文档库 最新最全的文档下载
当前位置:文档库 › 相对论

相对论

相对论
相对论

相对论(关于时空和引力的基本理论)

相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律

与参照系的选择无关。

狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理

的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发

展了牛顿力学,推动物理学发展到一个新的高度。

狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对

论是吻合很好的,所以目前普遍认为相对论是正确的理论。

研究发展编辑

研究历程

广义相对论

1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与

光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1]

1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含

了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力

学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太

漂流是不存在的。[2]

1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原

理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根

据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦

并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究

竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释

等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。[3]

1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他

提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广

义相对论的基本问题都解决了,广义相对论诞生了。

1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成

立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须

对于无论哪种方式运动着的参照系都成立。[2]

理论分野

传统上,在爱因斯坦刚刚提出相对论的初期,人们以所讨论的问题是否涉及非惯性参

考系来作为狭义与广义相对论分类的标志。随着相对论理论的发展,这种分类方法越

来越显出其缺点——参考系是跟观察者有关的,以这样一个相对的物理对象来划分物

理理论,被认为较不能反映问题的本质。一般认为,狭义与广义相对论的区别在于所

讨论的问题是否涉及引力(弯曲时空),即狭义相对论只涉及那些没有引力作用或者

引力作用可以忽略的问题,而广义相对论则是讨论有引力作用时的物理学的。用相对

论的语言来说,就是狭义相对论的背景时空是平直的,即四维平凡流型配以闵氏度规,其曲率张量为零,又称闵氏时空;而广义相对论的背景时空则是弯曲的,其曲率张量

不为零。[4]

基本原理编辑

狭义相对论的基本原理

一、在任何惯性参考系中,自然规律都相同,称为相对性原理。

二、在任何惯性系中,真空光速c都相同,即光速不变原理。

其中第一条就是相对性原理,第二条是光速不变性。整个狭义相对论就建筑在这两条

基本原理上。由此得出时间和空间各量从一个惯性系变换到另一惯性系时,应该满足

洛伦兹变换,而不是满足伽利略变换。并由此推出许多重要结论,例如:

1、两事件发生的先后或是否“同时”,在不同参照系看来是不同的(但因果律仍然成立)。

2、量度物体的长度时,将测到运动物体在其运动方向上的长度要比静止时缩短。与此相似,量度时间进程时,将看到运动的时钟要比静止的时钟进行得慢。

3、物体质量m随速度v的增加而增大。

4、任何物体的速度不能超过光速。

5、物体的质量m与能量E之间满足质能关系式E=mc2。

以上结论与目前的实验事实符合,但只有在高速运动时,效应才显著。在通常的情况下,相对论效应极其微小,因此经典力学可认为是相对论力学在低速情况下的近似。[13]

广义相对论基本原理

1、广义相对论原理,即自然定律在任何参考系中都可以表示为相同数学形式。

2、等价原理,即在一个小体积范围内的万有引力和某一加速系统中的惯性力相互等效。

按照上述原理,万有引力的产生是由于物质的存在和一定的分布状况使时间空间性质

变得不均匀(所谓时空弯曲);并由此建立了引力场理论;而狭义相对论则是广义相

对论在引力场很弱时的特殊情况。[14]

研究结果编辑

相对论的一个非常重要的结果是质量与能量之间的关系。爱因斯坦假设,光速对每个

人来说应该显得是相同的,这意味着没有什么能移动得比光更快。事实上,随着能量

被用于使一颗粒子或者一艘宇宙飞船加速,这种对象的质量就会增加,使它更难于增

加任何速度。使这颗粒子的速度增加到与光速一样是不可能的,因为这需要无穷的能量,爱因斯坦的著名方程式E=mc2 总结了质量和能量的这种等效--这或许是在街头得到承认的唯一物理学方程式。

这个定律的后果之一是,如果一个铀原子的核裂变(分裂)成两个全部质量略小的核,就能释放巨大的能量。1939年,随着第二次世界大战的临近,一群认识到这一点的含义的科学家说服爱因斯坦克服其和平主义犹豫,给罗斯福总统写了一封信,敦促美国

开始实行一项核研究计划。这导致曼哈顿计划以及1945年在广岛上空爆炸的原子弹的问世。一些人把原子弹归咎于爱因斯坦,因为他发现了质量与能量之间的关系。但是,这就像因为造成飞机坠毁的引力而责备牛顿。爱因斯坦没有参与曼哈顿计划,并且对

摧毁广岛的核爆炸感到震惊。

虽然相对论非常符合支配电学和磁学的定律,但它不符合牛顿的万有引力定律。牛顿

定律说,如果你改变某个空间区域的物质分布,你就会立即感觉到宇宙中别处的引力

场的变化。这不仅意味着你能以高于光速(这是相对论认为不可能的)的速度发送信号,而且需要"绝对时间"或者"普遍时间"的存在--主张个人时间或者相对时间的相对论已经彻底批驳了"绝对时间"或者"普遍时间"的存在。

1912年,当爱因斯坦回到苏黎世后,他突然灵机一动。他认识到,如果在现实的几何学中存在某种平等交换,引力与加速之间的等效就可能起作用。如果空时--爱因斯坦发明的一种存在,包括熟悉的空间三维和第四维时间--是弯曲的,而不像曾经设想的那样是平坦的,那会怎么样。他设想,质量和能量可能以某种有待确定的方式使空时变得

扭曲。诸如苹果或者行星等物体可能努力以直线方式穿越时空,但因为时空是弯曲的,它们的移动路线可能因为引力场而显得弯曲。

在他的朋友格罗斯曼(M.Grossmann)帮助下,爱因斯坦研究了有关弯曲的空间和表

面的理论。这个理论是黎曼(B.Riemann)作为抽象数学的一部分提出的,黎曼无论如何想不到,它将与现实世界有关。1913年,爱因斯坦和格罗斯曼合写了一篇论文,在这篇论文中提出一种见解:人们所认为的引力只是空时是弯曲的这个事实的表现。然而,由于爱因斯坦的错误(他完全具有人的本性,容易犯错误),他们未能发现把空

