文档库 最新最全的文档下载
当前位置:文档库 › 天然气水合物

天然气水合物

天然气水合物
天然气水合物

天然气水合物开发现状及研究进展

天然气水合物(NGH),也称气体水合物,是由天然气与水分子在高压(>10MPa)和低温(0~10℃)条件下合成的一种固态结晶物质。因天然气水合物中80%~90%的成分是甲烷,故也称甲烷水合物。天然气水合物多呈白色或浅灰色晶体,外貌类似冰雪,可以象酒精块一样被点燃,所以,也有人叫它“可燃冰”。

一、天然气水合物的形成条件及分布

天然气水合物的形成有三个基本条件,缺一不可。首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;第三,地底要有气源。天然气水合物受其特殊的性质和形成时所需条件的限制,只分布于特定的地理位置和地质构造单元内。一般来说,除在高纬度地区出现的与永久冻土带相关的天然气水合物之外,在海底发现的天然气水合物通常存在于水深300~500m以下(由温度决定),主要附存于陆坡、岛屿和盆地的表层沉积物或沉积岩中,也可以散布于洋底以颗粒状出现。这些地点的压力和温度条件使天然气水合物的结构保持稳定。

深海钻探发现,天然气水合物以冰状或更多地以水合物胶结的火山灰和细砂产出,其时代为晚中新世—晚上新世。天然气水合物与火山灰或火山砂共存,暗示了其形成与火山喷发有某种联系。天然气水合物形成于低温高压条件下,分布限于极地地区,深海地区及深水湖泊中。在极地地区天然气水合物通常与大陆和大陆架上的永冻沉积物有关;在海洋里,天然气水合物主要分布于外大陆边缘和洋岛的周围,

水深超过大约300 m。天然气水合物的稳定温度为1~21.1℃,分布的最大下限深度不超过海底下2000m[2]。深海钻探已经表明天然气水合物既可以产于被动大陆边缘,也可产于活动大陆边缘。但大多数天然气水合物样品来自于活动边缘[2]。

据估计,陆地上20.7%和大洋底90%的地区,具有形成天然气水合物的有利条件。绝大部分的天然气水合物分布在海洋里,其资源量是陆地上的100倍以上。在标准状况下,一单位体积的天然气水合物分解可产生164单位体积的甲烷气体,因而是一种重要的潜在未来资源。

二、天然气水合物的调查和研究意义

天然气水合物研究是当代地球科学和能源工业发展的一大热点。该研究涉及到新一代能源的探查开发、温室效应、全球碳循环和气候变化、古海洋、海洋地质灾害、天然气运输、油气管道堵塞、船艇能源更新和军事防御等,并有可能对地质学、环境科学和能源工业的发展产生深刻的影响。作为一种洁净的新能源,天然气水合物具有以下优势:

1.埋藏浅。与常规石油和天然气比较,天然气水合物矿藏埋藏较浅,有利于商业开发。在深海,水合物矿藏赋存于海底以下0~1500米的沉积层中,而且多数赋存于自表层向下厚数百米(500~800米)的沉积层中;在加拿大西北Mackenzie三角洲永冻土带,水合物矿藏赋存于810.1~1102.3米处,含天然气水合物地层厚111米。

2.规模大。天然气水合物矿层一般厚数十厘米至数百米,分布面积数万到数十万平方公里,单个海域水合物中天然气的资源量可达数万至数百万亿立方米,规模之大,是其它常规天然气气藏无法比拟的。按保守估计,“全世界的天然气水合物形式存在的碳的总量是地球上已知化石燃料(包括煤)中碳含量的2倍”,“谁掌握天然气水合物的开采技术,谁就可以执21世纪世界能源之牛耳。”

3.能量密度高。天然气水合物的能量密度极高。在标准状态下,水合物分解后气体体积与水体积之比为164:1,也就是说,一个单位体积的水合物分解至少可释放160个单位体积的甲烷气体。这样的能量密度是常规天然气的2~5倍,是煤的10倍。

4.洁净。天然气水合物分解释放后的天然气主要是甲烷,它比常规天然气含有更少的杂质,燃烧后几乎不产生环境污染物质,因而是未来理想的洁净能源。

天然气水合物的生成和分解都有可能产生灾害。主要有以下三种灾害:

1.油气管道堵塞。在高纬度永冻土带及极地地区,水合物的生成可以堵塞诸如油井、油气管道等油气生产设施,从而构成灾害。

2.海底滑坡。在海底,天然气水合物是极其脆弱的,轻微的温度增加或压力释放都有可能使它失稳而产生分解,从而影响海底沉积物的稳定性,甚至导致海底滑坡。相比而言,水合物稳定带是刚性层,之下是饱和气、水的沉积物塑性层。由于游离天然气聚集于水合物稳定带的底界面,此处形成的压力可能超过孔隙压,使之成为一个脆弱

的剪切带。一旦某种因素(如海平面下降、海底构造活动、海底热流值增高、钻井或采气不当)引起海底压力降低或温度上升,水合物稳定带底界面的水合物将有可能首先分解成天然气和水。其结果是:底界面处沉积物出现液化,气压不断增大,最终使上部的沉积层失稳而产生滑坡。如果巨厚的水合物沉积层滑坡进深海里,水合物可能因压力释放而溶解。

3.海水毒化。一旦海底天然气水合物因突发因素而失稳分解,大量的甲烷气体将进入海水,结果是海水被还原,造成缺氧环境,进而引起海洋生物大量死亡,甚至导致生物绝灭事件发生。

