文档库 最新最全的文档下载
当前位置:文档库 › 电动机的节电技术分析

电动机的节电技术分析

电动机的节电技术分析
电动机的节电技术分析

关于电动机节电的技术分析

电机班——姚驰宇

电动机作为将电能转化为机械能的一种转换装置,在各个领域得到了广泛应用,电动机消耗的电能约占全国总用电60%~70%。电动机节电应以节约用电和提高电动机的综合效益为原则,合理选择并控制电动机的运行,使其处于经济运行状态,另外,对电动机进行节能改造,降低电动机的能量损耗,从而提高电动机的运行效率。

第一部分 电动机的能量损耗

电动机能量损耗主要包括恒定损耗、负载损耗及杂散损耗。

1.恒定损耗

恒定损耗是指电动机运行时的固有损耗,它与负载电流大小无关,包括铁芯损耗和机械损耗。

(1)铁心损耗Fe P (含空载杂质损耗),主要指主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗,其大小取决于组成电动机的铁心材料、频率及磁通密度,与输入电压U 的平方成正比。铁耗一般占异步电动机总损耗的20%~25%。

(2)机械损耗fW P ,通常包括轴承摩擦损耗及通风系统损耗,对于绕线式转子还存在电刷摩擦损耗。轴承摩擦损耗正比于转速的平方,通风损耗正比于转速的三次方。机械损耗一般占总损耗的10%~50%。

2.负载损耗

负载损耗主要是指电动机运行时,转子、定子绕组通过电流而引起的损耗,包括定子铜耗1Cu P 和转子铜耗2Cu P ,其大小取决于负载电流及绕组电阻值,铜耗约占总损耗的20%~70%。

3.杂散损耗(附加损耗)

杂散损耗s P 主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗,杂散损耗约占总损耗的10%~15%。 第二部分 电动机的经济运行

1.电动机经济运行

电动机经济运行是指电动机在满足生产机械运行要求时,以节能和提高综合经济效益为原则,选择电动机类型,运行方式及功率匹配,使电动机在效率高、损耗低、经济效益最佳状态下运行。

2.效率特性

电动机的效率与输出功率2P 之间的关系称为效率特性,它是异步电动机的一个重要性能指标。

效率等于输出功率2P 与输入功率1P 之比,即

P

P P P P ∑+==2212η , fW Fe s Cu Cu P P P P P P ++++=∑21 (2-1) 其中,铁损耗Fe P 和机械损耗fW P 基本不变称为固定损耗;定子损耗1Cu P 、转子损耗2Cu P 和杂散损耗s P 随负载变化称为可变损耗。当固定损耗和可变损耗相等时,电动机的效率最高,此时电动机的负载率为经济负载率。

由以上分析可知,异步电动机的功率因数和效率都是在额定负载附近达到最大值,因此选用电动机时,应使电动机容量与负载容量相匹配,若电动机容量选择过大,电动机长期处于轻载运行,投资、运行费用高,不经济。电动机容量选择过小,将使电动机过载而造成发热,影响其寿命,甚至损坏。

第三部分 节电方法

1.降压法节电

1.基本原理

由前面的理论可知,当电动机的固定损耗和可变损耗相等时,其效率为最高,此时的电动机的负载率为经济负载率。电动机在低负载率运行时,可利用降低电源电压的方法降低电动机的损耗。

电源电压降低后,将对电动机的各种损耗产生影响。

设电动机的额定电压为N U ,降低电源后的电压为'U , 则降压后铁心损耗为:2'

')(N Fe Fe

U U P P ≈ (2-2) 可见,降低电源电压后铁耗降低与电压的平方成正比。

降压后机械损耗为: 2')11(N

fW fW s s P P --≈ (2-3) 由于降压后转差率的变换小,可认为机械损耗变化不大,可以忽略不计。 电源降压后转子的有功电流近似为:'

'U U I I N W W = (2-4) 电源降压后的无功电流为:N Q Q

U U I I '

'= (2-5)

则电动机降压后的总电流为:2

'2''Q W I I I += (2-6) 降压后电动机的铜耗为:R I P Cu 2''==R U U I U U I N Q N W )(22

'22'22+ (2-7) 电压降低后,电动机的铜耗随电压降低的程度而变化,电压降低到合适的值时,铜耗也相应降低,由此可见在一定的条件下适当降低电源的供电电压可以减小电动机的总的有功损耗。

2.降压实现的方法

可以通过调节变压器的分节头、加装自藕变压器、电抗器、电容器可控硅调压器、电压自动调节装置等。

3.△--Y 转换节电法

△一Y 转换法即是通过检测电动机的负载率,当负载率低于一门限值时,将电动机的接线由三角形转换为星形接法,相当于将电动机的电源电压由380V 降低到220V .此时铁耗下降2/3。由于电动机的转矩与电压的平方成正比,且转速基本不变,故电动机的最大输出功率降低到原来的l /3。当负载率升高时,则转换为三角形接法,此时电动机由额定电压供电,输出功率恢复到额定值。这种转换方法为分级降压,只有两档,并且结构简单、可靠,无谐波电流对电网的污染和电机绕组杂散损耗的增加,特别适用高、低负载率交替工作的情况。

2.变频调速器节电法

1.变频调速器的原理

原理:变频器是利用电力半导体器件的通断作用将工频电源变换为某一频率的电能控制装置。我们现在使用的变频器主要采用交一直一交方式。先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制四个部分组成。

我们知道交流电动机的同步转速表达式为:

p

s f n )1(601-= (2-8) 变频调速器是通过改变供给电动机的电源频率来改变电动机的转速,其

中,1f 为供电电源的频率,p 为电动机的极对数,s 为转差率,因此,改变1f 可以改变电动机的转速。

2.变频调速器的应用

变频器节能主要的体现就是风机和泵。

风机、泵的控制:一般的风机、泵控制为交流电机工作在工频,按额定转速

转动,风量、水量等的大小由一个阀门来控制,如果要求风量(水量)很小的情况下就使对应的风道阀门关小,这样风量(水量)很小的时候电机仍然工作在额定功率。采用变频调节,调节变频器输出给电机的频率,降低电机转速来控制风量,即使将变频器使用的损耗包括在内也同样省电。例如:水泵消耗功率与转速的三次方成正比,即P=Kn 3,其中P 为水泵消耗功率:n 为水泵运行时的转速;K 为比例系数。变频调速和智能控制技术可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。用阀门控制水泵流量时,部分有功功率被损耗浪费掉了,且随着阀门不断关小,这个损耗还要增加。如果采用降低电机转速的方式进行控制,就避免了消耗在阀门的有功功率。这样,在转运同样流量的情况下,仅需要输入较低的功率,获得节能效果。

3.异步电动机变频调速的运行方式分析

为保证电机的性能和材料的有效利用,在调速时只要保持好=11/f U 常数,就可以保持电机气隙磁通不通,就可实现恒磁通变速调速,也即恒转矩调速。电源电压和频率成比例下降,异步电机变频调速的运行方式即为电压和频率的关系。设电压调节比N u U U a 11/=;频率调节比N f f f a 11/=(N f 1,N U 1为额定频率和额定电压;1f 、1U 为实际调节频率和调节电压)。则控制方式可用=u a =F(f a )表示。近似恒磁通运行,根据在异步电动机中,由电机学知识可知