时的弯曲与空时中的质量和能量联系在一起的方程式。

爱因斯坦在柏林继续研究这个问题,他于1915年11月终于了方程式E=mc2。1915

年夏季,爱因斯坦在访问格丁根大学期间,与数学家希尔伯特(D.Hilbert)讨论了自

己的想法,而希尔伯特已早于爱因斯坦几天独立发现了同样的方程式。然而,正如希

尔伯特所承认的,新理论应归功于爱因斯坦。把引力与时空的弯曲联系在一起正是他

的主意。

有关弯曲的空时的新理论被称为广义相对论,以区别于最初的不包括引力的理论,这

种最初的理论以狭义相对论著称。广义相对论在1919年以一种惊人的方式得到证实,当时英国前往西非的一支远征队在日食期间观察到,在太阳附近星星的位置出现轻微

的偏转。正如爱因斯坦曾预言的,这些星星发出的光在经过太阳时是弯曲的。这直接

证明了空间和时间是弯曲的。这是欧几里得在公元前300年左右写下其《几何原本》

以来,人们对自己所生活的场所的认识的最大变化。

爱因斯坦的广义相对论使空间和时间从发生事件的消极后台变成了宇宙动力的积极参

与者。这导致一个到20世纪末仍处于物理学最前沿的重大问题。宇宙充满物质,而物质使空时弯曲,物体因此互相吸引。爱因斯坦发现,他的方程式并不具有一种描述在

时间上是不变的宇宙的解决办法。他没有放弃他和其他大多数人所相信的静态和永恒

的宇宙,而是通过增添所谓的宇宙项修改了这些方程式,宇宙项以另外的方式使空时

弯曲,因此物体彼此分开。宇宙项的排斥影响能抵消物质的吸引影响,并使宇宙永久

存在。

广义相对论彻底改变了有关宇宙起源和命运的讨论。一个静止的宇宙可能永远存在,

或者可能在过去的某个时候以其目前的形式得到创造。另一方面,如果各星系今天正

在不断分开,它们在过去必定彼此更接近。在大约150亿年前,它们可能彼此重叠,

而它们的密度可能是无限的。根据广义相对论,宇宙大爆炸是宇宙和时间本身的开始。

广义相对论还预言,时间在黑洞内部将停止。黑洞是空时的一些极其弯曲以致光不能

漏出的区域。

科学实验编辑

时间稀释:伟大科学家爱因斯坦早于20世纪发表的“时间相对论”,1905年,爱因

斯坦订立著名的时间相对论,指一件对象相对于另一对象移动的速度,会使时间加快

或减慢。根据这个假设,一个移动中的时钟秒针应比一个静止平放的时钟秒针跳动得慢,这现象称为“时间稀释”。

国际科学家发表报告指出,他们利用分子加速器把原子打成两条光束,绕圈而行,模

拟理论中较快的时钟,然后用高精密度的激光光谱测量时间,发现光束相较外界的确

慢了一些。实验与爱因斯坦的理论“完全吻合”。

重力感应磁场预言被证实:爱因斯坦相对论中的微“重力感应磁场”预言,首次于实

验室得到证实,欧洲航天局日前公布了这项实验结果。

这次实验的首席科学家塔玛表示,实验所获“重力感应磁场”力比相对论所预言的威

力要大得多,并将此磁场命名为“伦敦一刻重力感应磁场”(Gravitomagnetic London Moment)。

之前,已有超导(电)体的高速旋转能产生“感应磁场”的证明。但此前相对论预言,存在类地球引力磁场,即“重力感应磁场”,不过影响力很弱,此次试验对此作出了

证明。

实验的主要仪器是特制的加速器。“重力感应磁场”主要产生于超导(电)体的高速

旋转。

据了解,实验中的旋转速度达到了一分钟6500次。超导体是一种特殊的材料,很多微型加速感应器被放置在高旋超导体的不同部位,记录各种外部感应数据,数据显示,

感应影响力远超于爱因斯坦的预言。

塔玛还表示,在发表这一实验结果之前,已经经历了250次尝试,改善实验仪器3年多,并且花了8个月的时间验证结果的有效性。已经可以非常自信地保证实验过程的

合理性。但是他也同时强调,这一实验仪器并不具有唯一排他性。

塔玛表示,还希望能够有其他的实验组进行同样的实验来确认他们实验结果的精确性,这项技术在军事和空间技术上将能广泛地应用。

他说,如果得到确信,这可以说是一项伟大的突破,开启了爱因斯坦相对论研究的全

新调查手段,并且影响整个量子领域。

欧洲航空局空间动力领域主管马特斯(Clovis J.deMatos)指出,这项实验结果是否是相对论的一种突破,还在进一步讨论之中,虽然是否能被其他科学家同样验证还是未

知数,但实验人员还将采用大量高速旋转的地球引力波色子,“重力波色子”继续完

善这一感应磁场的模板。[15]

爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。后来才增加了第四个验证:(4)雷达回波的时间延迟。

(1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相

应的频率变小,在光谱中向红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与

相对论预言一致。60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。5M产生的红移,结果与相对论预言一致。

(2)光线偏折(光线偏转):如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hv和质能公式

E=Mc2求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算出的偏折角是1.74秒,正好大了一倍,对它的检验显然成为对广义相对论的严峻考验。

1916年爱因斯坦计算出恒星光在太阳近旁通过时偏转角度是1.75角秒。验证的方法

就是利用日全食时拍摄太阳近旁恒星的照片,再用它与半年前或半年后太阳不在这个

天区时的照片作非常精密的恒星位置测量比较,看看这些星的位置是否发生了微小的

变化。正好1919年5月29日将在南美洲和非洲发生一次日全食。为了验证相对论,

英国格林尼治天文台和剑桥大学天文台分别派出了日食远征队到巴西和西非观测。两

地的观测都非常成功。得到太阳近旁恒星位置移动的数量分别是1.98角秒和1.61角秒。考虑到观测过程中可能发生的各种误差,这样的数值已经非常接近理论值。这是

日食观测史上最值得纪念的一次天文事件。接着1922年9月21日东非和澳洲发生日

全食,又有几支日食远征队观测成功。拍摄到的星像经过精密测定得出恒星位置偏移

量为1.72角秒,与爱因斯坦所计算的理论值只差0.03角秒。以后,每逢日全食天文

学家还在不断观测,结果都与理论值非常接近。日全食观测结果证明爱因斯坦的相对论是经得起考验的科学理论。[12]

(3)水星近日点的进动(时空弯曲):天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。

(4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。

应用编辑

1.爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台的引力波观测计划的目标。此外,广义相对论还是现代宇宙学的膨胀宇宙模型的理论基础。[16]

2.广义相对论在实际生产和生活中的一个重要应用就是现在已经运行的GPS等卫星导航系统,广义相对论的效应直接影响到GPS等卫星导航系统的测量精度。[17]

根据爱因斯坦的理论,空间和时间交织在一起,形成一种“时空”四维结构,而地球的质量会在这种结构上产生“凹陷”。科学家们将一个高精度陀螺仪送上地球轨道,使它的一个旋转轴指向一颗遥远的恒星作为参考点。在没有任何外力作用的情况下,这一旋转轴应当永远指向这一颗恒星。然而,如果空间是弯曲的,那么陀螺仪的指向会随时间推移发生改变。通过GPS对这种改变进行精密检测,科学家们发现地球周围确实存在时空漩涡,其各项参数与爱因斯坦“时空弯曲”的预言完全相符。[18]

影响编辑

联合国大会已把2005年确定为“国际物理年”,这是联合国首次为一个学科确定的全球规模的纪念活动。

运动中的尺子会缩短:相对论的研究对象是超越人们日常经验的高速运动世界和广阔的宇宙。狭义相对论认为,运动中的尺子会缩短。人们平时处在低速运动中当然不可能觉察,但如果以每秒26万公里的速度运动时,一米的尺子就会缩成半米。狭义相对

