文档库 最新最全的文档下载
当前位置:文档库 › 最新整理焊点可靠性试验的计算机模拟.doc

最新整理焊点可靠性试验的计算机模拟.doc

最新整理焊点可靠性试验的计算机模拟.doc
最新整理焊点可靠性试验的计算机模拟.doc

焊点可靠性试验的计算机模拟

本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。

在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。

在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finite element)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。建模与试验

宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。

直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré干涉测量系统允许在疲劳试验到失效期间的应力场测试。

基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。

预测焊点的可靠性

焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果使用一个分析方法,通过都是使用诸如Coffin-Manson(C-M)这样的经验曲线。通常,

使用接合元件之间的CTE差别,计算出焊接点内最大的预测弹性与塑性应力。

大多数时间,使用塑性应变值,是用C-M曲线来预测焊接点的疲劳寿命。通过研究者已经显示,这个方法对BGA封装所产生的结果是保守的。例如,Zhao et al.已经从冶金学上证明,C-M方法不能用于微结构进化的材料,如锡铅焊锡合金1,2。其理由是C-M方法没有考虑在疲劳期间材料特性的任何变化。C-M方法假设,在每一个热循环中所经历的塑性应变在整个热循环过程中是保持不变的。事实上,焊接点所经历的实际塑性应变在每个循环都由于微结构变粗糙而减少。因此,C-M方法大大地低估了焊接点的疲劳寿命。

在本研究中使用一个损伤进化函数来量化焊接点的退化。损伤进化函数是基于热力学的第二定律,并使用熵作为损伤度量。Basaran和Yan已经证明,作为一个系统失调度量的熵可用作固体力学的损伤度量标准3。损伤进化结合到一个统一的粘塑结构模型中(在下面描述),用来描述在热机负载下焊接点的循环疲劳特性。

构造模型

试验结果显示,相对于懦变或粘塑应变,塑性应变对低循环疲劳寿命的影响是可能忽略的。依赖时间的懦变形支配着焊接点的低循环疲劳寿命1,2。这是因为共晶与近共晶焊锡合金一般预计由于其低熔点(183°C)在高同系温度下工作。在高同系温度下,材料经历很大的懦性变形。因此一个热粘塑结构模型对于建立焊接性能模型是必要的。

为了建立近共晶焊锡的第一、第二和第三懦变阶段模型,需要懦变率函数。在高同系温度下的大多数金属与合金的稳定状态塑性变形的动力学可用Dorn懦变方程来描述4。Kashyap与Murty已经从实验上证明,颗粒大小可以重大影响锡铅焊锡合金的懦变特性5。基于他们的实验室试验结果,他们提出了一个懦变定律,修正Dorn方程。应变率描述为温度、扩散率和诸如Young的模数与颗粒大小等材料参数的函数。活性能量随温度而变化,基于已发布的懦变数据而决定。类似地,颗粒大小与应变率成指数关系,试验上确定的颗粒指数。

为了模拟材料的循环疲劳特性,需要一个逐步退化的模型。损伤机制为我们提供一个开发损伤进化模型的基本框架。将一个内部损伤变量引入应力应变关系中。随着焊锡退化的增加,损伤变量的值由零上升到一,即代表完全失效。Bassran 和Yan已经证明,熵是最准确和最简单的焊点损伤度量标准3。该熵可以描述为失调参数。失调参数的变化产生焊接点的退化。有关失效机制模型的更详细情况可以查阅参考资料3,6。

使用前面简要叙述的基于构造模型的损伤机制,消除了需要估算失效循环数的两步过程,即进行失效分析的传统方法。有限单元分析通常计算一个温度循环的塑性应变,然后使用C-M曲线预测该塑性应变值的疲劳寿命。上面提出的模型直接产生每个焊接点的疲劳寿命,以及提供对发生在焊点内的退化过程的视觉显示。

有限单元模拟与实验室试验

通过基于损伤机制的模型进行了对简单循环剪切试验的几个数字模拟,并比较Pb40/Sn60焊接点的疲劳试验结果。Solomon在对称位移控制的条件下,以不同的塑性应变范围,进行了对Pb40/Sn60焊接点的循环简单剪切试验9。作者报告了对每一个塑性应变范围的失效循环次数,将失效定义为在最终应力下90%的负载下降。图一显示Solomon的试验数据与有限单元模拟之间的失效循环次数的比较。

也对经受热循环的一个实际BGA封装的Pb37/Sn63焊接点进行了计算机模拟。试验的BGA封装横截面如图二所示。FR-4印刷电路板和聚合材料的连接器层通过Pb37/Sn63焊接点连接。由于结构的对称性,模拟只画出封装的一半和取网格。

图一、疲劳寿命比较(Solomon的试验与

FEM)

图二、BGA封装的横截面图三、一个周期的热负载曲线

为了证实该模型和对有限单元程序的实施,进行了试验。一个实际的BGA封装在SuperAGREE的温度老化室进行热循环,塑性应变场通过高灵敏度的Moiré干涉测量方法测量。使用有限单元程序,和已实施的构造模型,对相同的热循环试验进行了模拟和比较结果。

