文档库 最新最全的文档下载
当前位置:文档库 › 遗传算法的基本原理

遗传算法的基本原理

遗传算法的基本原理
遗传算法的基本原理

遗传算法的基本原理

遗传算法类似于自然进化,通过作用于染色体上的基因寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始群体;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群。对这个新种群进行下一轮进化。这就是遗传算法的基本原理。

下面就是遗传算法思想:

(1) 初始化群体;

(2) 计算群体上每个个体的适应度值;

(3) 按由个体适应度值所决定的某个规则选择将进入下一代的个体;

(4) 按概率PX进行交叉操作;

(5) 按概率PM进行突变操作;

(6) 没有满足某种停止条件,则转第(2)步,否则进入(7)。

(7) 输出种群中适应度值最优的染色体作为问题的满意解或最优解。

程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。

根据遗传算法思想可以画出如右图所示的简单遗传算法框图:

图 3.22 简单遗传算法框图

遗传算法的选择算子

选择即从当前群体中选择适应值高的个体以生成交配池的过程. 遗传算法中最常用的选择方式是轮盘赌(Roulette Wheel)选择方式, 也称比例选择或复制. 在该方法中, 各个个体被选择的概率和其适应度值成比例. 设群体规模大小为N, 个体i 的适应度值为Fi , 则这个个体

被选择的概率为:显然, 个体适应度越大, 其被选择的概率越高, 反之亦然.遗传算法另一种常用的选择方式是锦标赛选择方式, 其基本思想是将上一代群体中的个体和本次遗传操作产生的所有新个体放到一起按适值从大到小的顺序排队, 然后取排在前面的N 个(N 为群体规模)个体组成新一代群体.遗传算法的交叉算子作用于某 2 个父代个体时, 会产生2 个子代个体, 父子2 代共4 个个体平等竞争, 淘汰2 个低适值个体, 保留 2 个高适值个体. 遗传算法的变异算子作用于某一父代个体时,会产生一个子代个体, 如果子代个体的适值比父代个体的高, 则用子代个体取代父代个体; 否则保

留父代个体淘汰子代个体, 这就是父子竞争选择.遗传算法初始群体中的个体一般是随机产生的, 初始群体中的个体均匀地分布于整个串空间.在遗传迭代的早期, 群体中个体适值差别很大, 按上述3 种选择方式容易出现的问题是: 在选择下一代群体时, 适值低的个体被选中的机会很小, 最佳个体在下一代的生存机会将显著增加, 而最差个体的生存机会将被剥夺,低适值个体淘汰太快容易使算法收敛于局部最优解. 群体中的最佳个体

快速充满整个群体, 导致群体多样性降低, GA 也过早地丧失了进化能力. 而到了遗传迭代的晚期,群体中个体适值差别不大, 算法收敛速度慢. 此外,遗传算法只有在引入了最优保持操作后才是全局收敛的. 因此, 我们提出改进的选择策略, 先对群体中个体的适值进行变换, 再按个体适值大小的比例进行选择. 具体方法是: 先将参与选择的X 个个体按适值从小到大顺序编号(相同适值的个体可随意排列), 然后以个体的序号作为其变换后的适值, 即X 个个体的适值分别变换为1, 2, 3,?, X. 编号为m 的个体被选中的概率为p=m /X , 1≤m≤

X. 显然, 这种改进的选择与个体的适应值无直接关系, 仅仅与个体之间的适应值相对大小有关. 这种策略一方面通过对群体中个体适值的变换, 使群体中的个体在遗传迭代的整个过程中都能保持良好的多样性, 既保证了算法具有较快的收敛速度, 又能防止算法收敛于局部最优解; 另一方面能使上一代的最优个体一定会被选择到下一代, 即这种选择策略隐含了最优保持操作, 保证了算法的全局收敛性. 由于选择概率比较容易控制, 所以

适用于动态调整选择概率, 根据进化效果适时改变群体选择压力.