论表明,高速旅行会使时间变慢。假定将来人们能制造一艘接近光速飞行的宇宙飞船,从地球出发飞向遥远的星系,来回的旅程仅仅几年(按飞船上的时间),但在此期间

地球上已过去了几千年。

1915年,爱因斯坦把狭义相对论发展成广义相对论。广义相对论认为,没有物质的时空是平坦的,有物质存在的时空就变得弯曲了,两点之间的距离因物质的存在而被拉

伸或挤压。一个直观的比喻是,水平抻开的一块布应该是平坦的,当你在布上放置一

个铅球后,布面就变得弯曲了,这时再放置一个小玻璃球在布上,它就会滚向中央的

铅球。同理,星球的质量使周围的时空弯曲,星球上的“引力”实际上是一个时空被

弯曲的现象。根据广义相对论,1939年美国物理学家奥本海默证明,假如星体质量聚集到一个足够小的球状区域里,引力的强烈挤压会使那个天体的密度无限增大,然后

产生灾难性的坍塌,使那里的时空变得无限弯曲,这就是人们常听说的黑洞。

理论催生原子弹:作为相对论的一个推论,爱因斯坦提出了著名的质能关系式:能量

等于质量乘以光速的平方。在这一理论的指导下,1939年,科学家找到了通过裂变把质量转化为能量,释放巨大原子能的中子链式反应,进而制造了原子弹,后来又利用

核聚变发明了氢弹。而可以控制反应剧烈程度的核反应堆的和平利用,比如核电站、

可控核反应堆供暖系统等极大地改善了人们的生活。

全球卫星定位系统也依赖于爱因斯坦的相对论。爱因斯坦指出:传统的时间概念只能

在简单的条件下才能确定,当多种因素暂时联系起来的时候,传统的计时方法就失去

作用。全球定位卫星发出的信号,由于处在不同的参照系上,时空无法和地面同步,

只有根据卫星和地面的原子钟不断调整时间,才能保证定位系统的精确。

1976年,物理学家维索特和列文向太空发射了一枚载有时钟的火箭。他们观察到,这个时钟与放置在地球上的时钟相比,多获得了1/10微秒。他们认为,为了在未来时光中旅行,就需要利用那些强度远高于地球重力的引力场,比如中子星引力场。如果让

飞船到达一颗中子星上,就会在未来的时光中迈出一大步。

语言相对论的产生及发展

语言相对论的产生及发展 语言相对论往往被称作“萨丕尔-沃尔夫假说”。实际上,美国语言学家、人类学家萨丕尔(Edward Sapir)和美国语言学家沃尔夫(Benjamin Lee Whorf)并没有合著过,也没有明确地为实证研究提出过假说。“萨丕尔-沃尔夫假说”这一说法是萨丕尔的学生,美国语言学家、人类学家哈利?霍衣哲(Harry Hoijer)在1954年提出的(Koerner 2002:2)。 ①后来的学者,如美国心理语言学家罗杰?布朗(Roger Brown)(1976)等,将假说分为两类:强式,语言决定论(Linguistic Determinism),即语言决定思维、信念、态度等;弱式,语言相对论(Linguistic Relativity),语言反映思维、信念、态度等(高一虹,1994:4)。前者认为语言不同的民族,思维方式完全不同,后者认为语言不同的民族,思维方式上有差异。但值得注意的是,萨丕尔和沃尔夫并未作此区分,沃尔夫本人也并不同意极端的语言决定论。 目前,研究者通常使用沃尔夫自己的术语,即语言相对论(Linguistic Relativity)。这个陈述暗示了萨丕尔和沃尔夫并不是最早或唯一对语言和思维的关系进行研究的学者。其他思想流派也有对这个问题的研究。 对语言和思维之间关系的思考可以追溯到古希腊时期。

对语言相对论来说,其思想发展历程大致经过以下几个时期。 古希腊时期 古希腊哲学家柏拉图认为,世界存在于预设的外部理念,语言若要存在下去,就必须尽力正确地反映这些理念。“除了我们把思维准确地称作由心灵与它自身进行的无声 的对话之外,思维和言谈是一回事。”“从心中发出通过嘴唇流出来的声音之流称作言谈。”② 持该种观点的人认为,语言的背后是普遍的理性本质,为天下人共有,至少为所有思想家共有。词语不过是这种深层精华的表达媒介,语言是反映内在思想活动的“标签”,是体验世界的工具,还没有考虑到语言对思想的作用。 德国语言学传统时期 直至18世纪晚期19世纪早期,人们才逐渐认识到不同民族有不同的特征,即民族精神。随着这种认识的发展,逐渐形成了民族主义。 1820年,德国语言学者洪堡德(Wilhelm V on Humboldt)将语言学和民族浪漫主义的研究联系起来,认为正是语言构造了思维。思维由内部对话产生,这个过程使用了语言使用者相同的语法结构。所使用语言的语法被认为反映了这个民族国家的世界观(Weltanschauug)。“语言的多样性不仅仅是符号和声音的多样性,而且是价值观的多样性。”③

高中物理奥林匹克竞赛专题6.狭义相对论习题(有答案)

习题 6-1. 设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少? 解:)(1220c v l l -= 2222211)(1c v c v -≈- 6-2. 在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18?=x 处,经历时间为s 00.1=t ?,试计算该过程对应的固有时。 解:以粒子为S '系 6-3. 从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。求这光子相对于加速器的速度。 解:设加速器为S 系,离子为S '系 6-4. 两个宇宙飞船相对于恒星参考系以0.8c 的速度沿相反方向飞行,求两飞船的相对速度。 解:设宇宙船A 为S 系,速度0.8c ,宇宙船B 为S '系,速度0.8c - 根据洛伦兹速度变换公式:''21x x x v u v uv c +=+,有: 6-5. 从S 系观察到有一粒子在01=t 时由m 1001=x 处以

速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到 达的时空坐标22 11,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。 解:s c c c c c v x c u t t 62222121110147.1)96.0(110096.00)(1-?=-?-=-- =' 6-6 .一飞船静长0l 以速度u 相对于恒星系作匀速直线飞行,飞船内一小球从尾部运动到头部,宇航员测得小球运动速度为v ,试算出恒星系观察者测得小球的运动时间。 解:设恒星系为S 系,飞船为系S ' 6-7. 一个静止的0K 介子能衰变成一个+π介子和一个-π介子,这两个π介子的速率均为c 85.0.现有一个以速率c 90.0相对于实验室运动的0K 介子发生上述衰变。以实验室为参考系,两个π介子可能有的最大速率和最小速率是多少? 解:最大速度 c c c c c c c v u u v v x x x 992.085.09.019.085.0122=?++='++'=

