文档库 最新最全的文档下载
当前位置:文档库 › (完整版)复变函数积分方法总结

(完整版)复变函数积分方法总结

(完整版)复变函数积分方法总结
(完整版)复变函数积分方法总结

复变函数积分方法总结

[键入文档副标题]

acer

[选取日期]

复变函数积分方法总结

数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。 arg z =θ? θ?称为主值 -π<θ?≤π ,Arg=argz+2k π 。利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。z=re i θ。

1.定义法求积分:

定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…

n)上任取一点ξk 并作和式S n =∑f(ξk )n k?1(z k -z k-1)= ∑f(ξk )n k?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {?S k }(k=1,2…,n),当 δ→0

时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:

∫f(z)dz c

=lim δ 0

∑f(ξk )n

k?1?z k

设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c

(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c

=0.

∵f(z)=1 S n =∑f(ξk)n k?1(z k -z k-1)=b-a ∴lim n 0

Sn =b-a,即1)∫dz c

=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则

∑1= ∑Z n k?1(k ?1)(z k -z k-1) 有可设ξk =z k ,则

∑2= ∑Z n k?1(k ?1)(z k -z k-1)

因为S n 的极限存在,且应与∑1及∑2极限相等。所以

S n = (∑1+∑2)= ∑k?1n z k (z k

2?z k?12)=b 2-a 2

∴ ∫2zdz c

=b 2-a 2

1.2 定义衍生1:参数法:

f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f(z)dz c 得: ∫f(z)dz c = ∫udx c - vdy + i ∫vdx c + udy 再设z(t)=x(t)+iy(t) (α≤t ≤β)

∫f(z)dz c =∫f(z(t))z(t)?dt β

α

参数方程书写:z=z 0+(z 1-z 0)t (0≤t ≤1);z=z 0+re i θ,(0≤θ≤2π) 例题1: ∫z 2

dz 3+i 0

积分路线是原点到3+i 的直线段

解:参数方程 z=(3+i )t ∫z 2

dz 3+i 0

=∫[(3+i)t]2

[(3+i)t]′dt 1

=(3+i)3∫t 2

dt 1

=6+26

3

i

例题2: 沿曲线y=x 2计算∫(x 2+iy )dz 1+i

解: 参数方程 {x =t

y =t 2 或z=t+it 2 (0≤t ≤1)

∫(x 2

+iy )dz 1+i 0

=∫(t 2+it 2

)(1+2it)dt 1

=(1+i)[∫(t 2dt )dt 1

0 + 2i ∫t 3dt 1

] =-16+5

6

i

1.3定义衍生2 重要积分结果: z=z 0+ re i θ ,(0≤θ≤2π) 由参数法可得:

∮dz

(z?z 0)n+1c =∫

ire iθ

e i (n+1)θr n+12π0d θ=i r n ∫

e ?inθ1+i 0

d θ ∮dz (z?z 0)

c

={

2πi n =0

0 n ≠0

例题1:∮dz z?2|z |=1 例题2:∮dz

z?1

|z |=1

解: =0 解 =2πi

2.柯西积分定理法:

2.1

柯西-古萨特定理:若f(z)dz 在单连通区域B 内解析,则

对B 内的任意一条封闭曲线有:

∮f(z)dz c

=0 2.2定理2:当f 为单连通B 内的解析函数是积分与路线无关,仅

由积分路线的起点z 0与终点z 1来确定。

2.3闭路复合定理:设函数f(z)在单连通区域D 内解析,C 与

C 1是

D 内两条正向简单闭曲线,C 1在C 的内部,且以复合闭路Γ=C+C 1

所围成的多连通区域G 全含于D 则有:

∮f(z)dz Γ=∮f(z)dz c +∮f(z)dz c

1

=0 即∮f(z)dz c =∮f(z)dz c

1

推论: ∮

f(z)dz c

=∑∮f(z)dz c

k

n k=1 例题:∮

2z?1z ?z

dz c

C 为包含0和1的正向简单曲线。

解: 被积函数奇点z=0和z=1.在C 内互不相交,互不包含的正向曲线c 1和c 2。

∮2z?1z ?z

dz c

=∮2z?1z (1?z)dz c1

+∮2z?1z (1?z)

dz c2

=∮1z?1+1

z

dz c1+∮1z?1

+1z

dz c2

=∮1z?1

dz c1

+∮1z

dz c1+∮1z?1

dz c2+∮1z

dz c2

=0+2πi+2πi+0

=4πi

2.4原函数法(牛顿-莱布尼茨公式):

