内存相关的操作函数 1、kmalloc()/kfree() static __always_inline void *kmalloc(size_t size, gfp_t flags) 内核空间申请指定大小的内存区域,返回内核空间虚拟地址。在函数实现中,如果申请的内存空间较大的话,会从buddy系统申请若干内存页面,如果申请的内存空间大小较小的话,会从slab系统中申请内存空间。 gfp_t flags 的选项较多。参考内核文件gfp.h. 在函数kmalloc()实现中,如果申请的空间较小,会根据申请空间的大小从slab中获取;如果申请的空间较大,如超过一个页面,会直接从buddy系统中获取。 2、vmalloc()/vfree() void *vmalloc(unsigned long size) 函数作用:从高端(如果存在,优先从高端)申请内存页面,并把申请的内存页面映射到内核的动态映射空间。vmalloc()函数的功能和alloc_pages(_GFP_HIGHMEM)+kmap() 的功能相似,只所以说是相似而不是相同,原因在于用vmalloc()申请的物理内存页面映射到内核的动态映射区(见下图),并且,用vmalloc()申请的页面的物理地址可能是不连续的。而alloc_pages(_GFP_HIGHMEM)+kmap()申请的页面的物理地址是连续的,被映射到内核的KMAP区。 vmalloc分配的地址则限于vmalloc_start与vmalloc_end之间。每一块vmalloc分配的内核虚拟内存都对应一个vm_struct结构体(可别和vm_area_struct搞混,那可是进程虚拟内存区域的结构),不同的内核虚拟地址被4k大小的空闲区间隔,以防止越界--见下图)。与进程虚拟地址的特性一样,这些虚拟地址与物理内存没有简单的位移关系,必须通过内核页表才可转换为物理地址或物理页。它们有可能尚未被映射,在发生缺页时才真正分配物理页面。 如果内存紧张,连续区域无法满足,调用vmalloc分配是必须的,因为它可以将物理不连续的空间组合后分配,所以更能满足分配要求。vmalloc可以映射高端页框,也可以映射底端页框。vmalloc的作用只是为了提供逻辑上连续的地址… 注意:在申请页面时,如果注明_GFP_HIGHMEM,即从高端申请。则实际是优先从高端内存申请,顺序为(分配顺序是HIGH, NORMAL, DMA )。 3、alloc_pages()/free_pages() 内核空间申请指定个数的内存页,内存页数必须是2^order个页。 alloc_pages(gfp_mask, order) 中,gfp_mask 是flag标志,其中可以为_ _GFP_DMA、_GFP_HIGHMEM 分别对应DMA和高端内存。

linux添加系统调用实验步骤

首先,进入到内核源码目录/usr/src/linux-2.6.34中,添加自己的系统调用号。 lyh@lyh:~$ cd /usr/src/linux-2.6.34/ 系统调用号在unistd_32.h文件中定义。内核中每个系统调用号都是 以“__NR_"开头的,在该文件中添加自己的系统调用号 lyh@lyh:/usr/src/linux-2.6.34$ sudo vim arch/x86/include/asm/unistd_32.h #define __NR_pwritev 334 #define __NR_rt_tgsigqueueinfo 335 #define __NR_perf_event_open 336 #define __NR_recvmmsg 337 #define __NR_mycall 338 #ifdef __KERNEL__ #define NR_syscalls 339 在内核源文件中该行为#define NR_syscalls 338,在系统调用执行的过程中,system_call()函数会根据该值来对用户态进程的有效性进行检查。如果这个号大于或等于NR_syscalls,系统调用处理程序终止。所以应该将原来的#define NR_syscalls 338修改为#define NR_syscalls 339 其次,在系统调用表中添加相应的表项 (1)lyh@lyh:/usr/src/linux-2.6.34$ sudo vim arch/x86/kernel/syscall_table_32.S ENTRY(sys_call_table) .long sys_restart_syscall .long sys_exit ………………(这里省略了部分) .long sys_rt_tgsigqueueinfo .long sys_perf_event_open .long sys_recvmmsg .long sys_mycall (2)lyh@lyh:/usr/src/linux-2.6.34$ sudo vim arch/h8300/kernel/syscalls.S #include #include