2、狭义相对论对于哲学发展的影响

2、狭义相对论对于哲学发展的影响 Einstein不仅是一位伟大的科学家,也是一位伟大的哲学探索者,他为后人留下了卷帙浩繁的科学著作和哲学社会学著作,将以伟大的物理学家和当代著名的哲学家而载入史册。赖兴巴赫说:“爱因斯坦的工作比许多哲学家的体系包含着更多的固有哲学。”爱因斯坦认为,现代哲学的基本原理组成了我们所有人生活的世界,这些原理是活生生的,是经过千百年实践检验证明的。爱因斯坦是一个奇迹,他的贡献极大地促进了人类的文明进步。在当今之世,他已经成为人类智慧的化身和道德的典范。他的业绩远远超出诺贝尔奖所给予的标志。未来的时代愈久远,现在与之比肩的名人将逐渐被人淡忘,而爱因斯坦必将越来越成为后世敬仰的楷模。普朗克讲:“要对爱因斯坦的理论作出中肯评价的话,那么可以把他比做20世纪的哥白尼,这也正是我所期望的评价。” 爱因斯坦认为,哲学是科学研究之母,科学生发新的哲学思想,科学和哲学二者在他身上可谓珠联璧合、相得益彰。在常规科学时期,科学家是在范式的指导下解难题的,哲学表面看来对科学似乎不起什么作用,岂不知,哲学成分早已包含在范式之内了。但是当科学面临危机和革命时,科学家单在科学自身之内是找不到足够的破旧立新的思想武器的,他们只好求助哲学批判和哲学分析。而且这样的任务也只能由有哲学头脑的科学家来担当,因为他们“最清楚鞋子究竟是在哪里夹脚的”,富有科学功力和哲学素养的科学家便顺天应时地成为科学革新家。在创立狭义相对论的过程中,科学和哲学在爱因斯坦的思想中是水乳交融、彼此砥砺、相辅相成的。 爱因斯坦“博观而约取,厚积而薄发”。他善于博采众家之长,又不墨守成规或拘泥于一家之言,他既从专业哲学家斯宾诺莎、莱布尼兹、康德、休谟等人那里汲取了丰富的思想营养,又从哲人科学家开普勒、伽利略、牛顿、安培、亥姆霍兹、黎曼、普朗克、马赫、彭加勒、奥斯特瓦尔德、迪昂、皮尔逊等人之处获得了有益的启迪,加之他善于结合科学实践进行思考和创造,从而形成了他的综合实在论思想。这种实在论既在各种不同的乃至对立的哲学流派之间保持了必要的张力,又在传统和革新之间保持了必要的张力,因而成为一种卓有成效的科学研究纲领。霍耳顿教授在60年代末发表的一篇著名论文《马赫、爱因斯坦和对实在的探索》中这样写道:“在我们这个世纪的思想史中,有一章可以题为‘阿尔伯特?爱因斯坦的哲学历程,这是一段从以感觉论和经验论为中心的科学哲学,到以理性论的实在论为基础的哲学历程。”把爱因斯坦科学哲学概括为由温和经验论、基础约定论、意义整体论、科学理性论、纲领实在论构成的独特而绝妙的多元张力哲学,在这个兼容并蓄、和谐共存的哲学统一体中,五种不同的乃至异质的要素相互限定、彼此补充,保持着恰到好处的“必要

高中物理相对论知识点总结

高中物理选修3-4——相对论简 介知识点总结 1、惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系。相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系。相对于一个惯性系做变速运动的另一个参考系是非惯性系,在非惯性系中牛顿运动定律不成立。 2、伽利略相对性原理:力学规律在任何惯性系中都是相同的。 3、狭义相对性原理:一切物理定律在任何惯性系中都是相同的。 4、广义相对性原理:物理规律在任何参考系中都是相同的。 5、经典速度变换公式:。(是矢量式) 6、狭义相对论的两个基本假设: (1)狭义相对性原理,如3所述; (2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。 7、广义相对论的两条基本原理: (1)广义相对性原理,如4所述; (2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。

8、由狭义相对论推出的六个重要结论(所有结论都已经完全得到证实): (1)“同时”是相对的。 (2)长度是相对的。。是相对被测物静止的参考系中测得的长度,是相对被测物以速度运动的参考系中测得的长度,且的方向与速度的方向平行。 (3)时间是相对的。。是相对某参考系(如地面)运动的参考系中(如飞船内)的钟所测得的时间,是静止的参考系中(地面上)的钟所测得的时间。 (4)质量是相对的。。(静质量)是在相对被测物静止的参考系中所测得的质量,(动质量)是在相对被测物以速度运动的参考系中所测得的质量。 (5)相对论速度变换公式:。(是矢量式)(6)相对论质能关系公式:。其中是物体的动质量。 9、由广义相对论得出的几个结论: (1)物质的引力场使光线弯曲。如远处的星光经过太阳附近时发生偏折。

相对论的发展

第八章 相对论的发展 教学目的与要求:掌握:狭义相对论的内容及建立过程。爱因斯坦是如何得到广义相对论的两个基本假设的;广义相对论的实验验证情况。熟悉:绝对时空观的困难;爱因斯坦的生平。 教学重点,难点:狭义相对论的内容及建立过程。爱因斯坦是如何得到广义相对论的两个基本假设的;广义相对论的实验验证情况。 教学内容: §1.相对论先驱者的思想 一 洛仑兹的收缩假说 迈克尔逊—莫雷实验的“零结果”在最初人们并没有因此否定静止以太的存在,反而认为是实验可能失败了。或力图对实验结果作出种种解释。其中最具代表性的理论假说是荷兰物理学家洛仑兹的收缩假说。 1.洛仑兹(H.A.Lorenzt) 1853年7月生于荷兰。1870年考入莱顿大学,主攻数学、物理学和天文学,1875年12月获得博士学位,1877年被乌得勒支大学聘为数学教授,同年莱顿大学授予他荷兰唯一的理论物理学教授席位(24岁)。1912年洛仑兹辞去莱顿大学教授职务,去政府部门任高等教育部部长。他创立了电子论,首次把以太和普通物质分开,1895年提出著名的洛仑兹力公式。他将经典电磁场理论发展到了最后的高度,为相对论的诞生创造了条件。他因其电子论对塞曼效应进行了定量解释,与塞曼分享了1902年诺贝尔物理学奖。 2.长度收缩假说的提出 1892年11月洛仑兹发表了《论地球对以太的相对运动》,用长度收缩假说解释了迈克尔逊—莫雷实验。他认为运动物体在其运动方向上的收缩,抵消了地球在以太中运行所造成的光程差,所以观察不到预期的条纹移动。他写到:“我终于想出唯一的方法来调和它与菲涅耳的理论:连接一个固体上的两点连线,如果开始平行于地球运动的方向,当它转过90℃后就不能保持原来的长度。如果令后一个位置的长度为L ,则前一个位置的长度为L(1-α)。”其中α=v2/2c2 。1895年洛仑兹给出了更精确的长度收缩系数为 22 1c v ? 洛仑兹一直认为这种收缩是真实的,是由分子运动引起的。这与爱因斯坦提出狭义相对论有本质区别。 3. 一级近似的解释及地方时 洛仑兹的上述收缩假说只涉及到v 2/c 2的这种二级近似。1895年,洛仑兹发表了《运动物体中电磁现象和光现象的理论研究》,提出了地方时概念,他对麦克斯韦方程组施加了一种变换。其中时间t 变为“当地时间” t′=t–(v/c2)x ,电场E 变换为E′=E+v×B/c ,磁场B 变换为B′=B-v×E/c ,结果发现麦克斯韦电磁场方程组的形式不变。由此证明其收缩假说可以准确到v/c 一阶范围。这样就解释了迈克尔逊—莫雷实验。 “当地时间”t’=t–(v/c 2)x ,指在物体上的测得的时间,它与坐标系的平移速度有关。它表明,好象在运动坐标系上的时钟走慢了。洛仑兹认为地方时只不过是一个数学假设,不具有真实的物理意义,而牛顿力学中的绝对时间才是唯一真实的时间。与此相反,爱因斯坦认为不存在所谓的绝对时间,地方时才是唯一真实的时间。 4.实验验证的失败 ①按照洛仑兹的长度收缩假说,物体的密度在不同的方向上会有所不同,这样光通过它

