文档库 最新最全的文档下载
当前位置:文档库 › 专题37 空间几何体(知识梳理)(新高考地区专用)(原卷版)

专题37 空间几何体(知识梳理)(新高考地区专用)(原卷版)

专题37 空间几何体(知识梳理)(新高考地区专用)(原卷版)
专题37 空间几何体(知识梳理)(新高考地区专用)(原卷版)

专题37 空间几何体(知识梳理)

一、空间几何体

1、空间几何体的基本定义

如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。

围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。 几何体不是实实在在的物体。

平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。

例1-1.下列是几何体的是( )。

A 、方砖

B 、足球

C 、圆锥

D 、魔方

例1-2.判断下列说法是否正确:

(1)平静的湖面是一个平面。 ( )

(2)一个平面长3cm ,宽4cm 。 ( )

(3)三个平面重叠在一起,比一个平面厚。 ( )

(4)书桌面是平面。 ( )

(5)通过改变直线的位置,可以把直线放在某个平面内。 ( )

(6)平行四边形是一个平面。 ( )

(7)长方体是由六个平面围成的几何体。 ( )

(8)任何一个平面图形都是一个平面。 ( )

(9)长方体一个面上任一点到对面的距离相等。 ( )

(10)空间图形中先画的线是实线,后画的线是虚线。 ( )

(11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。 ( ) 例1-3.下列说法正确的是 。

①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。

[多选]例1-4.下列说法正确的是( )。

A 、任何一个几何体都必须有顶点、棱和面

B 、一个几何体可以没有顶点

C 、一个几何体可以没有棱

D 、一个几何体可以没有面

例1-5.如图所示的是平行四边形ABCD 所在的平面,有下列表示方法:①平面ABCD ;②平面BD ;③平面AD ;④平面ABC ;⑤AC ;⑥平面α。其中不正确的是( )。

A 、④⑤

B 、③④⑤

C 、②③④⑤

D 、③⑤

例1-6.下列结论正确的个数有( )。

①曲面上可以存在直线;②平面上可存在曲线;③曲线运动的轨迹可形成平面;④直线运动的轨迹可形成曲面;⑤曲面上不能画出直线。

A 、2个

B 、3个

C 、4个

D 、5个

2、斜二测画法及相关计算

(1)用斜二测画法作水平放置的平面图形的直观图的步骤:

①画轴:在平面图形上取互相垂直的x 轴和y 轴,作出与之对应的x '轴和y '轴,使得它们正方向的夹角为 45(或 135);

②画线(取长度):平面图形中与x 轴平行(或重合)的线段画出与x '轴平行(或重合)的线段,且长度不变, 平面图形中与y 轴平行(或重合)的线段画出与y '轴平行(或重合)的线段,且长度为原来长度的一半;

③连续(去辅助线):连接有关线段,擦去做图过程中的辅助线。

讲解:用斜二测画法作水平放置的平面图形的直观图时,关键是分别作出其中与x 轴和y 轴平行(或重合)的线段。

(2)按照斜二测画法得到的平面图形的直观图与原图形面积的关系: ①原图形

直观图S S 42=; ②直观图原图形S S 22=。

例2-1.判断对错:

(1)相等的角在直观图中对应的角仍然相等;相等的线段在直观图中对应的线段仍然相等。 ( )

(2)平行的线段在直观图中对应的线段仍然平行。 ( )

(3)线段的中点在直观图中仍然是线段的中点。 ( )

(4)利用斜二测画法画直观图时,①三角形的直观图还是三角形; ( )

②平行四边形的直观图还是平行四边形; ( )

③正方形的直观图还是正方形; ( )

④菱形的直观图还是菱形。 ( )

例2-2.关于斜二测画法画直观图说法不正确的是( )。

A 、在实物图中取坐标系不同,所得的直观图有可能不同

B 、平行于坐标轴的线段在直观图中仍然平行于坐标轴

C 、平行于坐标轴的线段长度在直观图中仍然保持不变

D 、斜二测坐标系取的角可能是 135

例2-3.用斜二测画法画出图中水平放置的四边形OABC 的直观图并说明画法。

例2-4.画出底面是正方形,侧棱均相等的四棱锥的直观图并说明画法。

例2-5.如图,C B A '''?是水平放置的ABC ?斜二测画法的直观图,6=''C A ,4=''C B ,能否判断ABC ?的形状并求B A ''边的实际长度是多少?