定理2.2可知,解析函数在单连通域B 内沿简单曲线C 的积分只与起点z 0与终点z 1有关,即

∫f(ξ)c d ξ = ∫f(ξ)z1

z

d ξ 这里的z 1和z 0积分的上下限。当下限z 0固定,让上限z 1在B 内变动,则积分∫f(ξ)z1

z

d ξ在B

内确定

了一个单值函数F(z),即F(z)= ∫f(ξ)z1

z

d ξ 所以有 若f(z)在单连通区域B 内解析,则函数F(z)必为B 内的解析函数,且F(z) ?=f(z).根据定理2.2和2.4可得∫f(z)z 1z

dz = F(z 1) - F(z 0). 例题:求∫zcosz 10

dz 解: 函数zcosz 在全平面内解析

∴∫zcosz 1

0dz =zsinz |0i -∫sinz 1

dz = isin i+cosz |0i =isin i+cos i-1 =i

e ?1?12i

+

e ?1+12i

-1=e -1-1

此方法计算复变函数的积分和计算微积分学中类似的方法,但是要注意复变适合此方法的条件。 2.5柯西积分公式法:

设B 为以单连通区域,z 0位B 中一点,如f(z)在B 内解析,则函数f(z)z?z 0

在z 0不解析,所以在B 内沿围绕z 0的闭曲线C 的积分∫f(z)z?z 0

dz c

一般

不为零。 取z 0位中心,以δ>0为半径的正向圆周|z ?z 0|=δ位积分曲线c δ,由于f(z)的连续性,所以

∫f(z)z?z 0

dz c

=∫f(z)

z?z 0

dz c

δ=2πif(z 0)

2.5.1定理:若f(z)在区域D 内解析,C 为D 内任何一条正向简单

闭曲线,它的内部完全含于D ,z 0为C 内的任一点,有:

f(z 0)=1

2πi

∮f(z)

z?z 0

dz

例题:1)∮|z |=2

2)∮z (9?z 2)(z+i)

dz |z |=2

解:=2π isin z|z=0=0 解: =∮z

9?z 2

z?(?i)

dz |z |=2

=2πi z

9?z2|z=-i=π

5

2.6解析函数的高阶导数:

解析函数的导数仍是解析函数,它的n阶导数为

f(n)(z0)=n!

2πi ∮f(z)

(z?z0)n+1

dz(n=1,2…)

其中C为f(z)的解析区域D内围绕z0的任一条正向简单闭曲线,而它的内部全含于D.

例题:∮e z

z5dz

c

C:|Z|=1

解:由高阶导数的柯西积分公式:

原式=2πi?1

4!(e z)(4)|z=π

2

=πi

12

3.解析函数与调和函数:

定义:(1)调和函数:如果二元实函数φ(x,y)在区域D内具有二阶连续函数,且满足拉普拉斯方程:

?2φ?x2+?2φ

?y2

=0,则称φ(x,y)为区域D内的调和函数。若f(z)=u+iv为解析

函数,则u和v都是调和函数,反之不一定正确

(2)共轭调和函数:u(x,y)为区域内给定的调和函数,我们把是u+iv在D内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数。若v是u的共轭调和函数,则-u是v的共轭调和函数

关系:任何在区域D内解析的函数,它的实部和虚部都是D内的调和函数;且虚部为实部的共轭调和函数。

3.1求解方法:

(1)偏积分法:若已知实部u=u(x,y),利用C-R方程先求得v的

偏导数

?u

?x

=

?v ?y

,两边对y 积分得v=∫?u ?x dy +g(x).再由?u ?y =??v

?x

得??x ∫?v

?x dy +g(x)

?=- ?u ?y 从而g(x)=∫[??u ?y ???x ∫?u ?x

dy]dx + C v=∫

?u ?x

dy + ∫[?

?u ?y

?

??x

∫?u

?x dy]dx + C 同理可由v(x,y)求u(x,y).

3.2不定积分法:

因为f(z)

?=U x +i V x = U x -iU y = V y +iV X 所以f(z)=∫U (z )dz +c f(z)=∫V (z )dz +c

3.3线积分法:

若已知实部u=u(x,y),利用

C-R 方程可得的

dv=?v

?x dx+

?v ?y

dy=-?u

?y

dx+∫?u

?x

dy 故虚部为

v=∫??u

?y

dx +(x ,y )(x

0,y 0,

?u ?x

dy +C

该积分与路径无关,可自选路径,同理已知v(x,y)也可求u(x,y). 例题:设u=x 2-y 2+xy 为调和函数,试求其共轭函数v(x,y)级解析函数f(z)=u(x,y)+iv(x,y) 解:利用C-R 条件

?u ?x

=2x+y

?u ?y

=-2y+x

?2u ?x 2

=2

?2u ?y 2

=-2

所以满足拉普拉斯方程,有

?v ?x

=?