Linux 0.1.1文件系统的源码阅读

Linux 0.11文件系统的源码阅读总结 1.minix文件系统 对于linux 0.11内核的文件系统的开发,Linus主要参考了Andrew S.Tanenbaum 所写的《MINIX操作系统设计与实现》,使用的是其中的1.0版本的MINIX文件系统。而高速缓冲区的工作原理参见M.J.Bach的《UNIX操作系统设计》第三章内容。 通过对源代码的分析,我们可以将minix文件系统分为四个部分,如下如1-1。 ●高速缓冲区的管理程序。主要实现了对硬盘等块设备进行数据高速存取的函数。 ●文件系统的底层通用函数。包括文件索引节点的管理、磁盘数据块的分配和释放 以及文件名与i节点的转换算法。 ●有关对文件中的数据进行读写操作的函数。包括字符设备、块设备、管道、常规 文件的读写操作,由read_write.c函数进行总调度。 ●涉及到文件的系统调用接口的实现,这里主要涉及文件的打开、关闭、创建以及 文件目录等系统调用,分布在namei和inode等文件中。 图1-1 文件系统四部分之间关系图

1.1超级块 首先我们了解一下MINIX文件系统的组成,主要包括六部分。对于一个360K软盘,其各部分的分布如下图1-2所示: 图 1-2 建有MINIX文件系统的一个360K软盘中文件系统各部分的布局示意图 注释1:硬盘的一个扇区是512B,而文件系统的数据块正好是两个扇区。 注释2:引导块是计算机自动加电启动时可由ROM BIOS自动读入得执行代码和数据。 注释3:逻辑块一般是数据块的2幂次方倍数。MINIX文件系统的逻辑块和数据块同等大小 对于硬盘块设备,通常会划分几个分区,每个分区所存放的不同的文件系统。硬盘的第一个扇区是主引导扇区,其中存放着硬盘引导程序和分区表信息。分区表中得信息指明了硬盘上每个分区的类型、在硬盘中其实位置参数和结束位置参数以及占用的扇区总数。其结构如下图1-3所示。 图1-3 硬盘设备上的分区和文件系统 对于可以建立不同的多个文件系统的硬盘设备来说,minix文件系统引入超级块进行管理硬盘的文件系统结构信息。其结构如下图1-4所示。其中,s_ninodes表示设备上得i节点总数,s_nzones表示设备上的逻辑块为单位的总逻辑块数。s_imap_blocks 和s_zmap_blocks分别表示i节点位图和逻辑块位图所占用的磁盘块数。 s_firstdatazone表示设备上数据区开始处占用的第一个逻辑块块号。s_log_zone_size 是使用2为底的对数表示的每个逻辑块包含的磁盘块数。对于MINIX1.0文件系统该值为0,因此其逻辑块的大小就等于磁盘块大小。s_magic是文件系统魔幻数,用以指明文件系统的类型。对于MINIX1.0文件系统,它的魔幻数是0x137f。

linux的system () 函数详解

linux的system () 函数详解 system(执行shell 命令) 相关函数 fork,execve,waitpid,popen 表头文件 #i nclude 定义函数 int system(const char * string)? 函数说明 system()会调用fork()产生子进程,由子进程来调用/bin/sh-c string来执行参数string字符串所代表的命令,此命>令执行完后随即返回原调用的进程。在调用system()期间SIGCHLD 信号会被暂时搁置,SIGINT和SIGQUIT 信号则会被忽略。 返回值 =-1:出现错误 =0:调用成功但是没有出现子进程 >0:成功退出的子进程的id 如果system()在调用/bin/sh时失败则返回127,其他失败原因返回-1。若参数string为空指针(NULL),则返回非零值>。如果system()调用成功则最后会返回执行shell命令后的返回值,但是此返回值也有可能为 system()调用/bin/sh失败所返回的127,因此最好能再检查errno 来确认执行成功。 附加说明 在编写具有SUID/SGID权限的程序时请勿使用system(),system()会继承环境变量,通过环境变量可能会造成系统安全的问题。 范例 #i nclude main() { system(“ls -al /etc/passwd /etc/shadow”)? } 执行结果: -rw-r--r-- 1 root root 705 Sep 3 13 :52 /etc/passwd -r--------- 1 root root 572 Sep 2 15 :34 /etc/shado 例2: char tmp[]? sprintf(tmp,"/bin/mount -t vfat %s /mnt/usb",dev)? system(tmp)? 其中dev是/dev/sda1。