11f C E m E φ= (2-9)

N m N E N f C E 11φ= (2-10)

式中, 112W E K W C π=——电势常数; (2-11)

其中,W 1K W1——定子每相绕组的等效匝数;Φm 及ΦmN 为任意频率时每极磁通

和额定频率时的每极磁通。

在一般情况下,定子绕组的漏阻抗所引起的电压降与电机的端电压相比可以忽略,即U 1和E 1可以认为近似相等,则

U 1≈11f C E m E φ= (2-12)

U 1N ≈N m N E N f C E 11φ= (2-13) 两式相除得

N

mN m N f f U U 1111?=φφ (2-14)

由于近似恒磁通控制的磁通可以看成mN m φφ≈,所以有

(2-15) 即 αu =α

f (2-16)

此即为电压和频率成比例的控制方式。

根据电机学可知,异步电机的转矩公式是

T em =C T φm I '22cos ? (2-17) 式中,C T ——转矩常数;I '2——转子每相电流的折算值;

2cos ?——转子侧功率因数,一般可视为常数。

由于风机类负载的性质是转矩和转速的平方成正比,即

T em =n 2T N (2-18)

因此当磁通近似不变时,由式( 3-23 )及式( 3-24)可得

I '

2∝T em ∝n 2, (2-19)

如把转子电流近似视作电机电流,则这种方式的电流和转速平方成正比。随着转速的降低,电流急剧减小,虽使导线利用不足,却使铜耗大大减小。因此,比较适用于负荷重的场合,由于电流大,铜耗大,降低铜耗对提高效率有利。

电机交流变频凋速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效频、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。变频器能将50Hz 的工频交流电变换成频率连续可调(通常为0~400Hz)的交流电。采用变频器供电,启动稳定出力,完全改变电动机原有的满载、空载周期性变化的工作方式,而是工作于恒定负载状态。这样,电动机的转速可降低到原来的40%~70%,大大改善了电动机的工作条件,提高了电能的利用率,一般变频凋速器的有功节电率在30%~50%以上。 第四部分 电动机节电的组织措施

电动机的节约用电既是一个技术问题,也是一个组织问题,因为必须注意以下一些工作。

1.新购电动机,应首先考虑选用高效节能电动机,然后再按需要考虑其他性能指标,以避免事后再来进行节电改造,浪费人力和物力。

2.对于一些效率和功率过低的电动机应停止使用,更换新的高效电动机。

3.对全体工人进行有针对性的节电方法培训。

在日常生活中,这些节电的方法和措施可以分别采用,也可以多项采用,随着科学技术的不断发展,人们对电动机能耗节电工作的认识也会不断增强,一些新的节电的方法也会不断产生。

电动机系统节能技术

电动机系统节能技术 电动机系统节能技术概述 电动机节能概念: 主要包括更新淘汰低效电动机及高耗电设备;节能电动机概念和技术,合理匹配电动机系统,提高电动机效率;以先进的电力电子技术传动方式改造传统的机械方式,实现被拖动装置控制和设备制造;推广软启动装置、无功补偿装置、计算机自动控制系统技术、优化电动机系统的运行和控制。 高效电动机: 高效电动机(YX、YX 等系列)通常指高效率三相异步电动机。效率水平能达到或超过电动机能效国家标准(GB18613-2002)所规定的节能评价值的电动机。 电动机能效国家标准: 电动机能效国家标准是“中小型三相异步电动机能效限定值及节能评价值”,国标号为GB18613-2002。由国家质量监督检验检疫总局于2002年1月10日发布,2002年8月1日实施。能效限定值是电动机最低效率允许值,是强制性指标;节能评价值是高效电动机的认

定值,是推荐性指标。 高效电动机节能效果: 高效电动机与普通电动机相比,优化了总体设计,选用了高质量的铜绕组和硅钢片,降低了各种损耗,损耗下降了20%-30%,效率提高2%-7%;投资回收期一般为1-2年,有的短至几个月。 (54)YX2型高效节能电动机 为了节约能源和保证企业的连续安全生产,要求企业装有的电动机均应处于合理、经济运行状态,即电动机在运行中要有高的效率和功率因数,且使用寿命长,性能良好,安全可靠。 但实际运行中的电动机等设备,绝大多数不能满足上述要求。以我油田采油三厂为例,在增压注水系统中运行的电动机,绝大多数存在着匹配不合理、选用电动机容量裕度过大等问题,便“大马拉小车”的现象十分突出,造成电能大量浪费。其原因既有电机设计,制造方面的问题,又有以往在电动机的选用上,忽视了设备的运行经济指标,使电动机的运行效率和功率因数偏低所致。为了改变这一状况,现积极采用高效节能电动机。下面以南阳防爆电机厂新开发设计的

常用节电技术比较分析

2、决定用电设备电能浪费的几种要素 2.1 供电电压 通常由于用电器具距离电源较远,在用电高峰期,势必引起电网供电线路末端电压下降。为了弥补这种损失,电网公司所输送的电网电压总是比用电设备所使用的额定电压高出一部分,这部分多出来的电压,就形成了电能的过剩供给,也就是通常说的"大马拉小车"现象。过剩电压施加于用电设备时,会使用电器具长期工作在超负荷的状态下,这不但造成电力电源的浪费,还会直接缩短用电设备的使用寿命。 2.2 三相电源不平衡 由于目前用电设备,特别是单相大功率设备应用较为普遍,造成三相电源不对称,负载大的相偏低、负载小的相偏高,这种现象会造成逆相序旋转磁场,影响用电设备的输出功率。转子产生逆序电流,从而产生制动转矩,使用电设备温度升高,输出功率减小。三相不平衡越大,线损越大。 2.3 谐波 电网上的高次谐波来源很多,如:大气过电压、雷击、变频设备、晶闸管设备的投入运行等。由于电网中存在高次谐波,既增加了用电设备损耗,又会使效率降低,用电设备发热加剧、温升提高,效率下降,使用寿命缩短。 2.4 功率因数 功率因数的高低是影响电源利用率的关键因素,功率因数低,会降低电源利用率,降低设备的效率,增加了电路上的损耗。 2.5 负载电流大小 设备电***长时期工作在大电流状态下,会增加用电设备的损耗,提高设备工作温度,缩短使用寿命。 2.6 瞬流和浪涌 企业内部用电设备产生大量的瞬流和浪涌,在小电网里迂回徘徊,产生电力污染,给用电设备造成损害,同时也造成了电能的大量浪费。 3、几种常用节电技术比较分析 针对引起电能浪费的几个方面, 掌握各种节电技术的特点并合理应用,是降低电耗,提高节电效果与电网质量的前提条件。常用的节电技术,主要体现在以下几个方面: 3.1 可控硅斩波技术