例2-6.如图,一个平面图形的斜二测画法的直观图是一个边长为a 的正方形C B A O '''',则原平面图形的周长和面积分别为( )。

A 、a 2 242a

B 、a 8 222a

C 、a 2a

D 、a 2 22a

二、构成空间几何体的基本元素

1、构成空间几何体的基本元素

点、线、面是构成空间几何体的基本元素。

(1)点是元素,直线(线段)是点的集合,平面是点的集合(也是线的集合)。

(2)线段是直线的子集,直线是平面的子集。线段、直线、平面都是无限集。

(3)线有直线和曲线之分。面有平面和曲面之分。

2、平面及其表示方法

(1)平面的概念:平面是处处平直的面,它是向四面八方无限延展的。

(2)平面的表示方法:

图形表示

在立体几何中,通常画一个平行四边形表示一个平面,并把它想象成无限延展的

符号表示 平面一般用希腊字母α、β、γ…来命名, 还可以用表示它的平行四边形对角顶点的字母来命名

(1)

(2)

(3)面动成体:面运动的轨迹(经过的空间部分)可以形成一个几何体。

4、点、线、面的位置关系

(1)空间中直线与直线的位置关系

空间中直线与直线有相交、平行与既不相交也不平行三种位置关系。

(2)空间中直线与平面的位置关系

①直线在平面内;

②直线与平面平行:直线与平面没有公共点;

③直线与平面相交:直线与平面有且只有一个公共点。

讲解:直线与平面垂直:观察直线1AA 和平面AC ,我们看到直线1AA 和平面内的两条相交直线AB 和AD 都垂直,容易想象,当AD 在平面AC 内绕点A 旋转到任何位置时,都会与1AA 垂直。直线1AA 给我们与平面AC 垂直的形象,这时我们说直线1AA 和平面AC 垂直,点A 为垂足,记作直线⊥1AA 平面AC 。直线1AA 称作平面AC 的垂线,平面AC 称作直线1AA 的垂面。

点到平面的距离:在上图中,容易验证,线段1AA 为点1A 到平面AC 内的点所连线段的最短的一条,线段1AA 的长称作点1A 到平面AC 的距离。

5、空间中平面与平面的位置关系

(1)两个平面相交:两个平面相交于一条直线,此时我们说这两个平面相交、如果两个平面相交,并且其中一个平面通过另一个平面的一条垂线,这两个平面就给我们互相垂直的形象,这时,我们就说两个平面互相垂直。

(2)两个平面平行:如果两个平面没有公共点,则说这两个平面平行。

在上图中,在长方体1111D C B A ABCD -中,如果面ABCD 和面1111D C B A 分别作为长方体的底面,则棱1AA ,1BB ,1CC ,1DD 都与底面垂直且等长,我们知道它们都是这个底面上的高,它们的长度称作两个底面间的距离。

例3-1.下列关于长方体的叙述不正确的是( )。

A 、将一个矩形沿竖直方向平移一段距离可形成一个长方体

B 、长方体中相对的面都相互平行

C 、长方体中某一底面上的高的长度就是两平行底面间的距离

D 、两底面之间的棱互相平行且等长

例3-2.已知下列四个结论:①铺得很平的一张白纸是一个平面;②平面的形状是平行四边形;③一个平面的面积可以等于12m 。其中正确结论的个数是( )。

A 、0

B 、1

C 、2

D 、3

例3-3.一条曲线作平行移动,形成的面是( )。

A 、平面

B 、曲面

C 、平面或曲面

D 、锥面

例3-4.判断下列说法是否正确:

(1)长方体可看成一个矩形上各点沿垂线向上移动相同距离到矩形所形成的几何体。 ( )

(2)一条直线平行移动,生成的面一定是平面。 ( )

(3)一个点运动形成一条直线。 ( )

(4)直线绕该直线上的定点转动形成平面或锥面。 ( )

(5)矩形上各点沿同一方向移动形成长方体。 ( ) 例3-5.想象一下图中AB 围绕l 旋转一周形成的空间几何体。

例3-6.三个平面分空间有几种情况?并说明每种情况下能将空间分成几部分。

例3-7.如图所示,在长方体D C B A ABCD ''''-中,如果把它的12条棱延伸为直线,6个面延展为平面,那么在这12条直线与6个平面中:

(1)与直线C B ''平行的平面有哪几个?

(2)与直线C B ''垂直的平面有哪几个?

(3)与平面C B ''平行的平面有哪几个?

(4)与平面C B ''垂直的平面有哪几个?

三、多面体与棱柱

1、多面体的相关定义:

(1)由若干个平面多边形所围成的几何体叫做多面体。

(2)面:围成多面体的各个多边形称为多面体的面。

(3)棱:相邻两个面的公共边称为多面体的棱。

(4)顶点:棱与棱的公共点边称为多面体的顶点。

(5)对角线:一个多面体中,连接同一面上两个顶点的线段,如果不是多面体的棱,就称其为多面体的面对角线;

连接不在同一面上两个顶点的线段称为多面体的体对角线。

(6)截面:一个几何体和一个平面相交所得到的平面图形(包含它的内部),称为这个几何体的一个截面。2、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

(1)底面:两个互相平行的平面叫底面,这两面与平行于底面的截面都是全等多边形。

(2)侧面:其余各面叫侧面,侧面都是平行四边形。

(3)侧棱:两个侧面的公共边叫做棱柱的侧棱,侧棱都平行且相等。各不相邻的两条侧棱的截面是平行四边形。

(4)顶点:侧面与底的公共顶点叫做棱柱的顶点。

对角线:不在同一个面上的两个顶点的连线叫做棱柱的对角线。

棱柱的高:两个底面的距离叫做棱柱的高。

(5)棱柱的分类

①棱柱的底面可以是三角形,四边形,五边形……我们把这样的棱柱叫分别叫做三棱柱、四棱柱、五棱柱……;

②按侧棱与底面是否垂直分为:直棱柱、斜棱柱,直棱柱按底面是不是正多边形分为:正棱柱、其他直棱柱。

③特殊的棱柱

斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。

直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形。

直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。

正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。

平行六面体:底面是平行四边形的棱柱。

直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

长方体:底面是矩形的直棱柱叫做长方体。

正方体:底面和侧面是正方形的棱柱叫做长方体。

点评:几种常见四棱柱的关系:

例4-1.下列说法中正确的是()。

A、棱柱的面中,至少有两个互相平行

B、棱柱中两个互相平行的平面一定是棱柱的底面

C、棱柱中各条棱长都相等

D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形

例4-2.下列关于棱柱的说法正确的个数是( )。

①四棱柱是平行六面体;

②有两个面平行,其余各面都是平行四边形的几何体是棱柱;

③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体是棱柱; ④底面是正多边形的棱柱是正棱柱。

A 、1

B 、2

C 、3

D 、4

例4-3.下列说法中正确的是( )。

A 、直四棱柱是直平行六面体

B 、直平行六面体是长方体

C 、六个面都是矩形的四棱柱是长方体

D 、底面是正方形的四棱柱是正四棱柱

例4-4.一个棱柱是正四棱柱的条件是( )。

A 、底面是正方形,有两个面是矩形的四棱柱

B 、底面是正方形,两个侧面垂直于底面的四棱柱

C 、底面是菱形,且有个顶点处的两条棱互相垂直的四棱柱

D 、底面是正方形,每个侧面都是全等的矩形的四棱柱

例4-5.如图的长方体1111D C B A ABCD 。

(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?