三、中国开发利用天然气水合物的可能性

解决我国21世纪能源需求的问题显得越来越紧迫。开发利用新的清洁能源,降低能源使用与技术发展对环境造成的负面影响,是解决本世纪能源问题的主要出路。在我国能源发展战略中,高效、清洁的天然气水合物应成为重要的后续能源。

1.天然气水合物的资源量特别巨大,资源开发技术较为现实、可行,国际上预测21世纪中期可投入商业生产,并逐渐在能源结构中占据重要地位。我国具有良好的天然气水合物蕴藏潜力,东海的冲绳海槽边坡,以及南海的北部陆坡、西沙海槽和西沙群岛南坡等都可能是有希望的储存区,我国西藏高原终年积雪的羌塘地区也有发现。

2.天然气水合物的勘探、生产可与常规油气的勘探生产同时进行,因为天然气水合物矿藏常伴有下伏的游离气,勘探常规油气时可兼探天然气水合物,使水合物开发成为常规油气勘探生产的一种“副

产品”,降低生产成本,实现经济合理的商业生产。

3.随着石油、天然气的开发和利用,天然气的开采、运输与终端利用技术业已成熟,以天然气为最终利用形式的天然气水合物,可充分继承利用现有的油气开采、运输与终端利用技术和装备等,在现有工业布局的基础上,无须进行重大的工程改造和投资,便可实现能源的平稳过渡与接替,而且也不会产生新的环保问题。

4.天然气水合物主要分布于我国东部海域,利于改变我国能源分布不均的格局。当前,我国的常规天然气资源大多分布于中西部地区,东部沿海地区则相对缺乏。虽“西气东输”实现后,矛盾可得到一定程度的缓解,但从长远考虑仍存在后备资源的问题。天然气水合物资源的开发利用将有利于缓解东部沿海地区天然气后备资源不足的局面,改变我国能源分布不均的格局。

作为能源消费大国,我国高度重视对天然气水合物开采技术的研究,将天然气水合物列入国家能源发展战略的重大课题,已启动了8.2亿元的研究资金。中国石油大学成立天然气水合物研究中心,获得了国家“863”项目“天然气水合物成藏条件实验模拟技术”的主持权。中国石油大学仪器仪表研究所与中科院广州能源研究所、黑龙江科技学院等单位合作,连续研发了天然气水合物生成与开发模拟实验技术和多套相关仪器设备系统,包括一维长管开采模拟实验系统,二维平板开采模拟实验系统,三维开采模拟实验系统,天然气低温储存和输送实验系统,以及多孔介质中NGH热动力学模拟实验装置等。

应用该模拟实验技术与设备,在实验室反应釜内高压低温条件

下,已成功合成天然气水合物。该套系统体现三个特点,一是可视化程度高,能直接看见NGH的生长过程,可用光、声、电多种检测方法探测NGH的形成和分解;二是测试精度高,能清楚测出NGH形成和分解的压力和温度;三是自动化程度高,实验中的数据采集与处理、图像采集均由计算机控制完成。

尽管对天然气水合物物理性质和开发的研究已经取得了很大的进展,但仍需进行天然气水合物的资源特征、生产开发、对环境的影响、安全性和海底稳定性等方面的研究,并需要进行大型生产测试,用以决定此资源是否能够供人们高效益的大规模开采。由于非常规能源资源的研究处于前沿领域,因此非常规能源资源的研究充满着不确定的因素。而以“冰”的形式出现的天然气水合物将是未来的一种有巨大价值的能源资源。

天然气水合物典型特征综述

作者:樊浩 单位:中国石油辽河油田海南油气勘探分公司124010 作者简介:樊浩(1979-),男,湖北潜江市人,硕士,中级工程师,现从事海洋油气勘探。标题:天然气水合物典型特征综述 摘要:概述国内外天然气水合调查研究的勘探进展情况,详细地介绍判识天然气水合物的地球物理和地球化学特征。 关键词:天然气水合物;现状;特征 0 引言 天然气水合物, 也称“气体水合物”, 是由天然气与水分子在高压、低温条件下形成的一种固态结晶物质。由于天然气中80%~99.9%的成分是甲烷, 故也有人将天然气水合物称为甲烷水合物。天然气水合物多呈白色或浅灰色晶体, 外貌似冰状, 易点燃, 故也称其为“可燃冰”。在天然气水合物晶体化学结构中, 水分子构成笼型多面体格架, 以甲烷为主的气体分子包裹于其中。这是一种新型的潜在能源, 全球资源量达2.1×1015m3, 是煤炭、石油和天然气资源总量的两倍,具有巨大的能源潜力。因此, 世界各国尤其是各发达国家和能源短缺国家均高度重视天然气水合物的调查研究、开发和利用研究。 1 国内外天然气水合物勘探现状 1.1国外天然气水合物勘探历史及现状 天然产出的水合物矿藏首次在1965年发现于俄罗斯西西伯利亚永久冻土带麦索亚哈油气田。1972—1974年,美国、加拿大也在阿拉斯加、马更些三角洲冻土带的油气田区发现了大规模的水合物矿藏。同期,美国科学家在布莱克海岭所进行的地震探测中发现了“拟海底反射层(BSR)”。1979年,国际深海钻探计划(DSDP)第66、67航次在中美洲海槽危地马拉的钻孔岩芯中首次发现了海底水合物。此后,水合物的研究便成为DSDP和后续的大洋钻探计划(ODP)的一项重要任务,并相继在布莱克海岭、墨西哥湾、秘鲁—智利海沟、日本海东北部奥尻脊、南海海槽、北美洲西部近海—喀斯喀迪亚陆缘等地发现了BSR或水合物。德国在20世纪80年代中后期以联邦地学与资源研究中心、海洋地学研究中心为首的一些单位,结合大陆边缘等研究项目,开展了水合物的地震地球物理、气体地球化学调查。在各国科学家的努力下,海底水合物物化探异常或矿点的发现与日俱增,迄今已达80处。从1995年开始,日本、印度、美国、德国先后投巨资,实施了大规模的研究发展计划,韩国、俄国、加拿大、法国、英国、挪威、比利时、澳大利亚等国也正在制订计划或积极调查中。 1.2国内天然气水合物勘探历史及现状 与国外的发展历程相似, 中国天然气水合物也起始于实验室研究, 然后再扩展到资源调查领域。中国在1999年正式实施试验性调查前还经历了一段短暂的预研究阶段, 中国大洋矿产资源研究开发协会于1995年设立了“西太平洋气体水合物找矿前景与方法的调研”课题, 这是中国天然气水合物资源领域的第一个调研课题, 中国地质科学院矿产资源研究所等单位就天然气水合物在世界各大洋的分布特征及找矿方法进行了分析和总结, 并对西太平洋的找矿远景进行了初步评价。随后原地质矿产部于1997年设立了“中国海域天然气水合物勘测研究调研”课题, 国家863计划820主题也于1998年设立了“海底气体水合物资源勘查的关键技术”课题, 中国地质科学院矿产资源研究所、广州海洋地质调查局、中国科学院地质与地球物理研究所等单位对中国近海天然气水合物的成矿条件、调查方法、远景预测等方面进行了前期预研究, 为中国开展天然气水合物调查做好了资料和技术准备。 2 识别天然气水合物的标志特征 2.1地球物理标志 2.1.1 海底模拟反射层( BSR )来自水合物稳定带底面的反射也大致与海底平行,通常称为