图三显示该BGA封装经受的热负载曲线。使用SuperAGREE的温度老化室进行热循环。试验样品定期地取出,使用Moiré干涉测量系统测量无弹性应变的累积。该试验的详情在Zhao et al中给出1,2。在试验与有限单元分析(FEA)模拟期间,封装固定在中间FR-4 PCB层的两端。在有限单元模拟中,FR-4 PCB和聚合层被认为是线性弹性的,焊接点随着损伤的进化被认为是非线性弹性-粘塑性的。

图四、在2与4个热循环之后的剪切应

力分布

(使用了损伤模型) 图五、在6与8个热循环之后的剪切应

力分布

(使用了损伤模型)

图六、在10个热循环之后的剪切应力分布

(使用了损伤模型)

由于在FR-4 PCB与聚合层之间的温度膨胀系数(CTE)的不匹配,焊接点内的热诱发的剪切应力是周期性的,造成焊接点的热机械疲劳。试验结果显示,剪切应力支配在焊点中懦变疲劳。图四至图六显示剪切应力的数字模拟。事实上,试验到失效可能要求1,000次以上的循环。可是,对于证实计算机模型的目的,模拟十个循环已经足够了。焊点的剪切应力的有限单元分析(FEA)结果与Moiré干涉测量的试验数据有很好的相关性。在试验期间,最高的应力总是在焊接点一上观察到。因此从FEA和Moiré干涉测量方法所得到的该焊点的无弹性应力积累

在图七中绘出。应该指出的是,在我们的试验与分析中,观察到塑性应力的累积从一个循环到另一个循环不是线性的。随着焊锡的粗化,在每个循环中的塑性应力累积减少。在另一方面,使用C-M方法,假设塑性应力累积是线性的。因此,事实上,从实验室试验所获得的BGA封装的疲劳寿命通常是比基于Coffin-Manson的模型所预测的较长。

图七、有现单元模拟结果与Moiré干涉

测量

试验结果比较图九、在十个热循环之下最大损伤的进

(使用了损伤模型)

图八、在十次热循环之后损伤的分布(使用了损伤模型)在焊点之中损伤的分布模拟如图八所示。损伤分布提供设计优化和可靠性的重要信息,因为它可用来预测封装在哪里何时失效。图九显示关键焊接点的损伤进化。损伤进化是在疲劳负载下材料退化的内在反映,而不只是间接的度量,如电气开路。使用损伤进化函数,可以作出精确的疲劳寿命预测,并且借助于计算机模拟可以对每个焊接点预测材料退化的进度。

结论

一个具有损伤偶合粘塑结构模型的计算工具已经提出,并通过一个用户定义的材料子程序实施在有限单元软件包中。使用计算机模拟,对新一代封装的可靠性评估成本大大地降低了。一个BGA电子元件的Pb37/Sn63焊接点在热循环负载下的热力学反映已经通过FEA来模拟,并与试验数据比较。FEA结果与Moiré干涉测量结果的比较显示较好的一致性。实施的目的是要提供对电子封装焊接点疲劳寿命预测的一个计算工具。这个工作可以帮助对在热力疲劳负载之下的电子封装共晶焊接连接逐步退化的数字模拟,而不需要高成本的试验。

焊点可靠性之焊点寿命预测

— 1 — 焊点可靠性之焊点寿命预测 在产品设计阶段对SMT 焊点的可能服役期限进行预测,是各大电子产品公司为保证电子整机的可靠性所必须进行的工作,为此提出了多种焊点寿命预测模型。 (1) 基于Manson-Coffin 方程的寿命预测模型 M-C 方程是用于预测金属材料低周疲劳失效寿命的经典经验方程[9]。其基本形式如下: C N p f =ε?β (1-1) 式中 N f — 失效循环数; ?εp — 循环塑性应变范围; β, C — 经验常数。 IBM 的Norris 和Landzberg 最早提出了用于软钎焊焊点热疲劳寿命预测的M-C 方程修正形式[2]: )/exp()(max /1kT Q Cf N n p m f -ε?= (1-2) 式中 C, m, n — 材料常数; Q — 激活能; f — 循环频率; k — Boltzmann 常数; T max — 温度循环的最高温度。 Bell 实验室的Engelmaier 针对LCCC 封装SMT 焊点的热疲劳寿命预测对M-C 方程进行了修正[10]: c f f N /1'221???? ??εγ?= (1-3) )1ln(1074.1106442.024f T c s +?+?--=-- (1-4) 式中 ?γ — 循环剪切应变范围; f 'ε— 疲劳韧性系数,2f 'ε=0.65; c — 疲劳韧性指数; T s — 温度循环的平均温度。 采用M-C 型疲劳寿命预测方程,关键在于循环塑性应变范围的确定。主要有两种方法:一种是解析法[10,11],通过对焊点结构的力学解析分析计算出焊点在热循环过程中承受的循环应变范围,如Engelmaier 给出[10]:

新产品可靠性试验程序(含表格)