什么是相对论

第一章狭义相对论与洛伦兹变换 据资料显示,狭义相对论是由洛伦兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵可夫斯基为狭义相对论提供了严格的数学基础,从而将该理论纳入到带有闵可夫斯基度量的四维空间之几何结构中。 此外,在学习中,我还明白了狭义相对论之中的洛伦兹变换与伽利略变换的区别在于精准度的大小;而且,洛伦兹变换是基于光在可测时空中的平均速度不变的实验所证明的规律下建立起来的。 在狭义相对论中指出高速运动情况下,不同的坐标系下会表现出不同的测量结果。如尺缩效应、时间延长等。本文将不在这里讨论以上结论的证明过程。 况且,以上结论只是对一些可能客观存在的现象的描述,真正的原理我们还不能真正的解释清楚。事实上物理学的终点就是解决最初、现在以及将来!最初,说的是宇宙的开端,即时间和空间的开端。现在,也就是现在的宇宙运行规律的背后操纵者的探索。将来,可以说是求解宇宙发展的明天。 可以说相对论只是物理学的一小步,却是近现代物理学的一大步! 第二章迷人的超光速

相对论认为超光速行进是行不通的,对于一个有质量的物体,哪怕是一个质量极小的粒子,其速度接近光速时,质量会变得极大,要想再加速就极困难了,如果其质量无限大,而加速质量无限大的物质时需要无限大的能量,这是不可能的。 这里我就要问了,速度的增加与质量的增加是不是同时,还是有先有后。也许我们只要不断地产生并消耗那一部分质量就可以得到一种高速加速的方式。 我们真的不能超越光速吗,我们姑且不考虑光在可测时空中的平均速度不变的正确性。 如果说我们不是让本身的速度增加,而是让时空推着我们走,让当地的时空坐标产生推移从而看起来比光的传播速度更快。这就是时空泡泡。与之相对应的还有虫洞理论,说的是通过负能量创造弯曲时空,建立一个捷径。但是,我们可以想啊,负能量到底何德何能,它竟然可以创造弯曲时空,还可以维持弯曲的存在!这是科学家们没有给我解答的!毕竟负能量的能力也只是在麦克斯韦方程式中得到的解。 而且,敝人认为,即使造出了弯曲的时空,我们也没有办法超光速!因为那里的时空密度已经改变,用我们平直的时空尺已经没办法测量,我们想要穿越,就一定要进入,一旦进入,我们就要服从那里的规律,必须用到弯曲的时空尺!纵然在平直的时空中观察只有1米,可是弯曲了一光年的长度,于是即使我们以光速行进,还是要一年才能走完!

相对论的哲学意义

相对论的哲学意义 一、相对论与二十世纪哲学 2005年是爱因斯坦相对论诞生一百周年。 正如牛顿力学为代表的古典科学影响了尔后二、三百年西方近代哲学发展一样,二十世纪初突破牛顿力学而创立的爱因斯坦相对论也深刻影响了近百年来世界哲学的发展。 相对论问世不久,就引起各个哲学流派的强烈反应,出版了不少论著,例如新康德主义哲学家卡西勒的《实体和函数:爱因斯坦的相对论》、新实证主义哲学家石里克的《现代物理学中的空间和时间》和赖欣巴哈的《相对论和先验认识》等。其中石里克于1917年出版的这本书受到了爱因斯坦的好评。它对于将实证主义观点和爱因斯坦(广义)相对论统一起来,形成逻辑实证主义哲学起了重要的作用。同样,布里奇曼的操作主义、波普尔的证伪主义以及法国著名哲学家巴什拉尔的认识论,也都和相对论的思想与方法有密切的联系。 在分析哲学中,罗素的哲学、奎因的哲学和古德曼的哲学渗透了相对论的精神,这是众所周知的。 在思辨形而上学传统中,象柏格森和马里坦等人就曾被相对论的革命吓坏了(皮亚杰语)。胡塞尔特别是海德格尔的现象学虽然将相对论的概念视为处于经验的、流俗的层面,但在更深层的思考中,如理性直观(寻求变换中的不变性)和"视域"等观念,仍有极具启发性的可比性。而怀特海则是第一个依据相对论的科学成果,提出了过程哲学体系,使二十世纪的形而上学获得了新的发展,幷影响了米德(时间哲学)和莫利斯等人的"客观相对主义"的形成。 在前苏联,从二十年代初开始,对爱因斯坦相对论进行了持续数十年的批评和讨论,表现出苏联正统的马克思主义哲学体系对于当代科学发展的不适应性。 进入二十世纪下半叶,对相对论哲学意蕴的阐发和传播获得了更深入的进展。除了上面已提到的奎因的本体论相对性学说提出,怀特海的过程哲学东山再起,以及一些哲学家试图将相对论的观点与东方思想进行比较和融通以外,这里还应当着重提出后现代主义哲学(包括后现代科学哲学)对相对论哲学意义的阐发(如"透视主义"等等)。著名的后现代主义思想家伊·哈桑宣称:"后现代主义的基本特征发轫于爱因斯坦的物理学和尼采的阐释学"。后现代主义哲学家如利奥塔、德勒兹、拉脱尔等人常引用相对论观点,而法国解构主义大师德里达有关相对论哲学意义的评论还成了二十世纪末由于"索卡尔事件"引发的、在全球学术界爆发的一场科学家与后现代哲学家之间的大论战的一个热点话题。有些学者认为,爱因斯坦的时空相对论观点正是德里达的去中心 (decentered) 的游戏和相关性思想的雏形。这就有可能为人们打开一个从现代科学的角度理解德里达乃至整个后现代主义哲学的窗口。 与马克思主义哲学研究有关的方面,除了苏联和俄国哲学界继续总结上半世纪的经验教训,逐步修改和放弃原有的哲学信条之外,更值得重视的是日本著名的新马克思主义哲学家广松涉在最近二、三十年里发展起来的关系主义本体论。这个理论的提出,在自然科学方面主要依据了相对论的成果。他依据相对论和量子力学的观点,对旧唯物主义即实体主义本体论展开了深入的批判。他认为,马克思主义哲学变革的真谛正是一种从实体本体论向关系存在论的转变。