即轮盘赌选择方式、联赛选择方式和父子竞争选择方式, 前一种选择方式在引入了最优保持操作后能保证算法的全局收敛性, 但收敛速度较慢; 后2种选择方式不能保证算法的全局收敛性, 很可能收敛于局部最优解, 但有较快的收敛速度. 因此,

适当选择遗传算法的选择方式对提高算法的计算

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

多目标遗传算法代码

. % function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance

第三章-遗传算法的理论基础

第三章 遗传算法的理论基础 遗传算法有效性的理论依据为模式定理和积木块假设。模式定理保证了较优的模式(遗传算法的较优解)的样本呈指数级增长,从而满足了寻找最优解的必要条件,即遗传算法存在着寻找到全局最优解的可能性。而积木块假设指出,遗传算法具备寻找到全局最优解的能力,即具有低阶、短距、高平均适应度的模式(积木块)在遗传算子作用下,相互结合,能生成高阶、长距、高平均适应度的模式,最终生成全局最优解。Holland 的模式定理通过计算有用相似性,即模式(Pattern)奠定了遗传算法的数学基础。该定理是遗传算法的主要定理,在一定程度上解释了遗传算法的机理、数学特性以及很强的计算能力等特点。 3.1 模式定理 不失一般性,本节以二进制串作为编码方式来讨论模式定理(Pattern Theorem)。 定义3.1 基于三值字符集{0,1,*}所产生的能描述具有某些结构相似性的0、1字符串集的字符串称作模式。 以长度为5的串为例,模式*0001描述了在位置2、3、4、5具有形式“0001”的所有字符串,即(00001,10001) 。由此可以看出,模式的概念为我们提供了一种简洁的用于描述在某些位置上具有结构相似性的0、1字符串集合的方法。 引入模式后,我们看到一个串实际上隐含着多个模式(长度为 n 的串隐含着2n 个模式) ,一个模式可以隐含在多个串中,不同的串之间通过模式而相互联系。遗传算法中串的运算实质上是模式的运算。因此,通过分析模式在遗传操作下的变化,就可以了解什么性质被延续,什么性质被丢弃,从而把握遗传算法的实质,这正是模式定理所揭示的内容 定义3.2 模式H 中确定位置的个数称作该模式的阶数,记作o(H)。比如,模式 011*1*的阶数为4,而模式 0* * * * *的阶数为1。 显然,一个模式的阶数越高,其样本数就越少,因而确定性越高。 定义3.3 模式H 中第一个确定位置和最后一个确定位置之间的距离称作该模式的定义距,记作)(H δ。比如,模式 011*1*的定义距为4,而模式 0* * * * *的定义距为0。 模式的阶数和定义距描述了模式的基本性质。 下面通过分析遗传算法的三种基本遗传操作对模式的作用来讨论模式定理。令)(t A 表示第t 代中串的群体,以),,2,1)((n j t A j =表示第t 代中第j 个个体串。 1.选择算子 在选择算子作用下,与某一模式所匹配的样本数的增减依赖于模式的平均适值,与群体平均适值之比,平均适值高于群体平均适值的将呈指数级增长;而平均适值低于群体平均适值的模式将呈指数级减少。其推导如下: 设在第t 代种群)(t A 中模式所能匹配的样本数为m ,记为),(t H m 。在选择中,一个位串 j A 以概率/j j i P f f =∑被选中并进行复制,其中j f 是个体)(t A j 的适应度。假设一代中群体 大小为n ,且个体两两互不相同,则模式H 在第1+t 代中的样本数为:

遗传算法与优化问题

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm —GA),就是模拟达尔文的遗传选择与自然淘汰的生物进化过程的计算模型,它就是由美国Michigan大学的J、Holla nd教授于1975 年首先提出的?遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算? 1. 遗传算法的基本原理 遗传算法的基本思想正就是基于模仿生物界遗传学的遗传过程?它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体?这个群体在问题特定的环境里生存 竞争,适者有最好的机会生存与产生后代?后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解?值得注意的一点就是,现在的遗传算法就是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身就是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法就是由进化论与遗传学机理而产生的直接搜索优化方法;故而 在这个算法中要用到各种进化与遗传学的概念? 首先给出遗传学概念、遗传算法概念与相应的数学概念三者之间的对应关系这些概念