新产品可靠性试验程序 (ISO9001:2015) 1.目的 为确保我司生产的各阶段产品在不同工作状态、环境条件下的适应性,暴露设计、材料、工艺所存在的问题,提高产品可靠性,保证产品质量。 2.适用范围 适用于本公司新产品可靠性试验、例行性可靠性试验、重大质量问题验证和替代物料、工程设计变更验证等需进行可靠性试验的成品。 3.定义 MTBF----平均无故障时间:产品在操作或使用过程中,排除前置期的失效后可持续提供给使用者,直到产品发生故障前的平均使用期为平均失效间隔时间(MEAN TIME BETWEEN FAILURE)。 试验:指通过提供给项目一系列条件或运行措施,对项目一个或多个特性的功能性检查。即:指对样件(包括材料和产品)的特性进行的实验或测试。 试验室:指进行原材料的化学分析、机械性能、金相及金属原材料的各种性能的试验、产品的各种功能和性能试验和试验确认在内的检验、试验和校准的设施。 试验室业务范围:试验室规定的和具体的试验,评价和校准;用以进行上述试验的设备;进行上述试验活动所用的方法和标准。

原始数据:指在进行试验时实验人员通过技术或分析收集或记录所获取的试验数据。通常不对这些数据进行某种方式的编辑和处理,而是常常记录在原始记录本中。它不同于试验报告中的结果,因为报告中的结果通常对原始数据进行了编辑、换算和/或其它的处理以便分析和说明。 试验报告:指试验人员在试验结束时,对原始记录的数据进行处理,按照标准的格式定义的符合性结论。 认可的试验室:指经某一国家承认的认可机构通过一定程序认可批准的试验室。 4.职责 4.1可靠性试验室主任:负责可靠性试验计划的拟定,对新品可靠性、例行性试验和重大质量问题验证的执行、监测,参与问题分析,提供相关可靠性试验报告,并对问题点的改善追踪,至问题关闭。 4.2试验员负责实验室日常维护、试验和校准工作。 4.3研发中心、各事业部及质量控制部:提供所需进行可靠性试验的产品,同时根据可靠性试验室提出的试验需求参与试验,针对测试中所出现的问题作分析及拟定改善对策,并于对策导入时,做初步验证。 4.4生产部:提供需进行例行性可靠性试验产品,并对试验后产品协助处理。 5.程序 5.1工作流程图

焊点可靠性研究详解

SMT焊点可靠性研究 前言 近几年﹐随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的飞速发展﹐SMT焊点可靠性问题成为普遍关注的焦点问题。 与通孔组装技术THT(Through Hole Technology)相比﹐SMT在焊点结构特征上存在着很大的差异。THT焊点因为镀通孔内引线和导体铅焊后﹐填缝铅料为焊点提供了主要的机械强度和可靠性﹐镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素﹐一般只需具有润湿良好的特征就可以被接受。但在表面组装技术中﹐铅料的填缝尺寸相对较小﹐铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用﹐焊点的可靠性与THT焊点相比要低得多﹐铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。 另外﹐表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较大﹐当温度升高时﹐这种热膨胀差必须全部由焊点来吸收。如果温度超过铅料的使用温度范围﹐则在焊点处会产生很大的应力最终导致产品失效。对于小尺寸组件﹐虽然因材料的CTE 失配而引起的焊点应力水平较低﹐但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。因此﹐焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。 80年代以来﹐随着电子产品集成水平的提高,各种形式﹑各种尺寸的电子封装器件不断推出﹐使得电子封装产品在设计﹑生产过程中,面临如何合理地选择焊盘图形﹑焊点铅料量以及如何保证焊点质量等问题。同时﹐迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断﹑对工艺参数的设置做出决策。目前﹐在表面组装组件的封装和引线设计﹑焊盘图形设计﹑焊点铅料量的选择﹑焊点形态评定等方面尚未能形成合理统一的标准或规则﹐对工艺参数的选择﹑焊点性能的评价局限于通过大量的实验估测。因此﹐迫切需要寻找一条方便有效的分析焊点可靠性的途径﹐有效地提高表面组装技术的设计﹑工艺水平。 研究表明﹐改善焊点形态是提高SMT焊点可靠性的重要途径。90年代以来﹐关于焊点形成及焊点可靠性分析理论有大量文献报导。然而﹐这些研究工作都是专业学者们针对焊点

计算机系统的焊点可靠性试验(doc 5页)

计算机系统的焊点可靠性试验(doc 5页)

焊点可靠性试验的计算机模拟 本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。 在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。 在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finite element)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。 建模与试验 宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。 直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré 干涉测量系统允许在疲劳试验到失效期间的应力场测试。 基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。 预测焊点的可靠性 焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果

发动机台架试验 -可靠性试验

学生实验报告实验课程名称:发动机试验技术

目录 一、试验目的 二、试验内容 1.试验依据 2.试验条件 3.试验仪器设备 4.试验样机 5.试验内容与方案 (1)交变负荷试验 (2)混合负荷试验 (3)全速负荷试验 (4)冷热冲击试验 (5)活塞机械疲劳试验 (6)活塞热疲劳试验 三、试验进度安排 四、试验结果的提供