电机绝缘分类

一、绝缘材料的耐热等级绝缘材料按耐热能力分为Y、A、E、 B、F、H、C 7个等级,其极限工作温度分别为90、105、12 0、130、155、180、及180℃以上。所谓绝缘材料的极限工作温度,系指电动机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命严重缩短。所以电动机在运行中,温度是寿命的主要因素之一。二、温升 温升是电动机与环境的温度差,是由电动机发热引起的。运行中的电动机铁心处在交变磁场中会产生铁损。绕组通电后会产生铜损。还有其他杂散损耗等。这些都会使电动机温度升高。另一方面电动机也会散热,当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个 较高的温度下达到新的平衡。但这时的温差即温升已比前增大了。所以说温升是电动机设计及运行中的一项重要指标,标志着电 动机的发热程度。在运行中,如电动机温升突然增大,说明电 动机有故障,风道阻塞或负荷太重。三、温升与气温等因素的 关系由于各地各时的环境温度不相同,因此必须规定标准的环 境温度。我国早期设计的电动机均采用35℃,而从1965年后设计的J2、JO2和Y系列电动机则用40℃。对于正常运行的电

动机,在额定负荷下其温升应与环境温度的高低无关,且当环境温度低于40℃(或35℃)时,其运行温升也不允许超出铭牌额定值。如一台正在运行的A级绝缘电动机,当环境温度降到1 0℃时,并不意味着温升允许扩大到80℃。有人认为只要绕组温度不超过规定的90℃即可。这不全对,如负荷未增加,而温升达到80℃,这说明电动机本身出了故障。那么,额定负载下运行的电动机温升是否与气温等因素毫无关系呢:不!是稍有影响的。1、气温下降时,正常电动机的温升会稍许减少。这是因为绕组电阻R下降,铜耗减少。温度每降1℃,R约降0.4%。 2、自冷电动机的环境温度每增10℃,则温升增1.5~3℃。这是因为绕组铜损随气温上升而增加。气温变化对大型电动机和封闭电动机影响较大。 3、空气湿度升高10%,因导热改善,温升可降0.07~0.38℃,平均为0,19℃。 4、海拔以1000m为标准,每升100m,温升增加温升极限值的1%。四、极限工作温度与最高工作温度细心人会看出矛盾:为什么一会儿说A级的极限工作温度为105℃,一会儿又说A级的最高允许工作温度是90℃呢?这与测量方法有关。不同的测量方法,其反映出的数值不同,含义也不一样。1、温度计法其测结果反映的是绕组绝缘的局部表面温度。这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃左右。该法最简单,在中、小电动机现场应用最广。对低电阻绕组,此法比电阻法准确。由于水银温度计在交变磁场中会因涡流损耗发热,故在交流电动机中使用酒精温度计。2、电

浅谈电动机的几种节电方式

浅谈电动机的几种节电方式 [摘要] 分析感应式电动机的工作原理,介绍主要的几种节电方式,要以分析的方法,因地、因时的来选择节电方式,已达到最合理的节约能源,构建节约型社会。 [关键词] 电动机原理效率节电方式 0.引言 电动机是我国工业生产中用电量最大的机械,约占全国用电量的60%。感应式电动机广泛的应用于工农业生产中,需要机械动力的部门,就会有它的存在。感应式电动机约占全部原动力总数的90%以上。因此,如何抓好感应电动机的节电问题对于节能减排具有十分重要的意义和深远的影响。 1.工作原理 交流感应式电动机从动作结构上可分两部分:固定绕组(定子)和旋转绕组(转子)。由于转子设计得象鼠笼,故把此类感应式电动机称为鼠笼式感应电动机。 简言之,在感应式电动机的固定绕组接通交流电,就产生旋转磁场,然后利用变压器效应,将旋转磁场力传递到转子上,从而形成转动。整个过程可以称作“电能-动能”的转换。电动机的整个运转过程,是电磁转换的过程,因此就存在了损耗、效率等概念。固定绕组通电产生旋转磁场的过程中,要有电能的损耗,这就是所谓的“激磁损耗”(或铁损),同时其本身的铜阻还要产生损耗(铜损)。因为要在转子和定子之间留有一定的间隙,所以在电磁转换过程中就会不可避免的损耗部分电能。铜损则与电动机的负载成正比,所以它是在变化着的。铁损与电动机的端电压的平方成正比,由于提拱的端电压是固定不变的,因而铁损也就比较稳定。电动机运行时的负载,接近满载时效率最高。满载时的效率并非太高,这是由于铁损固定不变的原因所造成的,见图1。 图1 感应式电动机损耗与负载关系曲线 由图1可以看见,电动机空载运行时,浪费的能量相对越多,运行效率就越低。但是,若将提供给电动机的端电压减少,负载越轻,越节省电能。 2.节电方式

电机系统节能技术发展分析

电机系统节能技术发展分析

电机系统包括电动机,被拖动装置,传动系统,控制(调速)系统以及管网负荷等,是一个涉及多学科、多专业、多领域的复杂系统。电机系统首先是通过电动机将电能转化为机械能,再通过被拖动装置(如风机,水泵,压缩机,机床,传送带等)做功,实现各种所需的功能。 电机系统节能是二十一世纪电机行业产品发展的必然趋势,目前世界各国在本行业都向绿色化、高效化、智能化方向发展,大家已经意识到电机系统节能技术在本行业乃至全国经济社会发展中的重要作用,已经纷纷投入到电机系统节能技术的研究中,正积极通过法令推动电机系统降低损耗、提高效率。 电机系统用于各行各业,涉及各种复杂多样的工况,不同的负载特性,千差万别的工艺过程,因此,电机系统节能工程技术是在首先满足负载要求功能的前提下,选用合适的系统部件,并将它们合理组合匹配,以使系统综合节能效果和系统性价比达到最佳或较佳的综合工程技术。 以下是国外某权威机构推荐的不同节能措施及可能达到的节能量。 表不同节能措施的节能量 注1:具体节能措施不是上述措施的简单累加,而可能是上述一种或多种措施的组合。

从上表可知,除管网外,电机系统节能的所有措施,主要是围绕电动机来展开的,如设计、制造和选用通用或专用高效或超高效电动机,电动机和负载合理匹配的正确选型以及设计和制造出既能满足负载特性要求,又能得到很好节能效果且性价比高的专用高效电动机或高效机组(如电机-水泵、电机-风机机组等),通过调速驱动,软启动,调压控制,功率因数补偿等措施节能,电能的质量控制等。并且如果高效电动机和高效终端设备和调速装置不能合理的匹配(通用高效电动机往往难以在许多复杂负载情况下使系统达到高效),综合节能效果将不理想,造成“高成本的高效电机和高效终端设备或调速装置组合在一起不节能或节能不明显“的结果。因此,电机系统节能工程是一个复杂的系统工程。 我国目前在通用电机产品本体节能技术研究方面已经开展了一些工作,但在其成套化,系统化,工程化应用方面尚有大量工作要做,我国在专用高效电机的工程化技术研究和应用方面与国外先进水平差距很大,在电机系统综合节能工程技术研究和系统节能产品工程技术研究方面,与国外先进水平差距很大。 1、国外电机系统节能发展现状 发达国家政府对电机及系统节能技术的研究开发投入了巨额财政资助,除辅以政策法规推动之外,还积极推动全世界的电机及系统节能技术的发展,如“中国电机系统节能项目”就是由联合国工业发展组织和美国能源部提供援助资金,国外电机及系统的发展具有以下特点: 1)、高效、超高效电机市场推进速度加快 主要发达国家都在各自的发展计划中提出了明确的强制推行高效电机的时间如表4。 表4.各国高效、超高效电机推进情况