国内天然气水合物相平衡研究进展

国内天然气水合物相平衡研究进展 摘要:分析了目前国内天然气水合物相平衡领域的五大主要研究热点,认为含醇类和电解质体系中天然气水合物的相平衡是研究中最活跃的领域,而多孔介质中天然气水合物的相平衡研究是未来天然气水合物相平衡研究的热点和难点问题。 关键词:天然气;水合物;相平衡;替代能源 Review of the Phase Equlibria on The Natura1 Gas Hydrate at home Abstract: According to the literature investigation at home,the five main researeh hot spots for the phase equllibria are analysed.The phase equilibria in aqueous solutions containing electrolytes and/or alcohol is the most active in all the research fields.While the Phase equilibria in natura1 Porous media is one of the essential hot spots and difficult problems during the phase equllibria researeh in future. Key words: natural gas;hydrate;phase equilibria ;alternative energy 1、前言 天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点,是21世纪继常规石油和天然气能源之后最具开发潜力的清洁能源,在未来能源结构中具有重要的战略地位。由于天然气水合物处于亚稳定状态,其相态转换的临界温度、压力和天然气水合物的组分直接制约着天然气水合物形成的最大深度和矿层厚度。天然气水合物的生成过程,实际上是一个天然气水合物—溶液—气体三相平衡变化的过程,任何能影响相平衡的因素都能影响天然气水合物的生成或分解过程[1]。因此,研究各种条件下天然气水合物—溶液—气体的三相平衡条件及其影响因素,可提供天然气水合物的生成或分解信息。因此,天然气水合物相平衡研究是天然气水合物勘探、开发和海洋环境保护研究中最基础和最重要的前沿问题。天然气水合物相平衡的研究主要是通过实验方法和数学预测手段确定天然气水合物的相平衡条件。随着透明耐高压材料的出现和相关实验测试技术的进步,科学家们对天然气水合物的相平衡条件的研究不断深入。 2、国内目前天然气水合物相平衡的主要五大研究热点 2.1 研究热点一:含醇类和电解质体系中天然气水合物的相平衡研究 长庆石油勘探局第三采油厂的严则龙(1997年)在长庆油田林5井采用井口注醇防止油管和地面管线天然气水合物堵塞,取得了良好的效果[2]。 中国石油大学(北京)梅东海和廖健等人:(1)(1997)在温度262.6~285.2K范围内分别测定了甲烷、二氧化碳和一种合成天然气在纯水、电解质水溶液以及甲醇水溶液中天然气水合物的平衡生成压力[3]。(2)(1998)对36个单一电解质水溶液体系及41个混合电解质水溶液体系中气体水合物的生成条件进行了预测。但对于二元以上的混合电解质水溶液体系,该模型的预测精度还有待改进[4];在温度260.8~281.5K和压力0.78~11.18MPa下,研究了含盐以及含盐和甲醇水溶液体系中的水合物平衡生成条件。认为无论对于单盐或多盐水溶液体系,甲醇对天然气水合物的生成均有显著的抑制作用;当溶液中甲醇增加至20%质量时,KCI 的抑制作用强于CaCl2[5];采用在Zuo一Golunesen一Guo水合物模型的基础上简化和改进的模型应用于含有盐和甲醇的水溶液体系中气体水合物生成条件的预测[6]。 华南理工大学的葛华才等人(2001)在模拟蓄冷空调的实验系统中研究了一元醇类添加