从相对论穿越时空到未来星际时间的探索

从相对论穿越时空到未来星际时间的探索 温海龙 (河北省保定市农业科学研究所,河北保定071000) 摘要:可以说,如今人们对空间性质的各种认识还停留在爱因斯坦相对论的基础上,文中通过另一个角度从另一方面对空间的性质做了一些讨论,得出了一些新的看法。得出信息传递需要时间并且具有方向性,并且进一步可以推算出空间上两个不同的点之间的联系与距离成反比。得出正是空间的这一性质造成了相对论中钟慢、尺缩、超光速时间倒流等各种幻像。关键词:穿越时空;相对论;相对同时;幻像;测量问题 根据相对论,如果一种物质以超光速(300000000m/s 一般光速为每秒钟 30万千米)行驶的话,就可以实现穿越时空。等于光速时只能是在所在的时空静止了(相当于时空停止,时间不在流逝!),超过光速时可穿越时空! 这个问题目前科学界还没有定论。史蒂芬·霍金写的《时间简史》里对此做过专门的讨论,霍金认为即使真的超过光速,也不可能真正穿越时空,时间倒流只是一个假象,超光速事件将引起时间和空间一系列量子力学上的反应,最终使得穿越时空无法实现。 有人是这样理解相对论的:如果一个钟,以0.5倍声速从原点远去,我们会听到什么现象呢? 于是我们发现,在本地钟1.5秒时,远处的钟报1秒,本地钟3秒时,远离的钟报2秒,也就是我们在忽略测量时间时,误以为远去的钟慢了。而且速度越快,钟慢得越厉害。超过声速我们将追上钟以前发出的声音,也就是先听到钟敲3下,报3点,再听到钟敲2下,报2点,然后听到钟敲1下,报1点,这就是超过声速时间倒流现象!爱因斯坦相对论中钟慢、尺缩、超光速时间倒流现象,都可以用声音试验做出效果! 爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。 说明爱因斯坦有时候明白相对论是由于光速太慢,引起的测量问题。如果测量速度无穷大,则同时性的相对性问题不存在。对一群盲人来说,测量速度的上限是声速,则爱因斯坦奉献给他们的伟大理论将是声速相对论,但不能因此得出声速最快。 那么,是不是真的如同相对论说的那样,超光速真的可以穿越时空吗? 1正文和分析 下面总结一下,作出以下对穿越时空的探索与思考。穿越时空总共有3种情况:1穿越空间,即到达另一个与本空间不同的并且相互独立的另一个空间。甚至我们可以到一个与我们这个空间完全相同的空间,包空人,物。2穿越时间,离开现在的空间,回到过去的某一个时间点,严格的讲这也算另一种形式的穿越空间吧,这个空间已经不是原来的空间,不过这两个空间存在一一对应的关系。3本空间的时间倒流,即我们所处的空间发生改变,回到过去的某一时间点,这种情况属于穿越时间,这个空间还是原来的空间。 当然上面3种情况都是猜想。不过,根据相对论说得超光速时间倒流穿越时空确不属于上面3种中的任何一个。所以说,这只能算是一种幻像。 下面用下面的实验来说明这一点,来具体分析相对论所谓的穿越时空,时间倒流! 在地球上有AB两个人,在距离地球10万光年远处有个星球乙,上面住着C。在地球上AB用望远镜发现C正在举行婚礼。并且A发现C长的像他妹妹,于是A决定乘宇宙飞船去乙星球看看C。假设此时地球上是西元元年,A用望远镜看到C举行婚礼后立即乘飞船动身前往乙星球。 现在我们请上帝帮个忙,让他在此刻也就是地球上的西元元年,在即将动身的A的飞船

专题十六 电磁波 相对论 高考真题集锦

专题十六 电磁波 相对论 12.(2013·高考江苏卷)(2)如图所示,两艘飞船A 、B 沿同一直线同向飞行,相对地面的速度均为v (v 接近光速c ).地面上测得它们相距为L ,则A 测得两飞船间的距离________(选填“大于”“等于”或“小于”)L .当B 向A 发出一光信号,A 测得该信号的速度为________. 解析:(2)根据长度的相对性得L =L 0 1-????v c 2 所以A 测得两飞船间的距离L 0=L 1-??? ?v c 2 >L . 根据狭义相对论的基本假设,光信号的速度为光速c . 答案:(2)大于 c (或光速) 14.(2013·高考浙江卷)关于生活中遇到的各种波,下列说法正确的是( ) A .电磁波可以传递信息,声波不能传递信息 B .手机在通话时涉及的波既有电磁波又有声波 C .太阳光中的可见光和医院“B 超”中的超声波传播速度相同 D .遥控器发出的红外线波长和医院“CT”中的X 射线波长相同 解析:选B.声波、电磁波都能传递能量和信息,A 项错误;在手机通话过程中,既涉及电磁波又涉及声波,B 项正确;可见光属于电磁波,B 超中的超声波是声波,波速不同,C 项错误;红外线波长较X 射线波长长,故D 项错误. 1.(2013·高考四川卷) 下列关于电磁波的说法,正确的是( ) A .电磁波只能在真空中传播 B .电场随时间变化时一定产生电磁波 C .做变速运动的电荷会在空间产生电磁波 D .麦克斯韦第一次用实验证实了电磁波的存在 解析:选C.电磁波的传播不需要介质,真空、空气以及其他介质都能传播电磁波,选项A 错误;根据麦克斯韦电磁场理论可知,均匀变化的电场产生稳定的磁场,只有不均匀变化的电场或不均匀变化的磁场才能产生电磁波,选项B 错误;做变速运动的电荷会产生变化的电场,故选项C 正确;麦克斯韦预言了电磁波的存在,赫兹第一次用实验证实了电磁波的存在,选项D 错误.

相对论1

相对论(1)——从欧式空间到黎曼空间 我们对空间的认识有两个基础,一个是居住的四四方方的房间,另一个就是初中的几何课程。在欧几里得创立的几何学里,你绝对不会认为地球的赤道是直线,因为那是圆。于是我们所认识的空间就被初中的几何课塑造的四四方方,在三维坐标系中,x、y、z三轴沿着三个互相垂直的方向无限延伸,直到宇宙的尽头还是不能有丝毫的弯曲。在这样的空间内,过直线外一点有且仅有一条唯一的直线与之平行,任意平面三角形的内角和必然是180度…… 欧几里得给我们塑造的空间 这些在我们看来是天经地义的事情。这种均匀分布的空间经过欧几里得的系统归纳 已经成为一门近乎完美的学科,到了牛顿那里就被称作是绝对空间。在牛顿看来,绝对空间是脱离物质而存在,是人类生活以及天体运动的大背景,而且遥远的宇宙中心是真正意义上的绝对静止,以此建立的参考系就是绝对惯性参考系。 真的是这样吗?那么就重新认识一下空间的定义。利用坐标系定义空间首先我们要 搞清楚直线和长度这两个概念。时光回到欧几里得的时代,埃及的尼罗河流域内人们需要分配土地,在大量划界丈量的实践活动中,欧几里得总结出了直线和长度的概念:铲刀在地面上方向不变的运动所留下的痕迹就是直线(今天几何学中的线段),再截取一个固定长度的木棍,规定这个木棍的长度就是单位,再通过记录直线上能容纳的木棍数量就得到长度概念。以上是我对埃及人和欧几里得的猜测,虽然无从考证,但我在也找不出直线和长度更加原始的定义方式了。总结起来,要确定直线,就离不开物体方向不变的运动;要确定长度,也离不开用实际物体来规定单位长度(注:1889年的第一界国际计量大会确定“米原器”为国 际长度基准,它规定1米就是米原器在0摄氏度时两端的两条刻线间的距离。)

研究性学习——爱因斯坦与相对论(原创)

爱因斯坦与相对论 引言:“政治是暂时的,方程是永恒的”——爱因斯坦仰观星空,觉宇宙之浩瀚;俯视大地,察生命之神奇;透过显微镜,是量子的奇迹。我们在理论与实践中穿梭,游走在神秘的物理世界。 一.漫长的探索 纵观人类的历史,从亚里士多德开始,就已经开始探索那浩如烟海的物理世界了——力学。 早期的物理学家们都是从实验的角度来阐述物理(准确说是物理理论)的,亚里士多德从显而易见的现象中便得出重物比轻物下降的快的结论(虽说是错误的),阿基米德也从简单的实验中得出了杠杆原理和浮力定律,伽利略通过理想实验建立了动力学的基础,传出了相对性原理的先声,笛卡尔发明了坐标系,使之能更好的表述,物理开普勒透过第谷的测量用数学知识成功导出了开普勒三大定律。 这一切的积累,终于在一个人身上有了叠加与爆发,1687年,艾萨克·牛顿出版了他的新书《自然哲学的数学原理》,从此“经典力学”建立了,也翻开了数学研究物理的辉煌一页。书中详细的讲解的力学与运动学,阐述了牛顿三大定律,流体阻力原理和万有引力定律,以及牛顿的绝对时空观,是经典力学前所未有的进步。 二.相对论的横空出世