电动机的绝缘等级区分方式

电动机的绝缘等级区分方式 电动机的绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。允许温升是指电动机的温度与周围环境温度相比升高的限度。 绝缘的温度等级A级E级B级F级H级 最高允许温度(℃)105 120 130 155 180 绕组温升限值(K)60 75 80 100 125 性能参考温度(℃)80 95 100 120 145 在发电机等电气设备中,绝缘材料是最为薄弱的环节。绝缘材料尤其容易受到高温的影响而加速老化并损坏。不同的绝缘材料耐热性能有区别,采用不同绝缘材料的电气设备其耐受高温的能力就有不同。因此一般的电气设备都规定其工作的最高温度。 人们根据不同绝缘材料耐受高温的能力对其规定了7个允许的最高温度,按照温度大小排列分别为:Y、A、E、B、F、H和C。它们的允许工作温度分别为:90、105、120、130、155、180和180℃以上。电机行业常规采用的绝缘等级为B级与F级。使用者在电机工作时应该保证不使电机绝缘材料超过该级别的最高工作温度才能保证发电机正常工作。 绝缘等级为B级的绝缘材料,主要是由云母、石棉、玻璃丝经有机胶胶合或浸渍而成的。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 电容的ESR值联不等于绝缘电阻 ESR值并不时越少越好,有些场合很少容易引起震荡,要看实际运用场合,大部分场合还是希望越小越好! 电容的型号命名: 一、各国电容器的型号命名很不统一,国产电容器的命名由四部分组成: 第一部分:用字母表示名称,电容器为C。 第二部分:用字母表示材料。 第三部分:用数字表示分类。 第四部分:用数字表示序号。 二、电容的标志方法: (1)直标法:用字母和数字把型号、规格直接标在外壳上。 (2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的

电动机的节电技术分析

关于电动机节电的技术分析 电机班——姚驰宇 电动机作为将电能转化为机械能的一种转换装置,在各个领域得到了广泛应用,电动机消耗的电能约占全国总用电60%~70%。电动机节电应以节约用电和提高电动机的综合效益为原则,合理选择并控制电动机的运行,使其处于经济运行状态,另外,对电动机进行节能改造,降低电动机的能量损耗,从而提高电动机的运行效率。 第一部分 电动机的能量损耗 电动机能量损耗主要包括恒定损耗、负载损耗及杂散损耗。 1.恒定损耗 恒定损耗是指电动机运行时的固有损耗,它与负载电流大小无关,包括铁芯损耗和机械损耗。 (1)铁心损耗Fe P (含空载杂质损耗),主要指主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗,其大小取决于组成电动机的铁心材料、频率及磁通密度,与输入电压U 的平方成正比。铁耗一般占异步电动机总损耗的20%~25%。 (2)机械损耗fW P ,通常包括轴承摩擦损耗及通风系统损耗,对于绕线式转子还存在电刷摩擦损耗。轴承摩擦损耗正比于转速的平方,通风损耗正比于转速的三次方。机械损耗一般占总损耗的10%~50%。 2.负载损耗 负载损耗主要是指电动机运行时,转子、定子绕组通过电流而引起的损耗,包括定子铜耗1Cu P 和转子铜耗2Cu P ,其大小取决于负载电流及绕组电阻值,铜耗约占总损耗的20%~70%。 3.杂散损耗(附加损耗) 杂散损耗s P 主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗,杂散损耗约占总损耗的10%~15%。 第二部分 电动机的经济运行 1.电动机经济运行 电动机经济运行是指电动机在满足生产机械运行要求时,以节能和提高综合经济效益为原则,选择电动机类型,运行方式及功率匹配,使电动机在效率高、损耗低、经济效益最佳状态下运行。 2.效率特性

电动机的绝缘等级

电机的绝缘等级及防护等级 1.电动机的绝缘等级 电动机的绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。 允许温升是指电动机的温度与周围环境温度相比升高的限度。 Tabel 1 电机绝缘等级A级E级B级F级H级 105120130155180 最高允许温度 (℃) 绕组温升限值 607580100125(K) 8095100120145 性能参考温度 (℃) 2.防护等级 IP(INTERNATIONAL PROTECTION)防护等级系统是由 IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草。将灯具依其防尘防湿气之特性加以分级。这里所指的外物含工具,人的手指等均不可接触到灯具内之带电部分,以免触电。IP防护等级是由两个数字所组成,第1个数字表示灯具离尘、防止外物侵入的等级,第2个数字表示灯具防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高,两个标示数字所表示的防护等级如表一及表二所示: 表一:第一个标示特性号码(数字)所指的防护程度 0 没有防护对外界的人或物无特殊防护。 1 防止大于50mm的固体物体侵入防止人体(如手掌)因意外而接触到灯具内部的零件。防止较大尺寸(直径大于50mm)的外物侵入。 2 防止大于12mm的固体物体侵入防止人的手指接触到灯具内部的零

件防止中等尺寸(直径大12mm)的外物侵入。 3 防止大于2.5mm的固体物体侵入防止直径或厚度大于2.5mm的工具、电线或类似的细节小外物侵入而接触到灯具内部的零件。 4 防止大于1.0mm 的固体物体侵入防止直径或厚度大于1.0mm的工具、电线或类似的细节小外物侵入而接触到灯具内部的零件。 5 防尘完全防止外物侵入,虽不能完全防止灰尘进入,但侵入的灰尘量并不会影响灯具的正常工作。 6 防尘完全防止外物侵入,且可完全防止灰尘进入。 表二:第二个标示特性号码(数字)所指的防护程度 0 没有防护没有防护。 1 防止滴水侵入垂直滴下的水滴(如凝结水)对灯具不会造成有害影响。 2 倾斜15度时仍可防止滴水侵入当灯具由垂直倾斜至15度时,滴水对灯具不会造成有害影响。 3 防止喷洒的水侵入防雨,或防止与垂直的夹角小于60度的方向所喷洒的水进入灯具造成损害。 4 防止飞溅的水侵入防止各方向飞溅而来的水进入灯具造成损害。 5 防止喷射的水侵入防止各自各方向由喷嘴射出的水进入灯具造成损害。 6 防止大浪的侵入装设于甲板上的灯具,防止因大浪的侵袭而进入造成损坏。 7 防止浸水时水的侵入灯具浸在水中一定时间或水压在一定的标准以下能确保不因进水而造成损坏。 8 防止沉没时水的侵入灯具无限期的沉没在指定水压的状况下,能确保不因进水而造成损坏。 - 防水试验 1、范围 防水试验包括第二位特征数字为1至8,即防护等级代码为IPX1至 IPX8。 2、各种等级的防水试验内容 (1)IPX1 方法名称:垂直滴水试验 试验设备:滴水试验装置及其试验方法见2.11 试样放置:按试样正常工作位置摆放在以1r/min的旋转样品台上,样

电机采用变频调速技术的节能效果分析.