天然气水合物的利用

天然气水合物的利用 摘要:本文对天然气水合物进行了简要介绍,并对当前天然气水合物的开采利用现状以及研究进展作了简要分析,虽然到目前为止,天然气水合物的开采利用还有诸多瓶颈,我们相信在不久的将来这些难题会被一一克服的。 关键词:天然气天然气水合物利用开采 Abstract: This paper gives a brief introduction of natural gas hydrates and analyzes the current exploitation status and research progress of natural gas hydrates. So far, although there are many bottlenecks about the exploitation of the natural gas hydrates, we believe that in the near future these problems will be overcome one by one. Keywords: natural gas, natural gas hydrates, utilize, exploitation 1 天然气水合物概述 1.1 天然气水合物概念 天然气水合物(Natural Gas Hydrates,简称NGH)是在低温、高压条件下由天然气与水相互作用形成的类冰状可燃固态物质,又称可燃冰(图1-1),在自然界中存在的水合物,其天然气主要成分是甲烷(>90%),因此又称为甲烷水合

物(Methane Hydrates)[1]。 图1-1 实验室天然气水合物在燃烧 水合物是一种笼型结晶化合物,水分子(主体分子)在氢键作用下形成“笼”,气体分子(客体分子)充填在水分子结晶构架的空穴中,两者在低温和一定压力下通过范德华力稳定结合,分子式可表示为M·nH2O,M为“客”气体分子,一般为CH4(甲烷)、C2H6(乙烷)、C3H8(丙烷)及C4H10(丁烷)等同系物与N2(氮气)、CO2(二氧化碳)、H2S(硫化氢)等一种或几种组成[2,3],n为水合指数(水分子数)。按照水分子构成的不同多面体,目前已发现水合物主要有三种不同的结构类型:Ⅰ型、Ⅱ型和H型(图1-2)。对3种结构水合物进行相比较得出,Ⅱ型和H型水合物更稳定一些,但是在自然界发现的天然气水合物以Ⅰ型水合物(甲烷水合物)为主[4]。

天然气水合物调查和研究现状

天然气水合物调查和研究现状 摘要:天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,本文简介了天然气水合物和各国对其合物资源调查和研究现状。 1 什么是天然气水合物 天然气水合物又称固态甲烷,它是由天然气与水所组成,呈固体状态,其外貌极象冰雪或固体酒精,点火即可燃烧,因此有人称其为”可燃冰”、”气冰”、”固体瓦斯”。天然气水合物的结晶格架主要由水分子构成,在不同的低温高压条件下,水分子结晶形成不同类型多面体的笼形结构。其分子式为MnH2O加表示甲烷等气体,n为水分子数)。天然气水会物的结构类型有:I、11和H型。I型为立方晶体结构、Ⅱ型为菱型晶体结构、H型为六方晶体结构。Ⅰ型天然气水合物在自然界颁最广,而Ⅱ及H型水合物更为稳定。它是在低温高压条件下,由水与天然气(主要是甲烷气,每平方米的天然气水会物可释放出164立方米甲烷和立方米的水)结合形成一种外观似水的白色结晶固体,主要存在于陆地上的永久冻土带和海洋沉积物中。 2 国际上天然气水合物资源调查、研究现状 随着世界上石油、天然气资源的日渐耗尽,各国的科学家正在致力于寻找新的接替能源。天然气水合物被称为ZI世纪具有商业开发前景的战略资源,正受到各国科学家和各国政府的重视。 自60年代开始,俄、美、巴德、英、加等许多发达国家,甚至一些发展中国家对其也极为重视,开展了大量的工作。 俄罗斯自60年代开始,先后在白令海、鄂霍茨克海、千岛海沟、黑海、里海等开展了天然气水合物调查,并发现有工业意义的矿体。即使近期经济比较困难,仍坚持在巴伦支海和鄂霍茨克海等海域进行调查或研究工作。位于西西伯利亚东北部的Messoyakha天然气水合物矿田已成功生产了17年。 美国科学家早在1934年首次在输气管道中发现了天然气水合物,它堵塞了管道,影响了气体的输送而开始了对水合物结构及形成条件的研究。随后美、加在加拉斯加北坡、马更些三角洲冻土带相继发现了大规模的水合物矿藏。70年代初英国地调所科学家在美国东海岸大陆边缘所进行的地震探测中发现了”似海底反射层”(Bottom Similating,Reflector,英文称 BSR)。紧接着于1974年又在深海钻探岩芯中获取天然气水合物样品,并释放出大量甲烷,证实了”似海底反射”与天然气水含物有关。1979年美国借助深海钻探计划(DSDP)和大洋钻探

天然气水合物的研究与开发的论文

天然气水合物的研究与开发的论文 【摘要】人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 一、天然气水合物是人类未来能源的希望 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3he,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。氢能是清洁、高效的理想能源,燃烧耐仅产生水(h2o),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。天然气水合物的主要成分是甲烷(c4h)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。 天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。天然气水合物由水分子和燃气分子构戚,外层是水分子格架,核心是燃气分子(图1)。燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(c4h),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。据理论计算,1m3的天然气水合物可释放出164m3的甲烷气和m3的水。这种固体水合物只能存在于一定的温度和压力条件下,一般它要求温度低于0~10℃,压力高于10mpa,一旦温度升高或压力降低,甲烷气则会逸出,固体水合物便趋于崩解。 天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻±中。埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为×108亿m3,约合11万亿t(11×1012t)。数冀如此巨大的矿物能源是人类未来动力的希望。 二、天然气冰合物的研究现状 1.分布与环境效应 世界上绝大部分的天然气水合物分布在海洋里,储存在深水的海底沉积物中,只有极其少数的天然气水合物是分布在常年冰冻的陆地上。世界海洋里天然气水合物的资源量是陆地上的100倍以上。到目前为止,世界上已发现的海底天然气水合物主要分布区有大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、日本海、四国海槽、日本南海海槽、冲绳海槽、南