(2)用平面BCFE 把这个长方体分成两部分后,各部分的几何体还是棱柱吗?若是棱柱指出它们的底面与侧棱。

3.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

(1)底面:棱锥中的多边形叫做棱锥的底面。是几边形就叫几棱锥。

(2)侧面:棱锥中除底面以外的各个面都叫做棱锥的侧面。

(3)顶点:棱锥中各个侧面的公共顶点叫做棱锥的顶点。

(4)对角面:棱锥中过不相邻的两条侧棱的截面叫做对角面。

(5)正棱锥:如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的各侧棱都相等,各侧面都是全等的等腰三角形。

正棱锥的斜高:正棱锥侧面等腰三角形底边上的高,叫做正棱锥的斜高。

(6)棱锥截面性质定理及推论

定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。

推论1:如果棱锥被平行于底面的平面所截,则棱锥的侧棱和高被截面分成的线段比相等。

推论2:如果棱锥被平行于底面的平面所截,则截得的小棱锥与原棱锥的侧面积之比也等于它们对应高的平方比,或它们的底面积之比。

例5-1.下面描述中,不是棱锥的结构特征的为( )。

A 、三棱锥有四个面是三角形

B 、棱锥都是有两个面是互相平行的多边形

C 、棱锥的侧面都是三角形

D 、棱锥的侧棱相交于一点

例5-2.侧棱长为32的正三棱锥ABC V -中, 40=∠=∠=∠AVC BVC AVB ,过点A 作截面AEF ,则截面AEF ?周长的最小值为 。

例5-3.正三棱锥的侧棱长是底面边长的k 倍,则k 的取值范围是( )。

A 、)0(∞+,

B 、)2

1(∞+, C 、)22(∞+, D 、)33(∞+, 变式1.正四棱锥的侧棱长是底面边长的k 倍,则k 的取值范围是( )。

A 、)0(∞+,

B 、)2

1(∞+, C 、)22(∞+, D 、)33(∞+, 变式2.一个棱锥所有的棱长都相等,则该棱锥一定不是( )。

A 、正三棱锥

B 、正四棱锥

C 、正五棱锥

D 、正六棱锥 变式3.棱锥侧面是有公共顶点的三角形,能围成一个棱锥侧面的正三角形的个数的最大值是( )。

A 、3

B 、4

C 、5

D 、6

例5-4.所有棱长都相等的三棱锥叫做正四面体,正四面体ABCD 的棱长为a ,M 、N 分别为棱BC 、AD 的中点,则MN 的长度为( )。

A 、a

B 、a 22

C 、a 23

D 、a 3

3 例5-5.用两个平面将如图所示的三棱柱C B A ABC '''-分为三个三棱锥。

4、棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

(1)上底面:原棱锥的截面;下底面:原棱锥的底面。

(2)侧面:棱台中除上下底面以外的各个面都叫做棱台的侧面。侧面都是梯形。

(3)侧棱:棱台侧面相交的线段叫做棱台的侧棱。棱台的各侧棱的反向延长线交于一点。

(4)棱台的高:棱台上下两个底面的距离叫做棱台的高。

(5)正棱台:由正棱锥截得的棱台叫做正棱台。

①正棱台的侧棱相等,侧面是全等的等腰梯形。各等腰梯形的高相等,它叫做正棱台的斜高;

②正棱台的两底面以及平行于底面的截面是相似正多边形;

③正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面相应的半径也组成一个直角梯形。

例6-1.关于棱台,下列说法正确的是()。

A、两底面可以不相似

B、侧面都是全等的梯形

C、侧棱长一定相等

D、侧棱延长后交于一点

4:,若棱台的高是4cm,求截得这个棱台的棱锥的高。

例6-2.一个棱台的上、下底面积之比为9

A 的高是17cm,两底面的边长分别是4cm和16cm。

例6-3.如图所示,正四棱台C

(1)求这个棱台的侧棱长和斜高。

(2)求该棱台的侧面积与表面积。

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

专题37 空间几何体(知识梳理)(新高考地区专用)(解析版)