焦炉煤气鼓风机采用变频调速技术 的节能效果分析 Energy Saving Analysis on Coal—gas Blower of Coke—oven with Variable Frequency Speed Control Technology 金立明杨生桥王莉武汉钢铁集轩团能源动力公司(武汉430083 杜强丁宁北京经资风机水泵节能技术中心(北京100037 摘要:介绍了变频调速技术在焦炉煤气鼓风机上的首次应用,根据武钢煤气管网的工况,提出了改造方案,进行了系统设计和现场测试,并作了节能效果及效益分析。 叙词:煤气系统鼓风机变频调速技术节能献承 Ahsth'act:This paper introduces first application offrequency control technology on coal-gas blower.Based Oil practical situation ofWngang gas pipdine net,put forwards improvement sdution and system d8ign.FurLhe㈣,make energy saving effect and benefit analysis accord—ing to siteⅡM目目Ⅱ℃H枷results Keywor凼:Coal-gas system Blower Variable frequency删contcol technology Energy saving l刖置 武汉钢铁集团能源动力公司燃气厂担负着整个武钢厂区的生产用气和生活用气。为保证系统用量和管网压力,设有三个煤气加压站,要求管网压力保持在23kPa 左右,因加压站分布远,煤气管线长.用户多.用量不平衡,日供气量波动大,在保证用量的情况下,管网压力只能由运行人员调节挡风门来控制。为稳定中压焦炉煤气主干

电机绝缘等级与防护等级

电机绝缘等级与防护等级 2009-10-28 15:11 一.绝缘等级 电动机的绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。允许温升是指电动机的温度与周围环境温度相比升高的限度。 绝缘的温度等级 A级 E级 B级 F级 H级 最高允许温度(℃) 105 120 130 155 180 绕组温升限值(K) 60 75 80 100 125 性能参考温度(℃) 80 95 100 120 145 在发电机等电气设备中,绝缘材料是最为薄弱的环节。绝缘材料尤其容易受到高温的影响而加速老化并损坏。不同的绝缘材料耐热性能有区别,采用不同绝缘材料的电气设备其耐受高温的能力就有不同。因此一般的电气设备都规定其工作的最高温度。 人们根据不同绝缘材料耐受高温的能力对其规定了7个允许的最高温度,按照温度大小排列分别为:Y、A、E、B、F、H和C。它们的允许工作温度分别为:90、105、120、130、155、180和180℃以上。因此,B级绝缘说明的是该发电机采用的绝缘耐热温度为130℃。使用者在发电机工作时应该保证不使发电机绝缘材料超过该温度才能保证发电机正常工作。 绝缘等级为B级的绝缘材料,主要是由云母、石棉、玻璃丝经有机胶胶合或浸渍而成的。 二.防护等级 1. 电机外壳防护等级 GB4942.1-85《电机外壳防护分级》;IEC34-5 第一种防护:防止人体触及或接近壳内带电部分和触及壳内转动部件(光滑的旋转轴和类似部件除外),以及防止固体异物进入电机。 第二种防护:防止由于电机进水而引起的有害影响。 代号IP xx,含义见下表。 第一位表征数字 第一位表征数字防护等级 简述含义 0 无防护电机无专门防护 1 防护大于50mm固体电机能防止大面积的人体(如手)偶然或意外地触及或接近壳内带电或转动部件(但不能防止故意接触) 能防止直径大于50mm的固体异物进入壳体 2 防护大于12mm固体电机能防止手指或长度不超过80mm的类似物体触及或接