Linux系统调用详解之pdbedit

Name pdbedit ? manage the SAM database (Database of Samba Users) Synopsis pdbedit [?a] [?b passdb?backend] [?c account?control] [?C value] [?d debuglevel] [?D drive] [?e passdb?backend] [?f fullname] [??force?initialized?passwords] [?g] [?h homedir] [?i passdb?backend] [?I domain] [?K] [?L] [?m] [?M SID|RID] [?N description] [?P account?policy] [?p profile] [??policies?reset] [?r] [?s configfile] [?S script] [?t] [??time?format] [?u username] [?U SID|RID] [?v] [?V] [?w] [?x] [?y] [?z] [?Z] DESCRIPTION This tool is part of the samba(7) suite. The pdbedit program is used to manage the users accounts stored in the sam database and can only be run by root. The pdbedit tool uses the passdb modular interface and is independent from the kind of users database used (currently there are smbpasswd, ldap, nis+ and tdb based and more can be added without changing the tool). There are five main ways to use pdbedit: adding a user account, removing a user account, modifing a user account, listing user accounts, importing users accounts. OPTIONS ?L|??list This option lists all the user accounts present in the users database. This option prints a list of user/uid pairs separated by the ′:′ character. Example: pdbedit ?L sorce:500:Simo Sorce samba:45:Test User ?v|??verbose This option enables the verbose listing format. It causes pdbedit to list the users in the database, printing out the account fields in a descriptive format. Example: pdbedit ?L ?v

linux总结

1软件通常分为系统软件、应用软件、支撑软件 2 操作系统是用户与计算机硬件之间的界面,它是控制、管理计算机系统内各种硬件和软件资源,有效的组织多道程序运行的系统软件。 3 Linux系统吧计算机系统中的硬件资源和软件资源有机地结合在一起,从而提供丰富的功能,包括:控制硬件、管理资源、提供用户接口,处理输入/输出、监视系统、通信。 4 Linux的优点:1与UNIX系统兼容 2自由软件和源码公开 3 性能高和安全性强 4 便于制定和再开发 5 互操作性高 5 Linux 有俩种版本:核心(Kernel)版本和发行(Distribution)版本 6 Linux核心版本根据约定,若版本号为奇数,则表示该版本加入新内容,但不一定稳定,为测试版本。若版本号为偶数,则表示这是一个可以使用的稳定版本 7 安装红旗Linux需要俩个必备的分区,即一个根文件系统分区(类型为ext3,ext2或reiserfs)和一个交换分区(类型为swap) 8 Linux操作系统支持以下文件类型:普通文件、目录文件、设备文件和符号链接文件。 9 设备文件除了在文件I节点中存放属性信息外,他们不包含任何属性信息外,它不包含任何数据,系统利用它们来标记各个设备驱动器 10 符号链接文件时一种特殊文件,提供对其他文件的参照 11 cp命令将源文件或目录复制到目标文件或目录中 12 rm命令删除文件或目录 13 mv命令对文件或目录重新命令,或者将文件从一个目录移到另一个目录中。 14 wc命令统计指定文件的字节数、字数、行数,并将统计结果显示出来 15 绝对路径名和相对路径名的联系与区别 联系:当为命令指定文件路径名是,要指定俩种路径中一种 区别:绝对路径名总是以斜线字符(/)开头 相对路径不能以斜线字符开头 16 硬链接:建立硬链接时,在别的目录或本目录中增加目标文件的一个目录项,这样的一个文件就登记在多个目录中 17 符号链接(软链接)是将一个路径名链接到一个文件,这些文件是一种特别类型的文件 18 软硬链接的区别:1软链接建立了一个新文件而硬链接没有建立新文件 2 软链接没有硬链接的限制,可以对目录文件建立软链接,也可以在不同文件系统之间建立软链接 19 chgrp命令改变文件或目录所属的用户组 20 chown命令改变某个文件或目录的所有者和所属的组 21 ps命令查看当前系统中运行的进程信息 22 kill命令用来终止一个进程的运行 23 vi编辑器三中工作方式:命令方式、插入方式、ex转义方式 24 退出vi的命令 :wq :ZZ :x :q! 四种 25 执行shell脚本的方式: 1 输入定向到shell脚本 2 以脚本名作为bash 参数 3 将shell脚本的权限设置为可执行 26 名称补全的方法是输入目录或文件名的开头部分,然后按Tab键 27 通配符用于模式匹配(四种 * ? [字符组] !) 27 由双引号括起来的字符除($ ‘ \)均作为普通字符对待