专题37 空间几何体(知识梳理) 一、空间几何体 1、空间几何体的基本定义 如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。 围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。 几何体不是实实在在的物体。 平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。 例1-1.下列是几何体的是( )。 A 、方砖 B 、足球 C 、圆锥 D 、魔方 【答案】C 【解析】几何体不是实实在在的物体,故选C 。 例1-2.判断下列说法是否正确: (1)平静的湖面是一个平面。 (×) (2)一个平面长3cm ,宽4cm 。 (×) (3)三个平面重叠在一起,比一个平面厚。 (×) (4)书桌面是平面。 (×) (5)通过改变直线的位置,可以把直线放在某个平面内。 (√) 【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。 (6)平行四边形是一个平面。 (×) (7)长方体是由六个平面围成的几何体。 (×) (8)任何一个平面图形都是一个平面。 (×) (9)长方体一个面上任一点到对面的距离相等。 (√) (10)空间图形中先画的线是实线,后画的线是虚线。 (×) (11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。 (√) 例1-3.下列说法正确的是 。 ①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。 【答案】②③ 【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别; ②正确;③正确。 [多选]例1-4.下列说法正确的是( )。 A 、任何一个几何体都必须有顶点、棱和面 B 、一个几何体可以没有顶点 C 、一个几何体可以没有棱 D 、一个几何体可以没有面

文科立体几何面角二面角专题-带答案

文科立体几何线面角二面角专题 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且二面角为,求与平面所成角的正弦值. 2.如图,在三棱锥中,,,为的中点.(1)证明:平面; (2)若点在棱上,且,求点到平面的距离. 3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面 ABC,==3,==2. (I)求异面直线与AB所成角的余弦值; (II)求证:⊥平面; (III)求直线与平面所成角的正弦值. 5.如图,四棱锥,底面是正方形,,,,分别是,的中点.

(1)求证; (2)求二面角的余弦值. 6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点. (1)证明:平面; (2)证明:平面平面; (3)求直线与直线所成角的正弦值. 7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值. 8.如图,在四棱锥中,平面,,,

,点是与的交点,点在线段上,且. (1)证明:平面; (2)求直线与平面所成角的正弦值. 9.在多面体中,底面是梯形,四边形是正方形,,,,, (1)求证:平面平面; (2)设为线段上一点,,求二面角的平面角的余弦值. 10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,. (1)证明:平面,平面平面;

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

专题29 空间几何体的表面积与体积知识点

一、柱体、锥体、台体的表面积 1.旋转体的表面积 2.多面体的表面积 多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系: 二、柱体、锥体、台体的体积 1.柱体、锥体、台体的体积公式

2.柱体、锥体、台体体积公式间的关系 3.必记结论 (1)一个组合体的体积等于它的各部分体积之和或差; (2)等底面面积且等高的两个同类几何体的体积相等. 三、球的表面积和体积 1.球的表面积和体积公式 设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为 24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为3 4π3 R . 2.球的切、接问题(常见结论)

(1)若正方体的棱长为a ,则正方体的内切球半径是 12a ;与正方体所 . (2)若长方体的长、宽、高分别为a ,b ,h (3)若正四面体的棱长为a ;与 . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 1.一个正方体的体积为8,则这个正方体的内切球的表面积是 A .8π B .6π C .4π D .π 2.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 A .60 B .72 C .81 D .114 3.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π 2 D .π4

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

空间几何体专题复习

空间几何体专题 第1讲 空间几何体(文/理) 热点一 三视图与直观图 例1 (1)(·课标全国甲)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π (2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( ) 答案 (1)C (2)D 解析 (1)由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S 锥侧 =1 2 ×4π×4=8π,圆柱的侧面积S 柱侧 =4π×4= 16π,所以组合体的表面积S =8π+16π+4π=28π,故选C. (2)所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,应选D. 思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到