摘要 国外在可靠性试验方面己做了许多有益的研究工作,但到目前为止尚未形成统一的试验方法,而且考虑到该试验的非普遍性及技术保密性,将来也不可能形成统一的试验规范。相对于热疲劳研究状况来讲,国内对机械疲劳的研究还比较少。为适应发动机比功率和排放法规日益提高的苛刻要求,发动机面临着更高机械负荷和热负荷的严峻考验。国内高强化发动机最大爆发压力已超过22 Mpa。活塞的机械疲劳损伤主要体现在销孔、环岸等部位。活塞环岸、销座及燃烧室等部位由于在较高的工作温度下承受着高频冲击作用的爆发压力,润滑状况较差,摩擦磨损,其他破坏可靠性的腐蚀磨损(缸套一环换向区、排气门/排气门座锥面等)、疲劳磨损(挺杆、轴瓦、齿轮表面等)、微动磨蚀(轴瓦钢背、飞轮压紧处、飞轮壳压紧处、湿缸套止口处等)、电蚀(火花塞电极等)和穴蚀(水泵叶轮等)这些都是可靠性试验的主要目标,也是实施可靠性设计、试验研究的重点部位。 众所周知,在内燃机整机上进行零部件可靠性试验成本昂贵。本文将参照原有的可靠性试验方法,通过看一些关于可靠性的零部件加速寿命实验技术制定一种评价内燃机可靠性的考核规范,包括活塞机械疲劳试验和活塞热疲劳试验,可迅速做出其可靠性恰当的评价,可以降低研发成本、缩短研发时间。 一、试验目的 1通过理解内燃机可靠性评估,评定发动机的可靠性。 1.1了解评估的多种理论方法,如数学模型法、上下限法、相似设备法、蒙特卡洛法、故障分析( 包括故障模式影响分析和故障树分析) 等。并掌握故障分析法。 1.2学会可靠性试验评估,为进行可靠性设计奠定基础理论,为发动机及相关零部件提供测试、验证以及改进的技术支持。 2掌握可靠性试验方法 2.1掌握内燃机可靠性综合性试验及专项试验。综合性试验的考核对象是零件的可靠性、零件表面性状的变化和发动机性能的保持性;专项试验是超水温( 耐热性) 、超负荷、混合负荷、交变负荷循环、超爆发压力、超速等试验。 二、试验内容 1试验依据 参考的试验标准: GB /T 19055-2003 汽车发动机可靠性试验方法 GB /T 18297-2001 汽车发动机性能试验方法 JB/T 5112-1999 中小功率柴油机产品可靠性考核 2试验条件 一般试验条件: 2.1燃料及机油:采用制造厂所规定的牌号,柴油中不得有消烟添加剂。

产品可靠性试验程序

产品可靠性试验程序 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

会签: 1.目的 为确保我司生产的各阶段产品在不同工作状态、环境条件下的适应性,暴露设计、材料、工艺所存在的问题,提高产品可靠性,保证产品质量。 2.适用范围 适用于本公司新产品可靠性试验、例行性可靠性试验、重大质量问题验证和替代物料、工程设计变更验证等需进行可靠性试验的成品。 3.定义 MTBF----平均无故障时间:产品在操作或使用过程中,排除前置期的失效后可持续提供给使用者,直到产品发生故障前的平均使用期为平均失效间隔时间(MEAN TIME BETWEEN FAILURE)。 试验:指通过提供给项目一系列条件或运行措施,对项目一个或多个特性的功能性检查。即:指对样件(包括材料和产品)的特性进行的实验或测试。 试验室:指进行原材料的化学分析、机械性能、金相及金属原材料的各种性能的试验、产品的各种功能和性能试验和试验确认在内的检验、试验和校准的设施。 试验室业务范围:试验室规定的和具体的试验,评价和校准;用以进行上述试验的设备;进行上述试验活动所用的方法和标准。 原始数据:指在进行试验时实验人员通过技术或分析收集或记录所获取的试验数据。通常不对这些数据进行某种方式的编辑和处理,而是常常记录在原始记录本中。它不同于试验报告中的结果,因为报告中的结果通常对原始数据进行了编辑、换算和/或其它的处理以便分析和说明。 试验报告:指试验人员在试验结束时,对原始记录的数据进行处理,按照标准的格式定义的符合性结论。 认可的试验室:指经某一国家承认的认可机构通过一定程序认可批准的试验室。4.职责 可靠性试验室主任:负责可靠性试验计划的拟定,对新品可靠性、例行性

最新整理焊点可靠性试验的计算机模拟.doc

焊点可靠性试验的计算机模拟 本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。 在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。 在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finite element)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。建模与试验 宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。 直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré干涉测量系统允许在疲劳试验到失效期间的应力场测试。 基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。 预测焊点的可靠性 焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果使用一个分析方法,通过都是使用诸如Coffin-Manson(C-M)这样的经验曲线。通常,