电力技术中的电力节能技术应用 何启钊

电力技术中的电力节能技术应用何启钊 发表时间:2019-09-19T09:54:44.643Z 来源:《电力设备》2019年第8期作者:何启钊[导读] 摘要:现阶段,人们的生活水平逐渐的提高,对电力的要求也突飞猛进。 (广东立胜综合能源服务有限公司广东佛山 528000) 摘要:现阶段,人们的生活水平逐渐的提高,对电力的要求也突飞猛进。电力对人们生活、社会发生有非常重要的作用,随着经济水平的提高,各个电力企业越来越重视电力技术中的电力节能技术应用。当前的节能措施很多,例如使用节能型供配电系统,应用节能的电力设备,减少线路降低电力损耗,在以后的发展中,还会贯彻可持续发展战略。由此可见,节能是电力工程未来的发展趋势,通过降低能 耗,提高企业的核心竞争力。下面就对这些方面进行分析,希望给有关人士一些借鉴。关键词:电力技术;电力节能;技术应用引言随着我国社会经济的发展进步,当前在电力方面的需求不断加大,随着能源的大规模开发,存在有较为严重的浪费现象,不仅会导致生态环境被破坏,同时还很大程度上影响到人类社会的可持续发展。在这种情况下,电力企业需要不断转变和优化当前的生产方式,坚持可持续发展理念,将电力节能技术有效的应用在电力企业生产过程中,满足当前社会经济可持续发展需求,本文对此进行了研究分析。 1电力企业使用节能的设备 1.1分析动力设备、节能灯具的使用当前高压变频调速技术发展很迅速,通过实践技术不断成熟,当前在不同的领域都有应用。对于工矿企业而言,实践工作中应用了很多大动力设备,主要包括风机、水泵,一般都处于工频状态,除此之外,在使用中还要有效利用闸阀动态控制风量与流量,但是将会损耗大量的电能。针对这一问题,技术人员进行了改变,使用新型的变频器,调节变频频率,对电机转速进行调节和完善,同时对对应的风量、流量等进行优化调节,这样就可以很好的降低电能损耗。不仅如此,有关技术人员还使用了Y型高效电动机,该设备优势非常明显,有效降低对电能的损耗,损耗降低率会达到30%,而且工作效率提高了7%,据调查得知,引进设备的投资在1~2年、甚至几个月就可以得到回馈;有必要使用节能型灯具,降低电能损耗的同时提高安全性,延长各个设备的使用寿命。 1.2分析电力企业对节能变压器的使用在输配电线路当中,变压器运行中的电能损耗量非常大,通常会选用小型变压器,这种型号的变压器不仅使用量很大,而且运行时间很长,由于这两方面的特点,其存在很大的节能空间,在之前的电力系统中,使用最为频繁的是S9型号的变压器,但是发展到目前S9型号的变压器已经被S11型号变压器替代了,其是节能型变压器,具体优点可以归结为下列方面:在传输电能的时候,电能损耗很低,要比传统的变压器减少30%左右,除此之外,其空载电流会减少70%左右,而且在运行过程中,产生的噪音也很低,和传统电压器产生的噪音进行对比,噪音量减小3到5db,运行中部容易出现短路问题,发生故障的概率非常低,有很强的运行可靠性。除此之外,还要合理的选择变压器组别,配电线路需要使用三相变压器,其连接组比较复杂,主要涉及到Y、yn0、D,还有yn11,容量一般都在1000kV A,或者是以下的都使用Y,yn0这一连接组别,对于D,yn11这一组别,其有很好的节能优势,例如其空载损耗和负载损耗,都会比同一容量的Y,yn0变压器小很多。使用该组别的变压器,能很好的减少高次谐波电流的影响,在连接零序的时候,产生的阻抗就更小,能够有效避免出现短路故障。 2电力节能技术的具体应用 2.1应用节能型供配电系统当前我国电网损耗在总供电能中占有极高的比例,将电力节能技术应用在电力系统中有着十分重要的作用和意义。应用节能型供配电系统,工作人员可以对供电区域供电距离、用电负荷、电网运行等方面情况进行全方面的了解分析,提高供电电压设置的科学合理性。比如说在6kV-10kV供电电压中,如果10kV供电电压技术经济指标更加优异,在供电系统中可以减少电能的损耗,那么在进行配电电压的选择时,可以优先选择10kV供电电压,如果用户在6kV供电电压设备方面的用量较多,在实际的应用中存在较为理想的技术经济指标,那么在进行配电电压的选择时,可以优先选择6kV供电电压。另外,如果用户偶尔会使用到其他等级的电压,可以为用户设置专用变压器,更好的满足用户的电力需求。在电网运行过程中,变压器、电动机等大多数电力设备都属于感性负荷,在运行过程中会消耗一定的无功功率,通过安装无功补偿设备,比如说并联电容器,为其提供无功功率,降低电网中无功功率的损耗量,提高电网节能水平。通过安装无功补偿装置,可以实现对电网电压的优化,提高电网运行安全稳定性,协调三相不平衡现象,提高电网运行的经济效益,促进我国电力行业的发展进步。 2.2改进配电线路水平在进行电网的建设时,为了减少建设费用,往往选择理论截面大小的输电导线。但实际上,选择比理论截面大一两个等级的导线,可以很大程度上节约电网运行的损耗,购买大截面导线所花费的资金可以在短时间内在从电网运行过程中得到补偿。一般的导线使用寿命超过10年,电网运行10年,因为增大截面而节省的费用将是一笔非常可观的金额。另外,在进行电网的建设时,可以应用架空绝缘导线,这种导线不仅可以提高电网运行的安全可靠性,避免因为外力以及环境等方面因素的影响出现的短路现象,减少停电次数,提高电网运行稳定性。架空绝缘导线的应用,还可以实现对沿线杆塔的简化,可以选择沿墙敷设方式,节约线路材料,提高线路建设的美观性。架空绝缘导线可以显著缩短线路之间的安全距离,其线路电抗不足一般导线的一半,能够很大程度上避免因为腐蚀等现象所造成的线路损坏现象,增强线路实际使用寿命。 2.3变负荷电动机调速运行电动机在电网运行过程中有着十分重要的作用,可以从电动机方面出发提高电网节能效果,一方面可以改良电动机自身的性能,另一方面可以提高变动负荷电动机转速,通过这种方式,实现对电力资源的有效节约。在改良电动机性能的同时提高变动负荷电动机转速,不仅可以提高电动机节能效果,同时还可以在电力资源节约利用方面取得突破性的进步。将电力技术应用在电力节能中,可以从电动机性能以及转速两个方面出发进行分析考虑,在实际的应用中,将这两种方式结合在一起,可以取得最为理想的节能效果。尤其在风机以及泵类存在有变动负荷的电动机中,选择科技含量高的节流阀以及挡风设备,通过调速控制的方式实现对水流量以及风流量的有效控制,在能源节约方面可以取得非常好的应用效果。结语

电动机及变压器的绝缘等级分类标准

电动机的绝缘等级分类标准:划分为A、E、B、F、H级 电动机的绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。允许温升是指电动机的温度与周围环境温度相比升高的限度。 绝缘的温度等级A级E级B级F级H级 最高允许温度(℃)105 120 130 155 180 绕组温升限值(K)60 75 80 100 125 性能参考温度(℃)80 95 100 120 145 在发电机等电气设备中,绝缘材料是最为薄弱的环节。绝缘材料尤其容易受到高温的影响而加速老化并损坏。不同的绝缘材料耐热性能有区别,采用不同绝缘材料的电气设备其耐受高温的能力就有不同。因此一般的电气设备都规定其工作的最高温度。 人们根据不同绝缘材料耐受高温的能力对其规定了7个允许的最高温度,按照温度大小排列分别为:Y、A、E、B、F、H和C。它们的允许工作温度分别为:90、105、120、130、155、180和180℃以上。因此,B级绝缘说明的是该发电机采用的绝缘耐热温度为130℃。使用者在发电机工作时应该保证不使发电机绝缘材料超过该温度才能保证发电机正常工作。 绝缘等级为B级的绝缘材料,主要是由云母、石棉、玻璃丝经有机胶胶合或浸渍而成的。常用的B级绝缘材料有PVC玻璃纤维套管(黄腊管), 6520复合纸, DMD绝缘纸等 变压器绝缘等级是指温度的,有A、B、E、F、H、C。变压器有A级,最高运行温度为105度,这就是油变。干变有F级(环氧树脂)最高运行温度为155度。还有用美国杜邦公司的NOMEX绝缘材料制作的H级(最高运行温度180度)和C级(最高允许运行温度为220度)的干式变压器。E和B是用来制造电机的。这个温度是绝缘材料来决定的。不能换算。