8第八章Linux下的系统调用

第八章 Linux下的系统调用 8.1 系统调用介绍 8.1.1 引言 系统调用是内核提供的、功能十分强大的一系列函数。它们在内核中实现,然后通过一定的方式(库、陷入等)呈现给用户,是用户程序与内核交互的一个接口。如果没有系统调用,则不可能编写出十分强大的用户程序,因为失去了内核的支持。由此可见系统调用的地位举足轻重。内核的主体可以归结为: 系统调用的集合; 实现系统调用的算法。 8.1.2 系统调用的实现流程 这里我们通过getuid()这个简单的系统调用来分析一下系统调用的实现流程。在分析这个程序时并不考虑它的底层是如何实现的,而只需知道每一步执行的功能。 首先来看一个例子: #include /* all system call need this header*/ int main() { int i=getuid(); printf(“Hello World! This is my uid: %d\n”,i); } #include是每个系统调用都必须要的头文件,当系统执行到getuid()时,根据unistd.h中的宏定义把getuid()展开。展开后程序把系统调用号__NR_getuid(24)放入eax,然后通过执行“int $0x80”这条指令进行模式切换,进入内核。int 0x80指令由于是一条软中断指令,所以就要看系统规定的这条中断指令的处理程序是什么。 arch/i386/kernel/traps.c set_system_gate(SYSCALL_VECTOR,&system_call); 从这行程序我们可以看出,系统规定的系统调用的处理程序就是system_call。控制转移到内核之前,硬件会自动进行模式和堆栈的切换。现在控制转移到了system_call,保留系统调用号的最初拷贝之后,由SAVE_ALL来保存上下文,得到该进程结构的指针,放在ebx里面,然后检查系统调用号,如果__NR_getuid(24)是合法的,则根据这个系统调用号,索引sys_call_table,得到相应的内核处理程序:sys_getuid。执行完sys_getuid之后,保存返回值,从eax移到堆栈中的eax处,假设没有

qt4中如何调用C函数(linux下)

qt默认的编程语言为C++语言。如果你用qt编译.c文件,会出现找不到C语言的默认头文件等错误(如:stdio.h等)。qt中不支持 extern "C"{}的这种写法,我前几天有一个C程序需要移植到Qt的工程中,本希望直接extern "C"就ok了,但发现qt4居然不支持这种写法。我的程序中用到了好几个linux系统头文件,是向串口发指令之类的程序,程序中用到了互斥锁并创建了一个线程。如果再用qt语言来写一遍的话我会挂掉的,所以没有办法,在网上找了半天,终于找到解决方法。 将.c文件编译为函数库的方式在qt下调用,这种方法貌似行得通,我就开始行动了。 下面的内容讲得比较多,比较全,比较适合初学者,是我在网上down的,给出了原网站的链接,最后给出了一个程序。经过自己整理好归纳如下: 需要说明的是:使用gcc可以将程序编译成动态库或者静态库的形式,它们在程序中的调用的方式也不尽相同,给出的程序中调用的是动态连接库。编译成动态的还是静态的根据自己的需要进行。如果原C程序编译的时候需要gcc的额外选项(如gcc -lpthread -o hello hello.c)等,建议采用动态的形式。 1.什么是静态连接库,什么是动态链接库 静态链接库与动态链接库都是共享代码的方式,如果采用静态链接库,则无论你愿不愿意,lib 中的指令都全部被直接包含在最终生成的EXE 文件中了。但是若使用DLL,该DLL 不必被包含在最终EXE 文件中,EXE 文件执行时可以“动态”地引用和卸载这个与EXE 独立的DLL 文件。静态链接库和动态链接库的另外一个区别在于静态链接库中不能再包含其他的动态链接库或者静态库,而在动态链接库中还可以再包含其他的动态或静态链接库。在windows和linux上都是相同的,只不过文件的格式不同而已。 https://www.wendangku.net/doc/5a17203084.html,/winston/archive/2008/07/05/1236273.html 2.gcc生成静态库和动态库 第1步:编辑得到举例的程序--hello.h、hello.c和main.c; 第2步:将hello.c编译成.o文件;

linux下获取系统时间的方法

linux下获取系统时间的方法 时间:2009-11-11 13:45:04 来源:Linux联盟作者:可以用localtime 函数分别获取年月日时分秒的数值。 Linux下获得系统时间的C语言的实现方法: 1. 可以用localtime 函数分别获取年月日时分秒的数值。 #include //C语言的头文件 #include //C语言的I/O void main() { time_t now; //实例化time_t结构 struct tm *timenow; //实例化tm结构指针 time(&now); //time函数读取现在的时间(国际标准时间非北京时间),然后传值给now timenow = localtime(&now); //localtime函数把从time取得的时间now换算成你电脑中的时间(就是你设置的地区) printf("Local time is %sn",asctime(timenow)); //上句中asctime函数把时间转换成字符,通过printf()函数输出 } 注释:time_t是一个在time.h中定义好的结构体。而tm结构体的原形如下: struct tm { int tm_sec;//seconds 0-61 int tm_min;//minutes 1-59 int tm_hour;//hours 0-23 int tm_mday;//day of the month 1-31 int tm_mon;//months since jan 0-11 int tm_year;//years from 1900 int tm_wday;//days since Sunday, 0-6 int tm_yday;//days since Jan 1, 0-365 int tm_isdst;//Daylight Saving time indicator }; 2. 对某些需要较高精准度的需求,Linux提供了gettimeofday()。

相关文档