?u ?y

=2y-x

?v ?y

=

?u ?x

=2x+y

所以v=∫(2y ?x)dx +φ(y)=2xy- x 22

+φ(y)

?v ?y

=2x+φ(y)

?=2x+y φ(y)?=y φ(y)=y 2

2

+c v(x,y)=2xy- x 22

+y 2

2

+c

f(z)=u(x,y)+iv(x,y)=1

2

(2-i)z 2+iC

4.留数求积分:

留数定义:设z 0为函数f(z)的一个孤立奇点,即f(z)在去心邻域、 0<|z ?z 0|<δ ,我们把f(z)在z 0处的洛朗展开式中负一次幂项系数c -1称为f(z)在z 0处的留数,记为Res[f(z),z 0]即Res[f(z),z 0]=c -1 或者Res[f(z),z 0]=

1

2πi

∮f (z )dz c C 为0<|z ?z 0|<δ 4.1留数定理:设函数f(z)在区域D 内除有限个孤立奇点z 1z 2…z n,

其中z k 表示函数f (z )的孤立奇点

4.2孤立奇点:

定义:如果函数f (z )在z 0不解析,但在z 0某个去心邻域0<|z ?z 0|<δ内解析,则称z 0为f (z )的孤立奇点。 例如1

z 、e 1

z

都是以z=0为孤立

奇点函数

1

(z+1)(z+2)

以z=-1、z=2为孤立奇点..........

在孤立奇点z=z 0的去心邻域内,函数f (z )可展开为洛朗级数 f (z )=∑c n ∞n=?∞(z

?z 0)n

洛朗级数中负幂项是否存在,若存在是有限项还是无限项,这对f(z)在z 0处的奇异性将起着决定性的作用。讨论孤立奇点z 0的类型:

4.2.1可去奇点:若函数f(z)在孤立奇点z 0的去心邻域内的洛朗

展开式中不含负幂项,即对一切n<0有c n =0,则称z 0是f(z)的可去奇点

因为没有负幂项,即c -n =0,(n=1,2.....)故c -1=0。遇到函数f(z)的

奇点类型是可去奇点,一般对函数f(z)求积分一般为零

判断可去奇点方法:⑴函数f(z)在某个去心邻域0<|z?z0|<δ内解析,则z0是f(z)的可去奇点的充要条件是存在极限lim

z→z0

f(z)=c0,其中c0是一复常数;⑵在⑴的假设下,z0是f(z)可去奇点的充要条件是:存在r≤δ,使得f(z)在0<|z?z0|

4.2.2极点:若函数f(z)在孤立奇点z0的去心邻域内洛朗级数展开式中只有有限个负幂项,即有正整数m,c-m≠0,而当n<-m时c-n=0 则称z0是f(z)的m级极点。

其洛朗展开式是:f(z)=c?m

(z?z0)m+

c?m+1

(z?z0)

m+1+

+c?1

z?z0

+c0+c1(z-z0)n+m+…+c0(z-z0)n +…

这里c-m≠0,于是在0<|z?z0|<δ有f(z)=[c?m

(z?z0)m+

c?m+1

(z?z0)

m+1+

+c?1 z?z0+c0+c1(z-z0)n+m+…+c0(z-z0)n +…]=1

(z?z0)m

φ(z). *

φ(z)一个在0<|z?z0|<δ解析,同时φ(z)≠0,则z0是f(z)的m级极点。

判断定理:(1)f(z)在z0的去心邻域0<|z?z0|<δ解析,z0是f(z)的m级极点的充要条件是可以表示成*的形式。(2)z0是f(z)的m级极点的充要条件是lim

z→z0

f(z)=∞.