仿真试验报告

编号:密级 可靠性仿真试验报告 (第一轮) 送试单位 : 送试单位地址: 产品型号名称: 试验日期 : 2017年月日

结论: 2017年10月,模块在中国电子科技集团公司第二十研究所实验室按照《模块可靠性仿真试验大纲》进行了可靠性仿真试验,主要结论如下: 1)受试产品整机热设计合理,相对71℃平台环境,机箱平均温升为10℃。 2)受试产品整机振动设计合理,模块标称频率为100MHz,与标称频率测 量预期结果相符合。 3)模块热设计相对薄弱,存在热集中区,局部温度最高达90℃,模块上 的1个元器件温度均较高。 4)模块振动设计相对薄弱,存在1问题。 5)模块的温度相对较高,长时间工作发生故障概率较大。 6)受试产品中工作小时内失效概率大于63.2%的器件包括:通用接收模块 的。 7)受试产品平均首发故障时间预计值为XX小时(共对1个模块进行了预 计,其中平均首发故障时间预计值为XX小时)。 8)共发现薄弱环节1个,其中模块0个、器件1个。 9)其它需要说明的结论 以下空白 2017年10月日 编写: 校对: 审核: 批准: 说明:报告只对本次试验有效。未经本实验室许可,不得部分复印。 联系 方式

目录 1 试验目的 (5) 2 试验依据 (5) 3 受试产品说明 (5) 4 任务安排 (6) 4.1 任务分工 (6) 4.2 试验时间、地点及人员 (6) 5 试验流程 (6) 6 试验条件 (7) 6.1 试验环境条件(试验剖面) (7) 6.2 环控条件 (8) 7 试验设备 (8) 7.1 计算机软件 (8) 7.2 测试设备及仪表 (8) 8 仿真分析 (9) 8.1 信息收集 (9) 8.2 数字样机建模 (9) 8.3 应力分析 (16) 8.4 故障预计 (24) 8.5 可靠性评估 (26) 9 试验结论 (26) 图1 可靠性仿真试验流程 (6) 图3 振动谱型图 (8) 图4 受试产品CAD数字样机 (9) 图6 受试产品FEA数字样机 (12) 图13 受试设备故障预计模型 (24) 图14 XX模块的潜在故障点位置 (26) 表1 受试产品组成 (5) 表2 受试产品技术状态 (5) 表3 任务分工 (6) 表4 温度应力条件表 (7) 表5 振动应力量级表 (7) 表6 计算机软件表 (8) 表7 测试设备及仪表 (8) 表8 CAD数字样机组成说明表 (10) 表9 CFD数字样机组成说明表 (10) 表10 热分析箱体部件材料对应表 (11) 表11 FEA数字样机组成说明表 (12) 表12 振动分析材料对应表 (13) 表13 各模块主要发热器件试验数据与仿真数据对比 (14) 表14 模态对比(无约束状态) (15) 表15 振动响应对比(实际安装状态)............................................. 错误!未定义书签。

产品可靠性测试操作步骤

产品可靠性测试操作规范 为保证产品在各种使用过程、在不同的使用环境、受到不同的环境影响而确保其能正常工作,保证其在较长时间内无故障工作,同时也满足客户的要求。现要求按以下步骤进行可靠性测试,并将测试结果以《可靠性测试报表》的形式体现。 本试验由品质部进行,产品部协助。 一、来料阶段须进行的可靠性测试项目: 1.附着力测试 目的:提供产品表面涂层(喷油、丝印、移印、电镀)粘附强度及试验标准 适用范围:所有含表面涂层的产品 样品数量:3PCS 试验条件:界刀、3M810胶纸 试验程序:A.用界刀在表面涂层划相距1/16英寸11条平行直线,再划11条与其垂直的平行线(每一条应深至油漆的底层) B.用胶带贴于上面,并用手指压平,保证充分接触90+-30秒,然后以45度角往反方向均匀 迅速拉起 C.同一位置执行上述操作10次 D.测试完毕后检查,涂层脱落面积应小于规定范围 E.将测试结果记录于《可靠性测试报表》 2.耐磨性测试 目的:提供产品表面涂层的耐磨擦性能及试验标准 适用范围:所有含表面涂层的产品 样品数量:3PCS 试验条件:专用橡皮、负载 试验程序:A.用专用的日本砂质橡皮(橡皮型号:LER902K),施加500g的载荷,以40至60次每分钟的速度,以20mm左右的行程,在样品表面来回磨擦100个循环 B.测试完毕后检查,产品表面涂层应不露底 C.将测试结果记录于《可靠性测试报表》 3.耐醇性测试