电机系统节能关键技术及展望 段先卫

电机系统节能关键技术及展望段先卫 发表时间:2018-05-31T10:33:21.013Z 来源:《电力设备》2018年第2期作者:段先卫 [导读] 摘要:本文主要概括分析了电机系统节能关键技术,展望了电机系统节能技术的未来发展趋势。 (广东汇嵘绿色能源股份有限公司广东东莞 523000) 摘要:本文主要概括分析了电机系统节能关键技术,展望了电机系统节能技术的未来发展趋势。从而能够更好的把握电机系统节能关键技术的发展脉络,通过电机系统节能技术水准的不断提升,更好的提高电机系统的节能降耗效果,为我国工业的节能化方向发展提供技术支撑。 关键词:电机系统;节能;关键技术;展望; 前言: 随着我国工业化的进一步发展,各类工业化技术都相继出现了突破性进展。电机系统是工业所应用设备中最为重要的动力化设备,其中包含着工业所应用的泵类的机械化设备空气压缩类的机械化设备、风机等设备。在一定程度上,电机系统还是把电能进行机械能转换环节最为重要的能源转换系统装置。电机系统的潜在节能性较大,不仅能够提高运行机械化设备的运行效率,还能够实现成本的节约。那么,为了能够更好的推动我国电机系统节能技术的进一步发展,就需要对电机系统节能关键技术进行有效的分析,进而展望电机系统节能技术未来的发展趋势。从而能够更好的把握电机系统节能技术的发展趋势,不断的提高电机系统节能关键技术的水准。 1、概述电机系统节能的关键技术 1.1电动机的软启动系统装置的节能技术 随着我国计算机科学技术与电子信息化技术的高效发展,我国逐渐将开关性的器件应用于电动机系统当中。在系统的设计开发中,逐渐应用了晶体的阀管,将其设计在单片机控制中,以达到核心控制电子的软启动器,实现异步的电动机系统启动与控制。那么,与传统的电动机系统设计相比较,此种方法有着一定的现实意义,虽然效果作用并不是很明显。但是,并不会对电流产生冲击性影响,而是能够利用负载的特性在启动时进行参数的合理调节,切实的保障电机系统能够在启动过程中保持着稳定状态。电机系统在转载与空载时,都能实现电压高效率的输送,降低电机系统实际的功耗量,让其整体的功率因数逐渐提升,让输电线的损耗逐渐降低,以实现节能的作用。 那么,在启动软件时,电机系统其实际的起动转矩会逐渐增加,转速也会随之增加。对于电动系统的软启动系统装置,其主要的启动方法主要包含以下几种。其一,斜坡的升压性软启动系统模式。此种启动系统模式比较简单化,无需复杂性的电网控制与电流的闭环。它主要是通过利用晶阀管其导通的角度,在固定的时间区间内对函数关系予以合理调整,让其逐渐增加。但是,此种模式也有着一定的弊病,就是其会造成冲击性电流的逐渐增加,而致使晶阀管出现损坏情况。因而,此种启动系统模式应用的较少;其二,斜坡的恒流性启动系统模式。此种模式极易引发电流逐渐增加后出现不稳定的情况,致使电流在达到一定状态后保持恒定,一直到启动控制结束。随着电流速率的增加,其启动的转矩就会随之增加,促使启动时间逐渐缩短。基于该类启动系统模式的基本特征,该种模式比较适用于泵类或者风机等的负载,目前应用的较为广泛。 1.2变频调速的节能技术 随着我国工业化的进一步发展,可调速的拖动性技术实现了新的突破性进展。在一定程度上,其可以有效的利用直流的电动机进行便捷化的调速。而基于直流性电机其实际体积较大,市场价格比较高,对电能的节约效果也并不明显。而交流性异步的电动机则相比占有一定的功能优势,其不仅体积小、市场价格较为低廉,且总体运行具有着较高的可靠性。那么,在调节控制交流性异步的电动机时,不仅可以有效的提升电动机拖动系统整体的控制效率,还能够起到极大的电能节约作用。因而,我国目前对变频调速与低压性交流节能技术的应用较为广泛。 1.2.1变频调速的基本原理 依据常规性的电动学基础理论,交流性的电流具有着一定的转速功能优势,异步性电动机其实际的转速效果明显要比同步性的较低。随着同步转速变化,电源的实际频率也会随之变化,其电动机实际的转速自然同步增长,致使电源实际的频率逐渐降低的。在电动机实际的P值保持不变的情况下,其电动机实际的转速相比较电源的频率会呈现着较为明显的变化,若向电动机系统提供该电源,则电源的频率就会发生变化,实现变频器与电动机转速的协调性运行。 1.2.2利用风机变频调速来达到节能效果 对于电动机系统来说,风机是其转速与负荷转矩间的平方相互条件关系。在实际运行过程中,需要对流量予以合理的控制与管理。对于流量的调节法主要包含着以下两种。其一,是改变与调整管网曲线的特性,此种方法的实际效率比较低,节能效果并不明显;其二,就是将风机实际的转速予以降低,该种方法能够有效的提升节能的实际效率,让流量随着变化,以实现合理调整流量,降低功率的目的,节能效果较为明显。 2、展望电机系统节能技术的未来发展趋势 2.1 综合性设计与仿真节能技术 电机系统其主要是电、机、温度及磁等多场的交叉、耦合的非线性的多变量系统,具有较高的复杂性特点。目前,我国针对电机系统的设计与相关技术的研究,还处于较为简单的经验公式计算与磁路法上。而随着我国设计与仿真节能技术的进一步发展,我国的电机系统节能技术必将会与设计、仿真节能技术相融合,实现综合性的设计与仿真节能技术,对电机系统的节能效果予以仿真测试,从而能够更好的对电机系统予以技术调整,切实的提高电机系统的节能效果。 2.2 高效率化电机系统节能技术 我国目前的各类特种电机系统,多数都是只是考虑到应用场合、基础性功能、整体结构方面,致使所应用的电机系统节能技术并不具备较高的节能效率。那么,随着电机高效产品的问世,我国的电机系统节能技术必将实现高效率化,更好的提升电机系统的节能效果,降低电能的消耗。 2.3 伺服性电机节能技术 伺服性电机节能技术,其主要是涉及到现代化控制的基础理论、电子学基础性理论、电力电子的功率转换技术、电机系统设计及制造

电动机绝缘等级分类和IP防护等级

电动机绝缘等级分类和IP防护等级 来源:湘潭电机厂 https://www.wendangku.net/doc/5b9413020.html,/ 绝缘等级分类和IP防护等级 1、电动机的绝缘等级是指其所用绝缘材料的耐热等级,分 A、E、 B、F、H级。允许温升是指电动机的温度与周围环境温度相比升高的限度。 绝缘的温度等级 A级 E级 B级 F级 H级最高允许温度(℃) 105 120 130 155 180 绕组温升限值(K) 60 75 80 100 125 性能参考温度(℃) 80 95 100 120 145 在发电机等电气设备中,绝缘材料是最为薄弱的环节。绝缘材料尤其容易受到高温的影响而加速老化并损坏。不同的绝缘材料耐热性能有区别,采用不同绝缘材料的电气设备其耐受高温的能力就有不同。因此一般的电气设备都规定其工作的最高温度。 人们根据不同绝缘材料耐受高温的能力对其规定了7个允 许的最高温度,按照温度大小排列分别为:Y、A、E、B、F、H 和C。它们的允许工作温度分别为:90、105、120、130、155、180和180℃以上。因此,B级绝缘说明的是该发电机采用的绝缘耐热温度为130℃。使用者在发电机工作时应该保证不使发电机绝缘材料超过该温度才能保证发电机正常工作。 绝缘等级为B级的绝缘材料,主要是由云母、石棉、玻璃丝经有机胶胶合或浸渍而成的。 IP防护等级说明