19世纪后期,随着经典力学和电磁学的进一步发展(电磁学的主要贡献者法拉第和麦克斯韦一直想把电磁学建立在经典力学上,然而失败了),科学家们相信他们对宇宙的描述达到了尾声,然而,与“以太”思想相悖的理论出现了, 1887年实验证实光的传播速度是不变的(间接否定了“以太”论和经典力学),整个物理学界陷入了巨大恐慌。 这时,1905年,爱因斯坦(生平简介:阿尔伯特·爱因斯坦,Albert.Einstein,1879年3月14日-1955年4月18日,出生于德国符腾堡王国乌尔姆市,毕业于苏黎世大学,犹太裔物理学家,享年76岁。爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭<父母均为犹太人>,1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,创立狭义相对论。1915年创立广义相对论。爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。)的一篇论文《论动体的电动力学》永久地解决了这一棘人的问题,狭义相对论便由此创生了。 1.经典力学的时间和空间 牛顿所谓的时间与空间都是绝对的,与外界无关永远相同和

相对论是谁提出的

相对论是谁提出的 试题: 相对论是由谁提出的? A.爱因斯坦 B.牛顿 c.霍金 D.达尔文 答案:(A)。 相关阅读: 相对论是关于时空和引力的基本理论,相对论的基本假设是相对性原理,即物理定律与参照系的选取无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论提出了“时间和空间的相对性”“四维时 空”“弯曲空间”等概念。狭义相对论最著名的推论是质能公式,它能够用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论预言的引力透镜和黑洞,也被天文观测证实。 提出过程

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的引发了二十世纪物理学的另一场革命。研究的是物体的运动对光学现象的影响,这是当时经典物理学应对的另一个难题。 电磁波-内部结构模型图十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速c传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度c是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不一样方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。 1887年迈克尔逊和莫雷利用光的干涉现象进行了十分精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不一样的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都能够解决,根本不需要什么以太。电磁场理论 1887年迈克尔逊和莫雷利用光的干涉现象进行了十分精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不一样的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都能够解决,根本不需要什么以太。 爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系k'相对于坐标系k作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系k,哪个是坐标系k′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依靠于发光物体的运动速度。 从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于k′和k这两个做相对匀速运动的坐标系,光速就应不一样。爱因斯坦认为,要承认这两个原理没有抵触,就务必重新分析时间与空间的物理概念。

专题14光电磁波相对论

专题14 光电磁波相对论 (2012 浙江)20、为了测量储罐中不导电液体的高度,将与储罐外面壳绝缘的两块平行金属板构成的电容C置于储罐中,电容器可通过开关S与线圈L或电源相连,如图所示。当开关从a拨到b时,由L与C构成的回路中产生周期错误!未找到引用源。的振荡电流。当罐中的液面上升时 A.电容器的电容减小 B. 电容器的电容增大 C. LC回路的振荡频率减小 D. LC回路的振荡频率增大 20【答案】BC 【考点】电容器

【解析】根据平行板电容的电容公式 4S C kd επ= ,知道液面上升,则板间的平均电介质ε 增大,得C 增大,B 项对;LC 振荡电路周期 ,在C 增大时,T 增大,所 以频率减小,C 项对。 (2012新课标)34.(2)(9分) 一玻璃立方体中心有一点状光源。今在立方体的部分表面镀上不透明薄膜,以致从光源发出的光线只经过一次折射不能透出立方体。已知该玻璃的折射率为2,求镀膜的面积与立方体表面积之比的最小值。 (2)【考点】全反射 解:如图,考虑从玻璃立方体中心O 点发出的一条光线,假设它斜射到玻璃立方体上表面发生折射。根据折射定律有sin sin n θα= ① 式中,n 是玻璃的折射率,入射角等于θ,α是折射角。 现假设A 点是上表面面积最小的不透明薄膜边缘上的一点。由题意,在A 点刚好发生全反射,故2 A π α= ② 设线段OA 在立方体上表面的投影长为R A ,由几何关系有A 22 sin ()2 A A a R θ+③ 式中a 为玻璃立方体的边长,有①②③式得2 21 A R n = - 由题给数据得2 A a R = ⑤ 由题意,上表面所镀的面积最小的不透明薄膜应是半径为R A 的圆。所求的镀膜面积S ′

物理相对论论文

摘要: 现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。 狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。 关键词:狭义相对论、广义相对论、意义 正文: (一)狭义相对论的概念 是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间——绝对空间,时间是独立于空间的单独一维(因而也是绝对的),即绝对时空观。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。 物理学家马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。 狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

中性Sr和Rb原子结构的相对论研究

中性Sr和Rb原子结构的相对论研究 基于MCDF理论的GRASP大型程序计算原子波函数的理论方法已经很成熟,并且能够广泛地应用于天体物理学、激光核物理、医学、生命科学、原子频钟等交叉学科上,用来解决独立学科在此之前无法解决的难点。如何提高计算精确度使计算结果更加真实有效地反映原子波函数的情况尤为重要,这取决于如何选定一个合适的组态空间扩张方式。通过原子计算方法进一步了解原子核的真实信息,为下一步实验工作做铺垫。本工作主要包含:首先:对于中性Sr原子,利用能级高低的形式使得电子组态空间扩张到准完备基组(n≤10),来表述中性Sr原子的基态能级5s2 1S0和激发态能级 5s5p3P0,1,2及5s5p 1P1的原子波函数。 通过能级间距、同位素位移、超精细结构及跃迁几率等可观测量,分别定量地讨论了S、D、T激发电子数目对不同可观测量的贡献大小。计算得到5s5p能级四个精细能级劈裂5s5p3P0,1,2及 5s5p1P1与基态能级5s21S0 的能级间距计算误差均小于1%。讨论Sr同位素对 84Sr-86Sr的两个不同跃迁能级5s2 1S0-5s5p 3P1及5s2 1S0-5s5p 3P0的同位素位移,得到计算误差分别小于2.3‰和1.56%,在此基础上计算 80-90Sr-88Sr的同位素正常质量位移(NMS)、同位素反常质量位移(SMS)、同位素场位移(FS),得到令人满意的同位素位移(IS)计算结果,进一步将计算方法应用到80-90Sr不同同位素之间IS结果。最后分别计算了激发态能级5s5p3P1,2及 5s5p1P1的超精细结构及两个不同的能级跃迁 5s21S0-5s5p 3P1及5s2 1S0-5s5p 1P1的跃迁几率,并定量讨论了单电子激发(S)、双电子激发(D)、三电子激发(T)对计算结果的影响。 其次:运用与计算中性Sr原子相似的方法对中性Rb原子的D1