的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果. 跟踪演练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是() (2)一几何体的直观图如图,下列给出的四个俯视图中正确的是() 答案(1)D(2)B 解析(1)由俯视图,易知答案为D. (2)由直观图可知,该几何体由一个长方体和一个截角三棱柱组合.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形. 热点二几何体的表面积与体积 空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

立体几何复习专题(空间角)(学生卷)

专题一:空间角 一、基础梳理 1.两条异面直线所成的角 (1)异面直线所成的角的范围:(0, ]2 π 。 (2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线,a b 垂直,记作a b ⊥。 (3)求异面直线所成的角的方法: (1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。 平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。 2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。 一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0?角。 直线和平面所成角范围:[0, 2 π]。 (2)最小角定理:斜线和平面所成角是这条斜线和平面内 经过斜足的直线所成的一切角中最小的角。 (3)公式:已知平面α的斜线a 与α内一直线b 相交成θ角, 且a 上的射影c 与b 相交成?2角, 则有θ??cos cos cos 21= 。 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。 3.二面角 (1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。若棱为l ,两个面分别为,αβ的二面角记为l αβ--。 (2)二面角的平面角: 过二面角的棱上的一点O 分别在两个半平面内...... 作棱的两条垂线,OA OB ,则AOB ∠叫做二面角 l αβ--的平面角。 说明:①二面角的平面角范围是[]0,π,因此二面 角有锐二面角、直二面角与钝二面角之分。 ②二面角的平面角为直角时,则称为直二面角, 组成直二面角的两个平面互相垂直。 (3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法) (二)间接法:面积射影定理的方法。 (4)面积射影定理: 面积射影定理:已知ABC ?的边BC 在平面α内,顶点A α?。设ABC ?的面积为S ,它在平 ?2?1c b a θP αO A B l B' O' A' B O A βα

空间几何体的三视图、表面积、体积专题练习

空间几何体的三视图、表面积、体积专题练习(宋) 1、若一个几何体的正视图与侧视图均为边长是1的正方形,且体积为1 2 ,则该几何体的俯视图是( ) 2. 3.已知某几何体的俯视图是如图所示的边长为2的正方形, 主视图与左视图是边长为2的正三角形,则其全面积是 A.8 B.12 C .4(1D . 4. A.1 4+ πB.1 3 4 + π C.8 3 4 + π D.8 4+ π 5. 如右图,已知一个锥体的正(主)视图,侧(左)视图和 俯视图均为直角三角形,且面积分别为3,4,6,则该锥 体的体积为 A.24B.8C.12D.4 6.如右图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视 图轮廓为正方形,则其体积是() A. 42 3 B. 43 3 C. 3 6 D. 8 3 俯视图

7.用大小相同的且体积为1的小立方块搭一个几何体,使它的主视图 和俯视图如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与15 8.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 9.一个几何体的三视图如图所示,其中正视图中 ABC 是边长为2的正三角形,俯视图为正六边 形,那么该几何体的侧视图的面积为 A.12 B.32 C.2 3 D.6 10. 如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图象可能是( ) 11.(2008年海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A. 22 B. 23 C. 4 D. 2 5 12.如图,一个封闭的立方体,它的六个表面各标有A,B,C,D,E,F 这六个字母之一,现放置成如图的三种不同的位 置,则字母A,B,C 对面的字母分别为 ( ) (A) D ,E ,F ( B) F ,D ,E ( C) E, F ,D ( D) E, D,F 13.一个正三棱柱的三视图如下所示,则这个正三棱柱的高和底面边长分别为( ). A. 2, B. 2 C. 4,2 D. 2,4 14如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为( ). (不考虑接触点) 主视图 正视图侧视图 俯视图 A 俯视图 左视图 正视图 俯视图 侧视图 C A

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

空间向量与立体几何专题(含答案)

2011届高考专题复习空间向量与立体几何 一、近年考情分析与2011年广东命题走势 纵观07-10广东试题,我们可以发现,此部分内容涉及试题数及分值为: 立体几何的复习要牢固树立以下的思维脉络:证线面垂直(或平行),转化为证线线垂直(或平行);证面面垂直(或平行),转化为证线面垂直(或平行)或证线线垂直(或平行). 二、广东考题剖析及热点题型讲析 热点1 空间几何体的结构、三视图、直观图 1.(08年广东5)将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( A ) E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D .