天然气水合物研究历程及现状样本

天然气水合物研究历程及现状 1.世界天然气水合物研究历程回顾 从1810 年英国Davy在实验室首次发现气水合物和1888 年Villard人工合成天然气水合物后, 人类就再没有停止过对气水合物的研究和探索。在这将近2 的时间内, 全世界对天然气水合物的研究大致经历了 3 个阶段, 如表1-1[2]所示。 第一阶段是从1810 年到20 世纪30 年代初。( 18 , Davy 合成氯气水合物并于次年发表文章正式提出水合物一词。) 在这120 年中, 对气水合物的研究仅停留在实验室, 且争议颇多。 第二阶段是大致可看作是自1934年起始的。当年美国Hammerschmidt发表文章, 提出天然气输气管道堵塞与水合物有关, 从负面加深了对气水合物及其性质的研究。在这个阶段, 研究主题是工业条件下水合物的预报和清除、水合物生成阻化剂的研究和应用。 第三阶段是从上世纪60年代至今, 全球天然气水合物进入大范围勘探普查开发的格局。上世纪60 年代特罗费姆克等发现了天然气能够以固态形式存在于地壳中。特罗费姆克等的研究工作为世界上第一座天然气水合物矿田——麦索雅哈气田的发现、勘探与开发前期的准备工作提供了重要的理论依据, 从而大大拓宽了天然气地质学的研究领域。美国学者在上世纪70年代也开始重视气水合物研究, 并于1972年在阿拉斯加获得世界上首次确认的冰胶结永冻层中的气水合物实物。天然气水合物成藏理论预测的成功、测得成藏理论区气水合物地球物理, 地球化学异常, 以及经过钻探取得水合物实样, 这一系列的成果被认为是上世纪能源问题的重大发现。能够说, 从上世纪60 年代至今, 全球气水合物研究跨入了一个崭新的阶段——第三个阶段(把气水合物作为一种能源进行全面研究和实践开发的阶段) , 世界各地科学家对气水合物的类型及物化性质、自然赋存和成藏条件、资源评价、勘探开发手段以及气水合物与全球变化和海洋

天然气水合物的研究进展

天然气水合物的研究进展 天然气水合物的研究进展 摘要:天然气水合物是一种继煤,石油与天然气等能源之后的新型能源物质,它被誉为21世纪最清洁的能源物质。本文章介绍了天然气水合物的概念以及形成条件,追溯了天然气水合物的发展历程。重点分析了国内外的研究情况,这为指导我国天然气水合物事业奠定了坚实的基础。天然气水合物的研究对于人类有着非比寻常的意义,还存在着一些难关有待于我们去探索。 关键词:天然气水合物进展能源物质意义探索 一、引言 1.1天然气水合物的概念 天然气水合物就是我们熟称的“可燃冰”或者固体“瓦斯”是因为它的外观像冰一样而且遇火燃烧。天然气水合物是天然气与水在一定的高亚低温条件下形成的类似冰状的结晶物质,其主要是分布在深海沉积物和陆域的永久冻土,岛屿的斜坡地带等地域。天然气水合物的研究起源于20世纪的一次科学考察中发现的矿产资源,虽然其成分与天然气相似但是较之更为纯净,开采时只需要将固体的“天然气水合物”升温减压就可以释放出大量的甲烷气体。天然气水合物作为一种新型的高效能源当之无愧的被誉为“21世纪最具有商业开发前景的战略资源”。 1.2天然气水合物的形成条件及优点 天然气水合物的分子结构式为CH4?8H2O,其分子结构就像一个一个由若干水分子组成的笼子。形成可燃冰有三个基本条件:温度,压力和原材料。首先需要低温的环境,天然气水合物在在0―10℃时生成,在超过20℃的温度时便会分解。其次需要高压的条件:在0℃时只需要30个大气压就可以满足可燃冰的生成然而在海洋深处,30个大气压是很容易满足的并且气压越大水合物越不容易分解。最后充足的气源是必不可少的。在海底深处经常会有很多有机物的沉淀,这些有机物质中含有丰富的碳,经过生物转化后可以产生充足的气源。