专题练习38 光的波动性 电磁波 相对论简介

专题练习(三十八)光的波动性电磁波相对论简 介 1.下列说法正确的是() A.太阳光通过三棱镜形成彩色光谱,这是光的干涉的结果 B.用光导纤维传送图像信息,这是光的衍射的应用 C.眯着眼睛看发光的灯丝时能观察到彩色条纹,这是光的偏振现象 D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景像清晰 解析:太阳光通过三棱镜形成彩色光谱,是由于不同色光在介质中折射率不同产生的色散现象,A错;用光导纤维传送信息是利用了光的全反射,B错;眯着眼睛看发光的灯丝时观察到彩色条纹是光的衍射现象,C错;在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,滤去了水面的反射光,使景像清晰,D对. 答案:D 2.如图所示,某载人飞船返回舱开始以高速进入大气层时,返 回舱表面形成一个温度高达几千摄氏度的高温区,高温区内的气体 和返回舱表面材料的分子被分解和电离,这时返回舱与外界的联系 被中断,这种现象称为“黑障”.产生“黑障”的原因是() A.飞船受到的万有引力消失 B.飞船为了宇航员的安全而暂时关闭通信系统 C.在飞船周围高温气体被电离成等离子体,从而对飞船的通信天线起屏蔽作用 D.飞船表面温度太高,如同火球,使得航天员看不见外面,外面也看不见飞船里面

光线先传播到C,即C先被照亮,C正确. 答案:C 4.(2012·江苏高考)如图所示,白炽灯的右侧依次平行放置偏振片P和Q,A点位于P、Q之间,B点位于Q右侧,旋转偏振片P,A、B两点光的强度变化情况是() A.A、B均不变 B.A、B均有变化 C.A不变,B有变化 D.A有变化,B不变 解析:白炽灯光是自然光,旋转偏振片P,A点光的强度不变,B点光的强度变化,现象C正确. 答案:C 5.(2012·上海高考)下图为红光或紫光通过双缝或单缝所呈现的图样,则() A.甲为紫光的干涉图样B.乙为紫光的干涉图样 C.丙为红光的干涉图样D.丁为红光的干涉图样 A.太阳光 B.沿竖直方向振动的光 C.沿水平方向振动的光 D.沿与竖直方向成45°角振动的光 解析:由于太阳光是自然光,能够通过偏振片P;沿竖直方向振动的光,能够通过偏振

爱因斯坦创建狭义相对论的思想发展

爱因斯坦创建狭义相对论的思想启示 12级物理一班段延波1207020016 在《物理学史》6.2节,我们学习了爱因斯坦创建狭义相对论的经过。而在爱因斯坦创建狭义相对论的过程中,最令我在意的还是爱因斯坦的思想发展,所以,我查阅了文献资料,研究学习了爱因斯坦在创建狭义相对论的过程中的思想,特在此进行简短阐述。 一、善于提问与不畏权威 阿尔伯特爱因斯坦小时候并不写的才华出众,直到五岁话还说不清楚,曾被医生认为发育不正常,不过他很爱思考,总是像大人盘问“为什么?”有强烈的求知欲和好奇心。例如四五岁时就对罗盘发生过浓厚兴趣,“为什么罗盘的指针总是指向南北,这里一定有什么东西深刻的隐藏在事物后面”爱因斯坦后来回忆时这么说。12岁时他对几何定理的神奇也深有触动。例如他曾想到,“三角形的三个高交于一点,虽然不是显而易见,却可以可靠地加以证明,以至于任何怀疑似乎不可能”他说“这种明晰性和可靠性给我造成了一种难以形容的印象。” 正是源于这种对世界和学问的好奇与质疑, 促使爱因斯坦如饥似渴地读书, 天马行空地思考问题。 爱因斯坦不喜欢当年德国的教育制度,中学没有毕业就退学在家自学,16岁通过自学掌握了微积分,在爱因斯坦的学习阶段,15岁的爱因斯坦放弃德国国籍,居家迁居意大利,后只身到瑞典的苏黎世,目的是上那里的联邦工业大学,却因不善记忆而没有录取,后来转学到阿劳(Aaeau)中学补习功课。他在自述中写道,“这所学校以他的自由精神和那些毫不依赖外界权威的教师们的淳朴热情,给我留下了难忘的印象”。 “在阿劳这一年中,我想到这样一个问题:倘若一个人以光速跟着光波跑,那么它就处在一个不随时间而改变的波场,但看来不会有,样的事情!这是从狭义相对论有关的第一个朴素的思想实验。”[ 3] 正是这种对事物的好奇和对人类已有知识的质疑, 造就了爱因斯坦, 成为他不断追求科学创新的内在动力, 引导他提出和解决前人不可能提出和解决的问题。

相对论论文

相对论论文 论相对论中的时间概念 摘要:时间本身无意义,它只是一个用来表示万事万物定向变化的方法性名词,而我们对它的理解应该为:运动产生了时间,时间是一个与速度一样的由运动产生用来描述运动的量。 关键词:时间;变化;运动 相对论的提出曾经震撼了全世界,如今它已成为人们公认的真理。它的理论涉及到整个宇宙,它赋予了时间和空间新的含义,但只是其中未曾真正意义上解释时间。 其实,至今整个物理学中都没有对时间的准确定义,什么是时间?这一问题似乎也构成了物理学天空中的一片乌云,但这片乌云并没有引起人们的不安。人们在这种情况下始终使用着时间,并作出许多重大发现。那么现在我们来探究一下时间的真谛。 首先,我们先设立一个遐想。之后,我们分条列出时间的特性,并对此一一解释来映证我们所设立的遐想是否成立。 在此,让我们的思想穿越时空,回到远古时期。在那时人类文明刚刚起步。语言开始盛行。那么就让我们站在他们的角度上来思考一下“时间”这一名词的产生。 一株小草的生长过程引起了他们的注意。这株小草昨天还是颗幼芽,今天长成了植株,明天可能开花、结果,然后死去。这一过程是固定的,无法逆转的。就像被一根无形的线串连起来的一样,后来,

他们在宇宙中的每一件事物中都发现了这一规律。至此,他们就越发相信这根无形线的存在。然后,聪明的先祖们把这根无形的线命名为时间。 所以,时间本身无意义,它只是一个用来描述万事万物定向变化的一种方法性名词,需要明确的是,这里所说的定向变化是由我们常见的,认为是理所当然的运动所产生的这种在我们思维中已根深蒂固的变化趋向。如果我们逆转了某事物的这种运动状态,也就改变了此事物的变化趋向。那么,此时我们常说的时间也就发生了逆转。一个物体或一个事件,在正常情况下无论是它们的外部还是内部总是要发生变化的。而所有的这种变化,不论我们是从生物角度、哲学角度、物理角度、数学角度都可将它们归结为运动。是因为运动才使得事物发生变化。而我们所说的“时间”却没有实在意义。不过,既然这延续了几百年在“时间”概念,已深入人心。所以,我们还是有必要来探究一下这虚无飘渺的“时间”意义。因此,我的遐想就出现了:运动产生了时间,时间如同速度一样,是一种运动所生成的,用来描述运动的量。 用运动来解释时间是行得通的。因为时间的本质是某一事物的变化。而变化恰恰是因运动而产生的。那么,下面我们就根据时间的一些特性,来证明我遐想的正确。 1 人们对于时间的描述 古时有沙漏、日晷,如今有钟表。

相关文档