防护等级IP54,IP为标记字母,数字5为第一标记数字,4为第二标记数字,第一标记数字表示接触保护和外来物保护等级,第二标记数字表示防水保护等级;防水试验1、范围防水试验包括第二位特征数字为1至8,即防护等级代码为IPX1至IPX8。 2、各种等级的防水试验内容 (1)IPX1 方法名称:垂直滴水试验试验设备:滴水试验装置及其试验方法见2.11 试样放置:按试样正常工作位置摆放在以1r/min的旋转样品台上,样品顶部至滴水口的距离不大于200mm 试验条件:滴水量为1 0.5mm/min; 试验持续时间:10min; (2)IPX2 方法名称:倾斜15°滴水试验试验设备:滴水试验装置及其试验方法见2.11 试样放置:使试样的一个面与垂线成15°角,样品顶部至滴水口的距离不大于200mm。每试完一个面后,换另一个.....面,共四次。试验条件:滴水量为3 0.5mm/min;试验持续时间:4×2.5min (共10min); (3)IPX3 方法名称:淋水试验试验方法: a.摆管式淋水试验试验设备:摆管式淋水溅水试验装置(装置图形及其试验方法见本书2.14) 试样放置:选择适当半径的摆管,使样品台面高度处于摆管直径位置上,将试样放在样台上,使其顶部到样品喷水口的距离不大于200mm,样品台不旋转。试验条件:水流量按摆管的喷水孔数计算,每孔为0.07L/min。淋水时,摆管中点两边各60°弧段内的喷水孔的喷水喷向样品。被试样品放在摆管半圆中心。摆管沿垂线两边各摆动60°,共120°。每次摆动(2×120°)约4s。 试验时间:连续淋水10min。 b.喷头式淋水试验试验设备:手持式淋水溅水试验装置,装置图形及其试验方法见本书2.14 试样放置:使试验顶部到手持喷头喷水口的平行距离在300mm至500mm之间试验条件:试验时应安装带平衡重物的挡板,水流量为10L/min 试验时间:按被

电机绝缘等级

电机绝缘等级 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机绝缘等级划分依据是按电动机所用绝缘材料的允许极限温度划分的。有Y、A、E、B、F、H、C等几个等级,各级的允许极限温度如下表。所谓允许极限温度是指电机绝缘材料的允许最高工作温度,它反应绝缘材料的耐热性能。绝缘材料按耐热能力分为Y级、A级、E级、B级、F级、H级、C级, 允许温度(℃)90、105、120、130、155、180、180℃以上。 电动机采用B级绝缘时定子绕组的温升极限(电阻法)应不超过80K; 电动机采用F级绝缘时定子绕组温升极限应不超过105K; YR电机集电环的温升极限(温度计法)应不超过80K; 电机轴承的容许温度(温度计法或埋置检温计法)对滚动轴承应不超过95℃; 对滑动轴承(出油温度不高于65℃时)应不超过80℃或按双方协议。 电机温升说明:电机某一部分的温升为该部分温度冷却介质温度之差,单位为K。电机温升包括定、转子绕组温升,定、转子铁心温升;集电环温升及轴承允许温度(前面已作说明)。B级电机绕组温升限制为80K;F级电机按B级考核亦为80K;按F级考核则为 105K,按相应标准,B级绝缘材料可长期承受的工作温度是130℃,F级可长期承受155℃,按电机实际运行最高环温40℃计算,则电机允许工作温度为: B级时≤120℃(环温40℃+温升80)<130℃ F级时≤145℃(环温40℃+温升105)<155℃ 电机的工作制的分类 S1、连续工作制:在恒定负载下的运行时间足以达到热稳定。 S2、短时工作制:在恒定负载下按给定的时间运行,该时间不足以达到热稳定,随之即断能停转足 够时间,使电机再度冷却到与冷却介质温度之差在2K以内。

田供用电系统节电技术途径分析

油田供用电系统节电技术途径分析 2007-07-05 16:00:59| 分类:节能|字号大中小订阅 出处:大港油田公司作者:夏艳铎上传时间:[2005-4-19 16:08:00] 摘要油田既是能源生产企业,同时也是能源消耗大户,原油的提升、处理、掺水、脱水、注水都需要消耗电力来完成。本文从油田配电线路的优化运行、经济电流密度、变压器的经济运行、新型变压器的技术分析、泵类设备调速方式、新型永磁同步电动机、异步电动机的节电运行、无功补偿等方面进行分析总结,阐述油田电能传送各环节中电耗的特点和减少损耗的技术手段,为油田的节电降耗工作提供参考。 关键字潮流分布计算,最佳无功补偿,经济电流密度,变压器的经济运行,电动机经济运行,同步电机,无功补偿,油井间开控制柜] 第一部分配电网潮流计算和配电网最佳无功补偿 配电线路在电网中起到把电能配送到用户的作用,在配电线路输送的电能中网损占了相当大比重,约占总输送电量的10%,象油田这样的电网6KV线路损失在7%-15%之间,电网结构的不合理和无功损耗在配电线路中造成的损失最大,这样就存在电网结构的调整和无功补偿的问题,电力系统实行功率因数补偿的手段是串联调相机和并联静态补偿电容两种,用以就地补偿设备所需建立磁场的无功功率,避免无功的长距离输送,增加发电机的出力,减小网损。在企业一般用并联电容的方式,低压系统目前已经可以实现根据功率因数自动投切电容,高压系统(6-10KV)虽有自动投切的技术和设备,但从应用上看还不太成熟并且一次

性投入太大。所以目前在野外高压线路一般还是采用安装固定电容的方式进行补偿。由于抽油机的运行特性,如果全补偿就存在过励磁问题,使得完全在低压进行就地补偿不可行;另外,由于油田生产的井下情况变化引起抽油机和变压器频繁调动,输电网的潮流计算方法不适用配电网的计算。总之,在合适的位置加装适当容量的高压电容、配电网损计算、变压器调整以及电网改造方案就需要进行专门研究和计算。 一、配电网的精确数学模型 由于配电网结线复杂,变化性大,因此长期以来,在配电网的潮流分布和网损计算时,多采用经过简化的等值模型,如等值电阻模型、概率统计模型、等值阻抗模型等,根据资料的查询和总结:西安石油学院姜衍智教授的配电网精确数学模型,适合对油田配电网的负荷经常变动,新井投产、老井停抽等线路进行计算。 二、配网潮流分布计算 当建立了配电网数学模型(关联矩阵E)并输入了有关原始数据后,即可进行配电网的潮流计算。根据能源部颁发的《电力网电能损耗计算导则》,计算可做如下假设: 1、各负荷结点的负荷曲线与首端相同。 2、各负荷结点的功率因数与首端相同。 3、忽略沿线电压损失对功率损耗的影响。 在此基础上按下列公式进行计算,即可得出配电网的潮流计算结果。 三、配电线路的最佳无功补偿 一般抽油机开关箱内装有低压静态电容补偿器,但由于机械的特性,为防止自励磁,不能进行全补偿,这样为提高变电所出口功率因数,必然要在线路上安装一定容量的高压电容补偿,另外也要考虑安装维护工作量和补偿的经济性问题,油田配电网根据分支情况和线路长短装设3个点左右,出口功率因数达到0.95是合理的。配电网优化计算的过程如下: 1、统计线路上配电变压器下口负荷,包括有功负荷和无功负荷进行原始电网的潮流计算。 2、选择补偿位置。 3、确定需补偿的总容量。 4、根据网损等微增率准则确定具体各补偿点的容量。 5、再以总补偿容量为约束条件,即可求得各点的补偿容量。

相关文档