目的:提供产品表面涂层的耐磨性及抵抗酒精性能及试验标准 适用范围;所有含表面涂层的产品 样品数量:3PCS 试验条件:纯棉布、酒精浓度>99%的酒精、砝码 试验程序:A.用纯棉布蘸满无水酒精,包在专用的500g砝码头上(包上棉布后的砝码测试头面积约为1CM 平方),以40至60次每分钟的速度,20mm左右的行程,在样品表面来回擦试100次 B.测试完毕后检查,产品表面涂层应不露底 C.将测试结果记录于《可靠性测试报表》 4.硬度测试 目的:提供产品表面涂层在正常使用、贮存或运输过程中抵抗外界物品刮伤的试验标准 适用范围:适用于含表面涂层的产品 样品数量:3PCS 试验条件:专用三菱牌2H铅笔、硬度测试仪 试验程序:A. 用2H铅笔(三菱牌),将笔芯削成圆柱形并在400目砂纸上磨平后,装在专用的铅笔硬度测试仪上( 施加在笔尖上的载荷为1Kg,铅笔与水平面的夹角为45°),推动铅笔向 前滑动约5mm长,共划5条,再用橡皮擦将铅笔痕擦拭干净。 B.测试完毕后检查,应无划痕 C.将测试结果记录于《可靠性测试报表》 二、半成品阶段须进行的可靠性测试项目: 老化寿命测试: 目的:提供产品在正常使用过程中的稳定性能及试验标准 适用范围:半成品 样品数量:20PCS以上 试验条件:常温常湿条件下,连续工作48小时 试验程序:A.于测试前先对产品的外观、功能进行检查并记录 B-1.音乐播放测试: B-1-1. 选取5台进行音乐播放:将样品在开机正常工作状态下,且音量调最大带负载情况下 连续工作48小时

汽车试验场可靠性道路试验的仿真分析.

[2]白建波,张小松,李舒宏等. 基于RS-485 总线的高精度恒温恒湿空调测控系统[J].电气传动,2005,35(8: 44-46. [3]聂玉强,李安桂. 中央空调系统高效节能技术分析与应用[J].重庆建筑大学学报: 中国电力出版,2010.21(14:56-57. [4]张桂芝. 恒温恒湿空调控制中存在的问题及对策[J].科技创新与应用, 2014.15:83 [5]苏建锋. 恒温恒湿空调不同工况下的自动控制[J].工程技术科技资讯,2011.26:57 汽车试验场可靠性道路试验的仿真分析 冯栋闫彦朋 (071000长城汽车股份有限公司技术中心河北保定) 摘要:汽车可靠性试验是进行汽车研发的重要环节之一,也是评估该产品的性能、使用期限的重要方法。文中从简述汽车可靠性试验办法入手,分析各个路况里程分配、车辆载荷等情况,并采用虚拟实验软件进行仿真分析,为深入进行汽车可靠性研究提供有效依据。 随着我国经济的不断发展,我国的汽车工业也经历了飞跃性的发展,虽然我国汽车工业起步比较晚,但发展速度较快,从整体上还与欧美汽车发达国家有一定的差距。汽车的可靠性试验是汽车发展中必不可少的环节,也会汽车道路试验重要的部分之一,该实验不仅可以检验产品是否合格,也可以为修改和优化设计提供合理的参考。使用虚拟试验场软件对汽车的可靠性展开试验,综合相关材料,对汽车的寿命展开分析和评估,为汽车产品提供有效的服务。 1. 简述汽车可靠性试验办法

汽车可靠性道路试验依照交通部门试验场相关规范展开,可靠性、耐久性选取的实验道路包含搓板路、扭曲路、卵石路。实际实验的过程中,派专业人员做驾驶员,设定相同的速度行驶在不相同的大路上,本次试验使用美国的NICOLET32通道数据采集器展开数据的采集工作。采样的频率设置为10kHz,试验对中央通道、右侧及左侧的B 柱底部三个部位的X、Y、Z加速度值,左右两侧B 柱处对于冲击的相应基本相同,测试数据根据驾驶人员测信号为目标信号。实际试验时,测试路面平整,测试车辆整体性能较好,车速设置为50km/h。 2. 合理分配试验里程 汽车可靠性试验是为考核汽车的耐久性和可靠性的重要手段,本文的以某汽车公司的EQ1074G 载货汽车为研究对象,对该汽车的可靠性强化路面及普通路面的行驶情况展开分析,研究车辆处在不同位置的变形量、试验道路的行驶要求及仿真性展开测试,为汽车的可靠性研究提供重要依据。本次试验采用15000km 为里程展开试验,该里程包含试验场内12000km,山路3000km。根据强化系数15折算,15000km可靠性试验相当于用户实际采用225000km。本次试验所行驶的实验包含石块路、长坡路、高 速路、普通路面,不同道路在试验中拥有的里程及比例如表1。 试验里程试验路面15000km 比例(%) 长波路221.401.43石叠路136.900.80高速路面900.06.01山区路面 3000.017.023. 轮胎气压及试验道路行驶要求 那些载货汽车因装载质量变化加大,所以轮胎气压也会随之得到相对应的改变,不然在空载时将严重影响乘客的舒适性能。在实际应用中,车辆如果长时间放置气压不可避免会降低,试验的过程中,可以根据厂家要求气压把轮胎气压设置为半载和满载两种状态。根据所设计的试验场道,本次研究车辆行驶路线如图1循环进行。