天然气水合物的识别标志

1.天然气水合物识别标志 天然气水合物可以通过海底沉积物取样、钻探取样和深潜考察等方式直接识别,也可以通过似海底反射层(BSR)、速度-振幅异常结构、地球化学异常、多波速测深以及海底电视摄像等方式间接识别。下面介绍一些间接识别标志。 1、地震标志 海洋天然气水合物存在的主要地震标志有:似海底反射层(BSR)、振幅变形(空白反射)、速度倒置、速度-振幅异常结构(VAMP)。大规模的天然气水合物聚集可以通过高电阻率(大于100欧·米)声波速度、低体积密度等参数进行直接判读。 似海底反射层BSR是地震反射剖面上的一个平行或基本平行于海底、可切过一切层面或断层面的声波反射界面。天然气水合物矿层之下,还常常圈闭有大量的游离甲烷气体(游离天然气),从而导致在地震反射剖面上产生BSR。现已证实,BSR代表的是天然气水合物矿层的底界面或基底,其上为固态的天然气水合物矿层,声波速率高,其下为游离甲烷气体或仅仅为孔隙水充填的沉积物,声波速率低,因而在地震反射剖面上形成强的负阻抗反射界面。因此,BSR是由于低渗透率的天然气水合物矿层与其下大量游离天然气及饱和水沉积物之间、在声阻抗(或声波传播速度)上存在较大差异而形成的。由于天然气水合物矿层的底界面主要受所在海域的地温梯度控制,往往位于海底以下一定的深度,因而BSR基本平行于海底,所以被称为“似海底反射层”。BSR除了被用来识别天然气水合物的存在和编制天然气水合物分布图以外,还被用来判明天然气水合物矿层的顶底界面及其产状,计算天然气水合物矿层的深度、厚度和体积。 然而,并不是所有的天然气水合物都存在BSR。在平缓的海底,即使有天然气水合物存在,也不易识别出BSR。BSR常常出现在斜坡或地形起伏的海域。另外,也并不是所有的BSR都对应有天然气水合物的存在。在极少数情况下,其它因素也可能导致BSR的形成。还应注意的是,尽管绝大部分天然气水合物矿层都位于BSR之上,但是并不是所有的天然气水合物矿层都位于BSR之上。这已经被深海钻探所证明。因此,BSR不能被作为天然气水合物存在的唯一标志,应结合其它勘查方法综合判断。 近几年来,分析和研究地震的速度结构,已成为该学科领域的前沿。天然气水合物层是高速层,其下的饱气层或饱水层是低速层。在速度曲线上,BSR界面处的速度会出现突然降低,表现出明显的速度异常结构。此外,分析地震的振幅结构也可识别天然气水合物。相对而言,天然气水合物层是刚性层,其下的饱气层或饱水层是塑性层。因此,在振幅曲线上,BSR界面处的振幅会出现突然减小,表现出明显的振幅异常结构。这种识别标志对海底平缓的海域来说,尤其显得重要。 2、地球化学标志 浅层沉积物和底层海水的甲烷浓度异常高,浅层沉积物孔隙水的氯Cl含量(或矿化度)和氧同位素δ18O 异常高,出现富含重氧的菱铁矿等,均可作为识别天然气水合物存在的地球化学标志。 3、海底地形地貌标志 在海洋环境中,天然气水合物富集区烃类气体的渗逸,可以在海底形成特殊的环境和特殊的微地形地貌。天然气水合物存在的地貌标志主要有:泄气窗、甲烷气苗、泥火山、麻点状地形、碳酸盐壳、化学合成生物群等。最近几年,德国基尔大学Geomar研究所,通过海底观测,在美国俄勒冈州西部大陆边缘Cascadia 天然气水合物海台,就发现了许多不连续分布、大小在5cm2左右的天然气水合物泄气窗。在这种泄气窗中,甲烷气苗一股一股地渗逸出来,渗气速度为每分钟达5公升。在这种渗逸气流的周围有微生物、蛤和碳酸盐壳出现。 4、海底“冷泉”生物群标志 深海“黑暗食物链”并不以热液为限。在大陆坡、深海区分布着天然气水合物。一旦海底升温或减压,它就会释放出大量甲烷,可以在海水中形成甲烷柱,被科学家称为“冷泉”。在冷泉附近可以形成特殊的生物群落。冷泉是海底天然气水合物的产物之一。在冷泉附近往往发育着依赖这些流体生存的冷泉生物群,又称为“碳氢化合物生物群落”。它是一种独特的黑暗生物群,最常见的有管状蠕虫、双壳类、腹足类和微生物菌等。海底冷泉及其伴生的黑暗生物群,是确认天然气水合物存在的有力证据。 天然气水合物释放区的生物群,也是类似于热液生物群的独立生态系统。其食物链低层生物也是一种管状

天然气水合物

化学选修3《物质结构与性质》P85选题2 天然气水合物 (一种潜在的能源) 天然气水合物——可燃冰 一、可燃冰相关概念 可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。 因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。 可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰 陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。 天然气水合物在全球的分布图 在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因

而其是一种重要的潜在未来资源。 笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。 天然气分子藏在水分子中 水分子笼是多种多样的 二、可燃冰的性质 可燃冰的物理性质: (1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。 (2)它可存在于零下,又可存在于零上温度环境。 (3)从所取得的岩心样品来看,气水合物可以以多种方式存在: ①占据大的岩石粒间孔隙; ②以球粒状散布于细粒岩石中; ③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。 可燃冰的化学性质: 1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因: (1)气水合物与冰、含气水合物层与冰层之间有明显的相似性: ①相同的组合状态的变化——流体转化为固体; ②均属放热过程,并产生很大的热效应——0℃融冰时需用的热量,0~20℃分解天然气 水合物时每克水需要~的热量; ③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%; ④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物; ⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层; ⑥含冰层与含水合物层的电导率都小于含水层; ⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 (2)天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子) 则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 2、经发现的天然气水合物结构有三种: 即结构 I 型、结构 II 型和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S 等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为