4.2.3本性奇点:若函数f(z)在孤立奇点z0的去心邻域内洛朗级数展开式中只有无限个负幂项,则称z0是f(z)的本性奇点

判断方法:孤立奇点是本性奇点的充要条件是不存在有限或无穷的极

限lim z→z 0

f(z)。

4.3函数在极点的留数:

准则一:若z 0为一级极点,则 Res[f(z),z 0]= lim z→z 0

f (z )(z ?z 0)

准则二:做z 0为m 级极点,则 Res[f(z),z 0]=

1

(m?1)!lim

z→z 0d m?1

dz

m?1

{(z-z 0)m

f(z)} 准则三:设f(z)=

P(Z)Q(Z)

,P(z)以及Q(z)都在z 0解析,如果P(z 0)=0,

Q(z 0)≠0,则z 0是f(z)的一级极点,而且: Res[f(z),z 0]=

P(Z 0)

Q(Z

0)? 4.4无穷远处的留数:

定义:扩充z 平面上设z=∞为f(z)上的孤立奇点,即f(z)在R<|z |<+∞内解析,C 为圆环绕原点z=0的任一条正向简单闭曲线,则积分值

1

2πi ∮f (z )c ?1

dz 称为f(z)在z=∞处的留数,记作 Res[f(z), ∞]=

1

2πi ∮f (z )c ?1

dz

如果f(z),在R<|z |<+∞内的洛朗展开式为

f(z),=∑c n z n

∞n=?∞ 则有Res[f(z), ∞]=-c -1

4.4.1如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处

在内)设为z 1,z 2,…,z n ,∞则f(z)在各奇点的留数总和为零,即

∑Res[f(z)dz]n k=1+Res[f(z), ∞]=0;

4.4.2 Res[f(z), ∞]=-Res[f(1z )? 1z

2,0]

例题:求下列Res[f(z), ∞]的值

(1)f(z)=

e z

z 2?1

(2)f(z)=

1

z (z+1)4(z?4)

解:(1)在扩充复平面上有奇点:±1,∞ ,而±1为f(z)的一级极点且Res[f(z),1]=lim z→1(z ?1)f(z)=lim

z→1e z

z+1=1

2

e Res[f(z),-1]= lim z→?1

(z ?1)f(z)=lim

z→1e z

z?1

=-1

2e ?1

∵Res[f(z), ∞] + Res[f(z),1] + Res[f(z),-1]=0得

∴Res[f(z), ∞]=-{ Res[f(z),1]+ Res[f(z),-1]}= 1

2(e ?1+e )=-sh1 (2) 由公式Res[f(z), ∞]=-Res[f(1

z

)? 1

z

2,0],而1

z

2f(1

z

)=

1z (z+1)4(z?4)

以z=0为可去奇点,所以 Res[f(z), ∞]= -Res[f(1

z

)? 1

z 2,0]=0

4.5用留数定理计算积分: 4.

5.1

形如∫R(cosθ,sinθ)2π

d θ的定积分计算;其中R(cosθ,sinθ)为cos θ与sinθ的有理函数。

故解这类题是就会联想到复变函数与三角变换的相关知识--欧拉公式,令z=e iθ,dz=izd θ=i e iθ d θ d θ=dz iz

sin θ=1

2i (e iθ?e

?iθ

)=

z 2?12iz

cos θ(e iθ

+e

?iθ

)=

z 2+12iz

则∫R(cosθ,sinθ)2π0d θ=∮R[z 2+12iz ,z 2?12iz ]|z |dz

iz =∮f (z )dz |z |

其中f(z)= R[

z 2+12iz

,

z 2?12iz

]

1iz

然后又留数定理求的积分值为

2πi ∑Res[f (z ),z k ]n k=1 其中z k (k=1,2, …n )为f(z)在单位圆周内的所有孤立奇点。

4.5.2

形如∫R(x)dx +∞

?∞

的积分计算。其中R(x)为x 的有理函数,且分母的次数至少比分子的高二次,R(x)在实轴上无孤立奇点。则 ∫R(x)dx +∞

?∞

=2πi ∑Res [R(z),z k ],z k 为上半平面的所有奇点

4.5.3形如∫R(x)e iax dx

+∞

=2πi∑Res[R(x)e iax,z k] 其中k为上半?∞

平面的所有奇点

5.总结:以上只是粗略的列举了计算复变积分的方法,还有许多细节性的问题没有一一列举。复变积分的算法对比实函数积分的计算方法,有很多相似的地方,较实函数积分要复杂些。复变的积分变换多是理解性的问题,多做题目可以提高思维的多样性,但容易造成思维定势。理解才是主要解题之道!