产品可靠度试验程序文件

目的: 为了确保产品之质量能自开发设计至量产出货能符合本公司标准及满足客户需求,制订本办法以验证产品的可靠度及性能。 1.法规或标准: 1.1.ISO9001:2000标准 1.2.IECQ QC080000标准 2.内容: 2.1.组织权责、人员权责、人员资格规定参见《职位说明书》 2.2.名词定义: 2.2.1.System Integration Build (SI) :系统整合阶段。 2.2.2.Product Validation Build (PV) :产品验证阶段。 2.2. 3.Manufacturing Verification Build (MV) :制造验证阶段。 2.2.4.Mass Production (MP) :量产。 2.2.5.Engineering Change Request (ECR) :工程变更要求。 2.2.6.ORT: Ongoing Reliability Test 2.2.7.RoHS: 全名为「电机电子产品中有害物质禁限用指令(The Restriction of Hazardous Substances in Electrical and Electronic Equipment (ROHS) Directive (2002/95/EC)」。为欧盟在2003年所公布的环保指令,RoHS管 制产品在生产阶段中含有害物质的最大量。 2.2.8.WEEE: 为「废电机电子产品指令 (Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC)」为欧盟在2003年所公布的环保指令, WEEE则管制产品在废弃阶段必须回收的比率及方式。 2.2.9.IECQ QC 080000 HSPM: 「国际电工技术委员会 (International Electrotechnical Commission , IEC)」 下「国际电子零件认证制度(IEC Quality Assessment System for Electronic Components, IECQ)」所核可的有害物质管理(Hazardous Substance Process Management, HSPM) 标准。 2.2.10.有害物质流程管理(Hazardous Substance Process Management, HSPM): 建立在ISO 9001:2000的质量管理系统之上,以「流程导向」的方法,管理 有害物质在产品的使用,并逐步达成全产品无有害物质的目标。 2.2.11.绿色产品(Green product GP): 在产品生命周期过程中,指符合EU RoHS或客户的环保要求,或是不同地 区、国家所订定的相关规定之产品。 2.2.12.绿色零组件(Green component): 指符合 EU RoHS或客户的环保要求,或是不同地区、国家所订定的相关规

电机控制器可靠性测试流程

电机控制器可靠性测试 文件编号______________________________________ 版次______________________________________ 受控编号______________________________________ 编制________________ _____年____月____日审核________________ _____年____月____日审定________________ _____年____月____日批准________________ _____年____月____日 年月日发布年月日实施

目录 目录 (1) 1 简介 (2) 2 系统组成 (2) 2.1 试验电源 (2) 2.2电力测功机系统 (2) 2.3机械台架系统 (2) 2.4电机参数测量采集系统 (2) 3 实验准备 (2) 3.1 仪器准确度 (2) 3.2 测量要求 (2) 3.3 试验电源 (3) 3.4 布线 (3) 3.5 冷却装置 (3) 4 试验项目 (3) 5 盐雾试验 (3) 5.1 试验目的 (3) 5.2 适用范围 (3) 5.3 操作设备 (3) 5.4 操作程序 (4) 5.4.1准备工作 (4) 5.4.2操作步骤 (4) 5.4.3注意事项 (4) 5.5结果记录 (4) 5.6试验报告 (5) 6 温升试验 (5) 6.1 试验目的 (5) 6.2 适用范围 (5) 6.3 试验设备 (5) 6.4 操作程序 (5) 6.5 注意事项 (6) 6.6 试验报告 (6) 7 振动试验 (6) 7.1试验目的 (6) 7.2适用范围 (6) 7.3试验设备 (6) 7.4试验程序 (6) 7.5 试验报告 (6) 8 老化试验 (7) 8.1试验目的 (7) 8.2适用范围 (7) 8.3试验设备 (7) 8.4试验程序 (7) 8.5试验报告 (7)