天然气水合物合成实验

2009年第4期 总第170期 低 温 工 程 CRY OGEN I CS No 14 2009 Sum No 1170 天然气水合物合成实验 祁影霞 杨 光 汤成伟 张 华 (上海理工大学能源与动力学院 上海 200093) 摘 要:为提高天然气水合物的生产效率及储气密度,在专门设计的水合物合成实验装置上,进 行了纯甲烷水合物的合成实验。实验结果表明:对于纯净甲烷水合物,压力越高,合成速率越大;但当压力大于5MPa 时,压力的提高对生成速率的影响不大。水合物合成前抽真空时间越长,生成的水合物吸收的气体量越大,表明抽真空可以排出水中溶解的气体,提高水合物的储气密度。 关键词:水合物 甲烷 合成速率中图分类号:T B663、TK12 文献标识码:A 文章编号:100026516(2009)0420011204 收稿日期:2009203227;修订日期:2009206230 基金项目:上海市浦江人才计划(08PJ1408300)、上海市重点学科建设项目(S30503)资助。作者简介:祁影霞,女,45岁,博士、讲师。 Forma ti on exper im en t of na tura l ga s hydra te Q i Yingxia Yang Guang Tang Cheng wei Zhang Hua (School of Energy and Power Engineering,University of Shanghai for Science and Technol ogy,Shanghai 200093,China ) Abstract :I n order t o increase the p r oducti on efficiency and st ored gas density of natural gas hydrate,pure methane for mati on hydrate tests were carried out on a s pecial designed hydrate f or mati on apparatus .The experi m ent results indicate that,f or pure methane hydrates,the for mati on rate increases with p ressure,but the increase of p ressure has no obvi ous effects on the f or mati on rate when the p ressure is higher than 5MPa .The l onger vacuu m ing ti m e before the f or mati on of hydrates results in the larger a mount of gas ab 2s orbed in for med hydrates,which indicates that vacuu m ing can make the gases diss olved in the water release off and increase the st ored gas density of the hydrates . Key words :hydrates;methane;f or mati on rate 1 引 言 天然气水合物是由天然气与水在高压低温条件下结晶形成的固态笼状化合物,主要存在于海底或陆 地冻土带内[1] 。据估算,世界上天然气水合物所含有的有机碳总量相当于全球已知煤、石油和天然气的两倍。国际科学界预测,它是石油、天然气之后的最佳的替代能源。 纯净的天然气水合物呈白色,形似冰雪,可以像 固体酒精一样直接被点燃,因此,又被通俗、形象地称 为“可燃冰”。1m 3 的天然气水合物可以释放出164m 3 的天然气,且可以在常压和-15℃的条件下稳定储存。因此,天然气水合物也是天然气储运的安全有 效的方式[2] 。 为提高水合物的生产效率及储气密度,采用了多种方法促进水合物的快速生成。目前应用比较广泛的是应用磁力搅拌装置,通过可无级调速的磁力搅拌子,促进水和气体的接触来加快水合物的生长速度,

天然气水合物翻译

水合物的形成及其对天然气管道内腐蚀率影响 Hydrate Formation and its Influence on Natural Gas Pipeline Internal Corrosion Rate 作者:Emmanuel O. Obanijesu, Vishnu Pareek, and Moses O. Tade 起止页码:1-16 出版日期(期刊号):SPE128544 出版单位:Copyright 2010, Society of Petroleum Engineers 本文介绍SPE 的石油和天然气印度会议和2010年1月20日至22日在印度孟买举行展览的准备 SPE 程序委员会依据下列资料包括作者(S )提交一个摘要的审查而选定本文做介绍。本文的内容还没有被石油工程师协会审查,并须经由作者(S )校正。材料不需要反映石油工程师协会的任何位置,其管理人员或成员。没有石油工程师协会的书面同意而电子复制,分发或储存本文的任何部分是被禁止的。在印刷复制限制为不超过300字的摘要是允许的;插图不得复制。摘要必须包含突出SPE 的版权确认。 摘要 天然气管道沿线水合物的形成对石油和天然气工业生存已确认会造成严重威胁。如果不迅速取出天然气管道水合物则可能造成堵塞流线导致管道系统崩溃。这个问题对这行业造成每年数十亿美元的损失。所有有效控制水合物形成的文献的重点是堵塞流线的能力,几乎没有认可的方法解决管道内部腐蚀,对于这行业是一个更大的问题,因此这个问题的研究是重要的。这项工作的重点旨在新的腐蚀领域寻找新理论的技术。 在这项研究中,晶格被认为是由二氧化碳(2C O ),甲烷(4C H ),硫化氢(2H S )和水分子(2H O )组成。这些气体有能力轻松地进行管道内部表面的化学和电化学 反应而是晶格到位。这项反应将很容易引起管道腐蚀。进一步的研究证实,即使成功分离水合物,引起腐蚀的过程可能会继续影响管道内的连续流,从而导致材料和管道