(2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要就是:先把问题的解表示成“染色体”,在算法中也就就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则从中选 择出较适应环境的“染色体”进行复制 ,再通过交叉、变异过程产生更适 应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就就是问题的最优解. 下面给出遗传算法的具体步骤,流程图参见图1: 第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间; 第二步:定义适应函数,便于计算适应值; 第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数; 第四步:随机产生初始化群体; 第五步:计算群体中的个体或染色体解码后的适应值; 第六步:按照遗传策略,运用选择、交叉与变异算子作用于群体,形成下一代群体; 第七步:判断群体性能就是否满足某一指标、或者就是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步. 图1 一个遗传算法的具体步骤

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

遗传算法的基本原理

第二章 遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f S x ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ? S x ∈,(ρi i b a <,i 12)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P ; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码 由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。遗传算子在GA 编码空间中对位串个体进行操作。 定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。 1)2)3)它们对1) 2) k =1,2,…,K; l =1,2,…,L; K=2L 其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。表示精度为)12/()(--=?L u v x 。 将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为: 对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制

多目标遗传算法中文【精品毕业设计】(完整版)

一种在复杂网络中发现社区的多目标遗传算法 Clara Pizzuti 摘要——本文提出了一种揭示复杂网络社区结构的多目标遗传算法。该算法优化了两个目标函数,这些函数能够识别出组内节点密集连接,而组间连接稀疏。该方法能产生一系列不同等级的网络社区,其中解的等级越高,由更多的社区组成,被包含在社区较少的解中。社区的数量是通过目标函数更佳的折衷值自动确定的。对合成和真实网络的实验,结果表明算法成功地检测到了网络结构,并且能与最先进的方法相比较。 关键词:复杂网络,多目标聚类,多目标进化算法 1、简介 复杂网络构成了表示组成许多真实世界系统的对象之间关系的有效形式。协作网络、因特网、万维网、生物网络、通信传输网络,社交网络只是一些例子。将网络建模为图,节点代表个体,边代表这些个体之间的联系。 复杂网络研究中的一个重要问题是社区结构[25]的检测,也被称作为聚类[21],即将一个网络划分为节点组,称作社区或簇或模块,组内连接紧密,组间连接稀疏。这个问题,如[21]指出,只有在建模网络的图是稀疏的时候才有意义,即边的数量远低于可能的边数,否则就类似于数据簇[31]。图的聚类不同于数据聚类,因为图中的簇是基于边的密度,而在数据聚类中,它们是与距离或相似度量紧密相关的组点。然而,网络中社区的概念并未严格定义,因为它的定义受应用领域的影响。因此,直观的理解是同一社区内部边的数量应该远多于连接图中剩余节点的边的数量,这构成了社区定义的一般建议。这个直观定义追求两个不同的目标:最大化内部连接和最小化外部连接。 多目标优化是一种解决问题的技术,当多个相互冲突的目标被优化时,成功地找到一组解。通过利用帕累托最优理论[15]获得这些解,构成了尽可能满足所有目标的全局最优解。解决多目标优化问题的进化算法取得成功,是因为它们基于种群的特性,同时产生多个最优解和一个帕累托前沿[5]的优良近似。 因此,社区检测能够被表述为多目标优化问题,并且帕累托最优性的框架可以提供一组解对应于目标之间的最佳妥协以达到最优化。事实上,在上述两个目标之间有一个折衷,因为当整个网络社区结构的外部连接数量为空时,那它就是最小的,然而簇密度不够高。 在过去的几年里,已经提出了许多方法采用多目标技术进行数据聚类。这些方法大部分在度量空间[14], [17],[18], [28], [38], [39], [49], [51]聚集目标,虽然[8]中给出了分割图的一个方法,并且在[12]中描述了网络用户会议的一个图聚类算法。 本文中,一个多目标方法,名为用于网络的多目标遗传算法(MOGA-Net),通过利用提出的遗传算法发现网络中的社区。该方法优化了[32]和[44]中介绍的两个目标函数,它们已被证实在检测复杂网络中模块的有效性。第一个目标函数利用了community score的概念来衡量对一个网络进行社区划分的质量。community score值越高,聚类密度越高。第二个目标函数定义了模块中节点fitness的概念,并且反复迭代找到节点fitness总和最大的模块,以下将这个目标函数称为community fitness。当总和达到最大时,外部连接是最小。两个目标函数都有一个正实数参数控制社区的规模。参数值越大,找到的社区规模越小。MOGA-Net利用这两个函数的优点,通过有选择地探索搜寻空间获得网络中存在的社区,而不需要提前知道确切的社区数目。这个数目是通过两个目标之间的最佳折衷自动确定的。 多目标方法的一个有趣结果是它提供的不是一个单独的网络划分,而是一组解。这些解中的每一个都对应两个目标之间不同的折衷,并对应多种网络划分方式,即由许多不同簇组成。对合成网络和真实网络的实验表明,这一系列帕累托最优解揭示了网络的分层结构,其中簇的数目较多的解包含在社区数目较少的解中。多目标方法的这个特性提供了一个很好的机会分析不同层级