WLCSP器件焊点可靠性

Rate-dependent properties of Sn–Ag–Cu based lead-free solder joints for WLCSP Y.A.Su a ,L.B.Tan a ,T.Y.Tee b ,V.B.C.Tan a,* a National University of Singapore,Department of Mechanical Engineering,9Engineering Drive 1,Singapore 117576,Singapore b Amkor Technology,Inc.,2Science Park Drive,Singapore 118222,Singapore a r t i c l e i n f o Article history: Received 22July 2009 Received in revised form 18January 2010Available online 24February 2010 a b s t r a c t The increasing demand for portable electronics has led to the shrinking in size of electronic components and solder joint dimensions.The industry also made a transition towards the adoption of lead-free solder alloys,commonly based around the Sn–Ag–Cu alloys.As knowledge of the processes and operational reli-ability of these lead-free solder joints (used especially in advanced packages)is limited,it has become a major concern to characterise the mechanical performance of these interconnects amid the greater push for greener electronics by the European Union. In this study,bulk solder tensile tests were performed to characterise the mechanical properties of SAC 105(Sn–1%wt Ag–0.5%wt Cu)and SAC 405(Sn–4%wt Ag–0.5%wt Cu)at strain rates ranging from 0.0088s à1to 57.0s à1.Solder joint array shear and tensile tests were also conducted on wafer-level chip scale package (WLCSP)specimens of different solder alloy materials under two test rates of 0.5mm/s (2.27s à1)and 5mm/s (22.73s à1).These WLCSP packages have an array of 12?12solder bumps (300l m in diameter);and double redistribution layers with a Ti/Cu/Ni/Au under-bump metallurgy (UBM)as their silicon-based interface structure. The bulk solder tensile tests show that Sn–Ag–Cu alloys exhibit higher mechanical strength (yield stress and ultimate tensile strength)with increasing strain rate.A rate-dependent model of yield stress and ultimate tensile strength (UTS)was developed based on the test results.Good mechanical perfor-mance of package pull-tests at high strain rates is often correlated to a higher percentage of bulk solder failures than interface failures in solder joints.The solder joint array tests show that for higher test rates and Ag content,there are less bulk solder failures and more interface failures.Correspondingly,the aver-age solder joint strength,peak load and ductility also decrease under higher test rate and Ag content.The solder joint results relate closely to the higher rate sensitivity of SAC 405in gaining material strength which might prove detrimental to solder joint interfaces that are less rate sensitive.In addition,speci-mens under shear yielded more bulk solder failures,higher average solder joint strength and ductility than specimens under tension. ó2010Elsevier Ltd.All rights reserved. 1.Introduction Electronic components are shrinking in size to meet demands for lightweight and feature ?lled portable electronic products.This leads to decreasing solder joint dimensions,where mechanical reli-ability has become an issue [1],especially under high strain rate conditions during testing,transport and handling,impact loading under automotive [2]and consumer portable applications. Tin lead alloy (SnPb)was commonly used as a solder material in microelectronic packaging,but it is also hazardous to the environ-ment and health.Therefore,the industry made a transition to lead-free solders,with the implementation a ban on lead (Pb)from elec-tronic products by the EU RoHS (restriction of the use of certain hazardous substances in electrical and electronic equipment)in July 2006.The transition to lead-free solders is led by the widely adopted Sn–Ag–Cu (SAC)eutectic [3].However,some studies have shown that standard SAC alloys such as SAC 405(Sn–4%wt Ag–0.5%wt Cu)have poorer mechanical performance than eutectic SnPb under high strain rate conditions [4].Moreover,with the increasing popularity of portable devices,the performance of Sn–Ag–Cu solder joints under high strain rate and large rate ranges typical of drop impact situations is a major concern. In this study,dogbone-shaped bulk material tensile tests were conducted to investigate the effect of strain rate and silver content on the material properties of Sn–Ag–Cu solders.Solder joint array shear and tensile experiments were conducted on WLCSP speci-mens of different alloy materials under different strain rates and loading orientations to investigate the effects of strain rate,silver content in Sn–Ag–Cu solder joints,and loading orientation on microelectronic packages.Failure analyses were also performed on the fractured dogbone-shaped bulk material test specimens and WLCSP solder joints. 0026-2714/$-see front matter ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.microrel.2010.01.043 *Corresponding author. E-mail address:mpetanbc@https://www.wendangku.net/doc/5c7906758.html,.sg (V.B.C.Tan). Microelectronics Reliability 50(2010) 564–576 Contents lists available at ScienceDirect Microelectronics Reliability journal homepage:w w w.e l s e v i e r.c o m /l oc a t e /m i c r o r e l

焊点可靠性研究

SMT焊点可靠性研究 近几年,随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的 飞速发展,SMT焊点可靠性问题成为普遍关注的焦点问题。 与通孔组装技术THT(Through Hole Technology)相比,SMT在焊点结构特征上存在着很大的差异。THT焊点因为镀通孔内引线和导体铅焊后,填缝铅料为焊点提供了主要的机械强度和可靠性,镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素,一般只需具有润湿良好的特征就可以被接受。但在表面组装技术中,铅料的填缝尺寸相对较小,铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用,焊点的可靠性与THT焊点相比要 低得多,铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。 另外,表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较 大,当温度升高时,这种热膨胀差必须全部由焊点来吸收。如果温度超过铅料的使用温度范围,则在焊点处会产生很大的应力最终导致产品失效。对于小尺寸组件,虽然因材料的CTE 失配而引起的焊点应力水平较低,但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。因此,焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。 80年代以来,随着电子产品集成水平的提高,各种形式、各种尺寸的电子封装器件不断推出,使得电子封装产品在设计、生产过程中,面临如何合理地选择焊盘图形、焊点铅料量以及如何保证焊点质量等问题。同时,迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断、对工艺参数的设置做出决策。目前,在表面组装组件的封装和引线设计、焊盘图形设计、焊点铅料量的选择、焊点形态评定等方面尚未能形成合理统一的标准或规则,对工艺参数的选择、焊点性能的评价局限于通过大量的实验估测。因此,迫切需要寻找一条方便有效的分析焊点可靠性的途径,有效地提高表面组装技术的设计、工艺水平。 研究表明,改善焊点形态是提高SMT焊点可靠性的重要途径。90年代以来,关于焊点 形成及焊点可靠性分析理论有大量文献报导。然而,这些研究工作都是专业学者们针对焊点 可靠性分析中的局部问题进行的,尚未形成系统的可靠性分析方法,使其在工程实践中的具体应

相关文档
相关文档 最新文档