南海神狐海域含水合物地层测井响应特征

第24卷 第3期2010年6月 现 代 地 质 G E O SC I ENCE Vol 24 No 3 J un 2010 南海神狐海域含水合物地层测井响应特征 梁 劲1,2 ,王明君3 ,陆敬安2 ,王宏斌2 ,梁金强2 ,苏丕波 4 (1 中国地质大学地球物理与空间信息学院,湖北武汉 430074;2 广州海洋地质调查局,广东广州 510760; 3 中国地质科学院矿产资源研究所,北京 100037; 4 厦门大学海洋与环境学院,福建厦门 361005) 收稿日期: 2010 02 26;改回日期: 2010 05 04;责任编辑:潘令枝。 基金项目:中国科学院边缘海地质重点实验室项目(M SGL08-03);国家重点基础研究发展计划(2009CB219508)。 作者简介:梁 劲,男,高级工程师,1971年出生,应用地球物理专业,主要从事天然气水合物调查与研究工作。 Ema i :l liangji n1999@163 co m 。 摘要:分析了南海北部神狐海域含天然气水合物沉积层声波速度及密度的分布特征和变化规律,并通过对比DSDP 84航次570号钻孔含天然气水合物层段测井资料,总结出神狐海域含水合物地层的测井响应规律特征:神狐海域含水合物地层存在着明显的高声波速度、低密度特征,地层密度随声波速度的变化并不是单一的反比例关系,总体趋势上随声波速度的升高而降低;含水合物地层高声波速度值主要集中在197~220m 段,饱和度值在15%~47%之间,低密度值集中在200~212m 段,分布在水合物饱和度大于20%的地层内;含水合物地层声波速度平均值为2076m /s ,其上覆和下伏地层的声波速度平均值为1903m /s 和1892m /s ,所对应的地层密度值分别为1 89g /cm 3、1 98g /cm 3和2 03g /cm 3,声波速度受孔隙度和饱和度的共同影响,地层密度受水合物饱和度影响较大;从水合物上覆地层到声波速度最高值段,声波速度值增加了9 1%,相对应的地层密度值减少了4 55%,从水合物声波速度最高值段到下伏地层,声波速度值减少了8 86%,相对应的地层密度值增加了7 41%。这些测井响应特征,可用来识别地层中天然气水合物,并可以用来计算水合物的饱和度,同时结合其他地质和地球物理资料,确定水合物层的厚度、分布范围,计算天然气水合物的资源量。关键词:水合物;测井响应;速度;密度;孔隙度;饱和度中图分类号: P631 8 文献标志码:A 文章编号:1000-8527(2010)03-0506-09 Logging R esponse Characteristics of Gas Hydrate Form ation i n Shenhu Area of the South C hi na Sea LIANG Ji n 1,2 ,WANG M i n g j u n 3 ,LU Ji n g an 2 ,WANG H ong bin 2 ,LIANG Ji n q iang 2 ,SU Pi bo 4 (1 C olle g e of Geophy sics and Space Informa tion,Ch i na Un i versit y of G eoscie n ces ,W uhan,H ubei 430074,Ch i na; 2 Guangzhou M ari ne G eolog ic a l Surv e y,Guangzh ou,G uangdong 510760,Ch i na; 3 Instit u te of M inera lR esou rces ,Ch i nese A c ade my of G eolo g ical S cie nces,B eiji ng 100037,Ch i na; 4 Colle g e o f Oceano g raphy and E nvironmen t a lS cience ,X i am e n Un i versit y,X i am en,Fu ji an 361005,Ch i na ) Abst ract :W ith ana l y sis of the d i s tributi n g feature and the c hang i n g la w o f the son i c velocity and density o f sed i m ents w ith gas hydrate i n Shenhu A rea of t h e South Ch i n a Sea ,by co mpari n g w ith logg i n g data o f gas hydrate for m ati o n at Site 570o fDSDP 84,the logg i n g response characteristics o f gas hydrate for m ati o n i n Shenhu A rea w ere conducted .The resu lts sho w tha:t (1)Sedi m en ts w ith gas hydrate in Shenhu A rea have t h e c lear features t h at t h e son ic velocity is h i g h and density is lo w ,and the density i s generall y decreased w ith the i n creasing of t h e son ic velocity .(2)The h i g h son ic velocity secti o n i n sed i m ents w ith gas hydrate is i n the depth of 197to 220m,and the lo w density section i s i n t h e depth o f 200to 212m;the value of saturation is i n the range of 15%to 47%.(3)The average son ic velocities of sed i m ents w it h gas hydrates and the overly i n g strata and un derlying strata are 2,076m /s ,1,903m /s and 1,892m /s ,respecti v ely ,and the co rresponding densities are 1 89g /c m 3,1 98g /c m 3and 2 03g /c m 3 ,respecti v e l y ;son ic velocity is effected by porosity and saturati o n ,and density is g reatl y i n fl u enced by saturation ;(4)The son ic ve l o c ity increases by 9 1%fro m the overly i n g strata of hydrates to the m ax i m um va l u e secti o n,and t h e co rresponding density decreased by 4 55%;the son ic

天然气水化合物前沿研究(文献综述)

单位代码 学号1224150173 分类号 密级 论文 文献综述 2013 年 12月 22日

天然气水化合物前沿研究 摘要:天然气水合物又称“可燃冰”是公认的 21 世纪替代能源和清洁能源,开发利用潜力巨大。越来越多的科学家相信,未来洁净能源的最大一部分也许就藏在海底或高纬度永冻区。由于它的开发可能带来许多不可预测的风险,所以前期调查工作更为重要。可燃冰开采过程中存在难点问题,减压法和综合法是现有水合物开采技术中经济前景比较好的开采技术。 关键词天然气水合物;现状;趋势;问题 一、概述 现在地球能源危机成为大家遇到巨大困难之一,能源的争夺成为引发国家之间战争的重要因素。于是可燃冰作为一类非常规天然气资源,它的开采利用就显得十分重要。天然气水合物的定义:小分子气体(如甲烷至丁烷,氮,氧,二氧化碳,硫化氢等)和水在适当温度和压力下接触后形成的以甲烷为主(>90%)的笼状水合物,又叫“可燃冰”或“甲烷水合物”。[1-2-3]据估算全球的天然气水合物的储量约为2×1016m3成为剩余天然气储量的136倍。世界上天然气水合物所含的有机碳的总量,相当于全球已知煤、石油和天然气总量的2倍。而且分布状况很均匀,几乎遍布全球的各大洲。其主要成分是甲烷,燃烧后几乎没有污染,是一种绿色的新型清洁能源。根据我国海洋地质调查部门的调查,发现南海北部具有良好的可燃冰资源前景,并将南海可燃冰富集规律与开采基础研究纳入了 973计划,标志着中国对替代能源可燃冰重大基础研究已全面展开。目前,对可燃冰的研究发展已经引起了各国政府和能源专家的广泛关注。 二、天然气水化合物 天然气水合物,主要成分是甲烷与水分子,是由天然气与水在高压低温条件下结晶形成的具有笼状结构的似冰状结晶化合物,气体分子多以甲烷为主 ( >90%),所以也被称为甲烷水合物 (Methane Hydrates)。天然气水合物与天然气的成分相近似,且更为、纯净。简单地说,天然气水合物就是天然气(甲烷类,是细菌分解有机物和原油热解时所产生的)被包进水分子中,在海底低温和很高压力下形成的一种冰状的固态晶体。纯净的天然气水合物呈白色,形似冰雪,可以像固体酒精一样直接被点燃,因此,又被形象地称为“可燃冰”。具体地来

相关文档