多目标遗传算法代码

% function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance % corresponding to their position in the front they belong. 真是牛X了。 chromosome = non_domination_sort_mod(chromosome,pro); %% Start the evolution process

遗传算法基本原理111

第二章遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S作为搜索空间,f:S—>R为目标函数,全局优化问题作为任务给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值称为一个全局最大值,当且仅当成立时,被称为一个全局最大值点(全局最 大解)。 局部极大值与局部极大值点(解)的定义: 假设在S上给定了某个距离度量,如果对,,使得对, ,则称x’为一个局部极大值点,f(x’)为一个局部极大 值。当目标函数有多个局部极大点时,被称为多峰或多模态函数(multi-modality function)。 主要考虑两类搜索空间: 伪布尔优化问题:当S为离散空间B L={0,1}L,即所有长度为L且取值为0或1的二进制位串的集合时,相应的优化问题在进化计算领域称为伪布尔优化问题。 连续参数优化问题:当取S伪n维实数空间R n中的有界集合,其中,i = 1, 2, … , n时,相应的具有连续变量的优化问题称为连续参数优化问题。 对S为B L={0,1}L,常采用的度量时海明距离,当时,常采用的度量就是欧氏距离。 2.1.2 遗传算法的基本流程

遗传算法的基本步骤如下: 1)选择编码策略,把参数集合X和域转换为位串结构空间S; 2)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。 2.1.3 遗传编码 由于GA计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA个体的表现型集合做组成的空间称为问题(参数)空间,由GA基因型个体所组成的空间称为GA编码空间。遗传算子在GA

遗传算法的基本原理

遗传算法的基本原理 遗传算法类似于自然进化,通过作用于染色体上的基因寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始群体;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群。对这个新种群进行下一轮进化。这就是遗传算法的基本原理。 下面就是遗传算法思想: (1) 初始化群体; (2) 计算群体上每个个体的适应度值; (3) 按由个体适应度值所决定的某个规则选择将进入下一代的个体; (4) 按概率PX进行交叉操作; (5) 按概率PM进行突变操作; (6) 没有满足某种停止条件,则转第(2)步,否则进入(7)。 (7) 输出种群中适应度值最优的染色体作为问题的满意解或最优解。 程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。 根据遗传算法思想可以画出如右图所示的简单遗传算法框图: 图 3.22 简单遗传算法框图 遗传算法的选择算子 选择即从当前群体中选择适应值高的个体以生成交配池的过程. 遗传算法中最常用的选择方式是轮盘赌(Roulette Wheel)选择方式, 也称比例选择或复制. 在该方法中, 各个个体被选择的概率和其适应度值成比例. 设群体规模大小为N, 个体i 的适应度值为Fi , 则这个个体

(完整版)遗传算法的基本原理

遗传算法的基本原理和方法 一、编码 编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。 解码(译码):遗传算法解空间向问题空间的转换。 二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。 格雷码(Gray Code):在相邻整数之间汉明距离都为1。 (较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。 二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。 动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。 编码方法:

1、二进制编码方法 缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则 2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。 3、浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。 4、各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。 5、多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。评估编码的三个规范:完备性、健全性、非冗余性。 二、选择 遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。 常用的选择算子: 1、轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

多目标规划遗传算法

%遗传算法解决多目标函数规划 clear clc syms x; %Function f1=f(x) f1=x(:,1).*x(:,1)/4+x(:,2).*x(:,2)/4; %function f2=f(x) f2=x(:,1).*(1-x(:,2))+10; NIND=100; MAXGEN=50; NV AR=2; PRECI=20; GGPA=0.9; trace1=[]; trace2=[]; trace3=[]; FielD=[rep([PRECI],[1,NV AR]);[1,1;4,2];rep([1;0;1;1],[NV AR])]; Chrom=crtbp(NIND,NV AR*PRECI); v=bs2rv(Chrom,FielD); gen=1; while gen

多变量多目标的遗传算法程序

这是我在解决电梯动力学参数写的简单遗传算法(程序带目标函数值、适应度值计算,但是我的适应度函数因为目标函数的计算很特殊,一起放在了程序外面计算,在此不提供)。 头文件: // CMVSOGA.h : main header file for the CMVSOGA.cpp // 本来想使用链表里面套链表的,程序调试比较麻烦,改为种群用链表表示 //染色体固定为16的方法。 #if !defined(AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767_ _INCLUDED_) #define AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767__INCLUDED _ #if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 #include "Afxtempl.h" #define variablenum 16 class CMVSOGA { public: CMVSOGA(); void selectionoperator(); void crossoveroperator(); void mutationoperator(); void initialpopulation(int, int ,double ,double,double *,double *); //种群初始化 void generatenextpopulation(); //生成下一代种群 void evaluatepopulation(); //评价个体,求最佳个体 void calculateobjectvalue(); //计算目标函数值 void calculatefitnessvalue(); //计算适应度函数值 void findbestandworstindividual(); //寻找最佳个体和最差个体 void performevolution(); void GetResult(double *); void GetPopData(double **); void SetValueData(double *); void maxandexpectation(); private: struct individual { double chromosome[variablenum]; //染色体编码长度应该为变量的个数 double value; double fitness; //适应度 };

遗传算法的基本原理与方法

遗传算法的基本原理与方法--笔记 遗传算法的实现有6个主要因素:参数的编码、初始种群的设定、适应度函数的设计、遗传操作、算法控制参数的设定、约束条件的处理。 基因gene 染色体chromosome 群体population 复制reproduction 交叉crossover 变异mutation 适应性fitness SGA 基本遗传算法(Simple Genetic Algorithm)遗传算子Genetic Operator SGA基本步骤 1.染色体编码与解码 2.个体适应度的检测评估 3.遗传算子(选择运算使用比例选择算子、交叉运算使用单点交叉算子、变异运算使用基本位变异算子或者均匀变异算子) 4.运行的主要参数:M群体规模T终止条件Pc交叉概率Pm变异概率。 优化问题的基本遗传算法构造过程: 1.确定决策变量和约束条件 2.建立优化模型 3.确定编码方法 4.确定解码方法 5.确定个体评价方法 6.设计遗传算子和确定遗传算法的运行参数。 一、编码(Coding and Decoding) 编码:把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法。 解码:由遗传算法解空间向问题空间的转换。 二进制编码的缺点之一是Hamming Cliff 海明悬崖:某些相邻整数的二进制代码间有很大的海明距离,使得交叉和突变都难以跨越。 De Jong依据模式定理,提出的编码准则: 1、积木块规则:编码应当易于生成与所求问题相关的短距和低阶的积木块。 2、最小字符集规则:编码应采用最小字符集以使问题得到自然的表示和描述。 主要的编码方法有:二进制编码、格雷码、浮点数编码、多参数级联编码、多参数交叉编码。 编码的评估策略:完备性、健全性、非冗余性 二、选择 选择是在群体中选择生命力强的个体产生新的群体的过程。 根据每个个体的适应度值大小选择,适应度较高的个体被遗传到下一代群体的概率较