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

复变函数总结

第一章 复数的运算与复平面上的拓扑 1.复数的定义 一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。 复数的表示方法 1) 模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与 arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

4)若 12 1122,i i z z e z z e θθ==, 则 () 121212i z z z z e θθ+=; ()121122 i z z e z z θθ-= 5.无穷远点得扩充与扩充复平面 复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系, 而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面. 扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集 复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。 第二章 复变量函数 1.复变量函数的定义 1)复变函数的反演变换(了解) 2)复变函数性质 反函数 有界性 周期性, 3)极限与连续性 极限: 连续性 2.复变量函数的形式偏导 1)复初等函数 ). ( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设. )( )(,)0(0 )( ,0 , , 0 )( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<= . )( , )( . )( ),()(lim 000 内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

复变函数学习指导书

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

(完整版)【工程数学】复变函数复习重点

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1) 模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数); 主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

复变函数总结完整版

第一章复数 1 i 2=-1 i = ?, -1 欧拉公式z=x+iy 实部Re Z 虚部Im Z 2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2 ②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2) 乙Z2 ③=χ1 iy1 χ2 iy2 X1X2iχ1y2iχ2y1- y1y2 =X1X2 -y』2 i χ1y2 χ2y1 ④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y2 2 2 2 2 Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2 ⑤z = X - iy 共轭复数 z z =(x+iy I x — iy )=χ2+ y2共轭技巧 运算律P1页 3代数,几何表示 ^X iy Z与平面点χ,y-------- 对应,与向量--- 对应 辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3… 把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz0 4如何寻找arg Z π 例:z=1-i 4 π z=i 2 π z=1+i 4 z=-1 π 5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin

利用欧拉公式e i 71 =COS71 i Sin71 例2 f Z = C 时有(C )=0

可得到z= re° Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方 n n in 「n Z Z Z Z ............ z=re r COS 1 Sin nv 凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z ☆当丄二f Z o时,连续 例1 证明f Z =Z在每一点都连续 证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续 3导数 f Z o Jm fZ 一 f z o z-?z°Z-Z o ,2 n 第二章解析函数 1极限 2函数极限 ①复变函数 对于任一Z- D都有W FP与其对应川=f Z 注:与实际情况相比,定义域,值域变化 例f z = z Z—Z o 称f Z当Z-:Z o时以A为极限 df(z l Z=Zo 1

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数积分方法总结

复变函数积分方法总结The final revision was on November 23, 2020

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θθ称为主值 -π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,

z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f( k )n k?1(z k -z k-1)= ∑f( k )n k?1z k 记 z k = z k - z k-1,弧段z k-1 z k 的长 度 δ=max 1≤k≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f(z)dz c =lim δ 0 ∑f(k )n k?1z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f(k)n k?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以 S n = (∑1+∑2)= ∑k?1n z k (z k 2?z k?12)=b 2-a 2 ∴ ∫2zdz c =b 2-a 2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f(z)dz c 得:

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

复变函数总结完整版

第一章 复数 1 2i =-1 1-=i 欧拉公式 z=x+iy 实部Re z 虚部 Im z 2运算 ① 2121Re Re z z z z =?≡ 21Im Im z z = ②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z ++±=±+±=± ③ ()()()() 122121212112212122112 1y x y x i y y x x y y y ix y ix x x iy x iy x z z ++-=-++=++=? ④ ()()()()2 2 222 1212222212122222211222121y x y x x y i y x y y x x iy x iy x iy x iy x z z z z z z +-+++=-+-+== ⑤iy x z -= 共轭复数 ()() 22y x iy x iy x z z +=-+=? 共轭技巧 运算律 P1页 3代数,几何表示 iy x z += z 与平面点()y x ,一一对应,与向量一一对应 辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3… 把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z 4如何寻找arg z 例:z=1-i 4 π - z=i 2π z=1+i 4 π z=-1 π 5 极坐标: θcos r x =, θsin r y = ()θθsin cos i r iy x z +=+= 利用欧拉公式 θθθ sin cos i e i +=

(完整版)复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。 arg z =θ? θ?称为主值 -π<θ?≤π ,Arg=argz+2k π 。利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。z=re i θ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2… n)上任取一点ξk 并作和式S n =∑f(ξk )n k?1(z k -z k-1)= ∑f(ξk )n k?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {?S k }(k=1,2…,n),当 δ→0 时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f(z)dz c =lim δ 0 ∑f(ξk )n k?1?z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0.

复变函数积分方法总结

复变函数积分方法总结标准化管理部编码-[99968T-6889628-J68568-1689N]

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。 arg z=θ θ称为主值 -π<θ≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0, z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点k并作

和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑f (?k )n k ?1z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以 S n = (∑1+∑2)= ∑k ?1n z k (z k 2?z k ?12)=b 2-a 2 ∴ ∫2zdz c =b 2-a 2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f (z )dz c 得: ∫f (z )dz c = ∫udx c - vdy + i ∫vdx c + udy

相关文档
相关文档 最新文档