最优控制-遗传算法综述

最优控制论文遗传算法的发展

摘要 最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。 最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。目前研究最优控制理论最活跃的领域有神经网络优化、模拟退火算法、趋化性算法、遗传算法、鲁棒控制、预测控制、混沌优化控制以及稳态递阶控制等。 作为一种比较新的一种新的优化算法—遗传算法(Genetic Algorithm, 简称G A )正在迅速发展。 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。近年来,由于遗传算法求解复杂优化问题的巨大潜力及其在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注。本文介绍了遗传算法的研究现状,描述了它的主要特点和基本原理,概述了它的理论、技术和应用领域,讨论了混合遗传算法和并行遗传算法,指出了遗传算法的研究方向,并对遗传算法的性能作了分析。

目录 1 前言 (1) 2 遗传算法基本理论 (1) 2.1 遗传算法的基本步骤 (1) 2.2 遗传算法的现状 (2) 2.3 遗传算法的应用 (3) 2.3.1函数优化 (3) 2.3.2组合优化 (4) 2.3.3生产调度问题 (4) 2.3.4自动控制 (4) 2.3.5机器人学 (4) 2.3.6图像处理 (4) 2.3.7人工生命 (5) 2.3.8遗传编程 (5) 2.3.9机器学习 (5) 2.3.10数据挖掘 (5) 3 遗传算法的研究方向 (5) 参考文献 (7)

人工智能遗传算法实验报告

人工智能实验报告 学号: 姓名: 实验名称:遗传算法 实验日期:

【实验名称】遗传算法 【实验目的】 掌握遗传算法的基本原理,熟悉遗传算法的运行机制,学会用遗传算法来求解问题。【实验原理】 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。 遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 遗传算法程度流程图为:

【实验内容】 题目:已知f(x)=x*sin(x)+1,x [0,2],求f(x)的最大值和最小值。 数据结构: struct poptype { double gene[length];[0,2]x π∈22 623 22*102; π<<() 222221 2 010 b b ......b 2'i i i b x =?? =?= ???∑23 2'21 x x π=-g max ()5sin 6; eval f x x x =+=+min ()5sin 4;eval f x x x =-+=-+ene[j]=r and()%2; void transform()ealnumber=0; for(j=0;j<23;j++)

遗传算法基本原理

遗传算法 生物的进化是一个奇妙的优化过程,它通过选择淘汰,突然变异,基因遗传等规律产生适应环境变化的优良物种。遗传算法是根据生物进化思想而启发得出的一种全局优化算法。 遗传算法的概念最早是由Bagley J.D在1967年提出的;而开始遗传算法的理论和方法的系统性研究的是1975年,这一开创性工作是由Michigan大学的J.H.Holland所实行。当时,其主要目的是说明自然和人工系统的自适应过程。 遗传算法简称GA(Genetic Algorithm),在本质上是一种不依赖具体问题的直接搜索方法。遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。在人工智能研究中,现在人们认为“遗传算法、自适应系统、细胞自动机、混沌理论与人工智能一样,都是对今后十年的计算技术有重大影响的关键技术”。 3.2.1 遗传算法的基本概念 遗传算法的基本思想是基于Darwin进化论和Mendel的遗传学说的。 Darwin进化论最重要的是适者生存原理。它认为每一物种在发展中越来越适应环境。物种每个个体的基本特征由后代所继承,但后代又会产生一些异于父代的新变化。在环境变化时,只有那些熊适应环境的个体特征方能保留下来。 Mendel遗传学说最重要的是基因遗传原理。它认为遗传以密码方式存在细胞中,并以基因形式包含在染色体内。每个基因有特殊的位置并控制某种特殊性质;所以,每个基因产生的个体对环境具有某种适应性。基因突变和基因杂交可产生更适应于环境的后代。经过存优去劣的自然淘汰,适应性高的基因结构得以保存下来。 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念。这些概念如下: 一、串(String) 它是个体(Individual)的形式,在算法中为二进制串,并且对应于遗传学中的染色体(Chromosome)。 二、群体(Population) 个体的集合称为群体,串是群体的元素 三、群体大小(Population Size)

相关文档