2.(10年广东6)如图1,△ABC为正三角形,AA'//BB'//CC',CC'⊥平面ABC且3AA'=3 2 BB' =CC'=AB,则多面体ABC-A'B'C'的正视图(也称主视图)是 ( D ) 3.【2010·陕西文数】若某空间几何体的三视图如图所示,则该几何体的体积是() A.2 B.1 C. D. 【答案】B 本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱,所以其 体积为. 4.【2010·全国卷2理数】已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为() A.1 B. C.2 D.3 【答案】C

【解析】本试题主要考察椎体的体积,考察告辞函数的最值问题.设底面边长为a ,则高 所以体积 ,设,则 ,当y 取最值时, ,解得a=0或a=4时,体积最大,此时 ,故选C. 5.如下图所示,四边形OABC 是上底为2下底为6,底角为45度的等腰梯形,由斜二侧画法,画出这个梯形的直观图O ’A ’B ’C ’,在直观图中梯形的高为( C ) A 、 32 B 、1 C 、22 D 、12 6.(全国Ⅰ新卷理10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π (B) 2 73 a π (C) 2 113 a π (D) 25a π 【答案】B 解析:如图,P 为三棱柱底面中心,O 为球心,易知 2331,32AP a a OP a =?==,所以球的半径R 满足: 2222 317( )()3212 R a a a =+=,故2 2743 S R a ππ==球 . 热点2 点线面的位置关系 空间点、线、面位置关系是立体几何中的重要关系,在高考中,选择题、填空题几乎年年考,且常以棱柱、棱锥、和正方体为背景,主要考查平面的基本性质、空间直线与直线、直线与

【精选】浙江专版高考数学二轮专题复习知能专练十三空间几何体的三视图表面积及体积

知能专练(十三) 空间几何体的三视图、表面积及体积 一、选择题 1.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( ) 解析:选C 注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C 中,其宽 度为 3 2 ,与题中所给的侧视图的宽度1不相等,因此选C. 2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的 最大球的半径为( ) A .1 B .2 C .3 D .4 解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2S a + b + c = 2×1 2×6×86+8+10 =2,故选B. 3.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积为 ( ) A .4π B .3π C .2π D .π 解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.

4.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥侧面积和体 积分别是( ) A .45,8 B .45, 8 3 C .4(5+1), 8 3 D .8,8 解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为 2,侧面上的斜高为 22+12=5,所以S 侧=4×? ?? ??12×2×5=45, V =1 3 ×22×2=83 .5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其 中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 ( )A .10 B .12 5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯 形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16 解析:选B 由三视图可知该多面体是一个组合体,如图所示,其下面是一个底面为等腰直角三角形的直三棱柱,上面是一个底面为等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为 + 2×2= 12,故选B. 6.如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的 面积为2 3 ,则其侧视图的面积为( )

立体几何复习专题(空间角)

专题:空间角 一、基础梳理 1.两条异面直线所成的角 (1)异面直线所成的角的范围:(0, ]2 π 。 (2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线,a b 垂直,记作a b ⊥。 (3)求异面直线所成的角的方法: (1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线; (2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。 平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。 1:三棱柱111B A O OAB -,平面11O OBB ⊥平面OAB , 90,601=∠=∠AOB OB O ,且12,OB OO == 3OA =,求异面直线B A 1与1AO 所成角的余弦。 2.直线和平面所成的角(简称“线面角”) (1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。 一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0角。 直线和平面所成角范围:0, 2 π 。 (2)最小角定理:斜线和平面所成角是这条斜线和平面内 A B O 1A 1B 1O

经过斜足的直线所成的一切角中最小的角。 (3)公式:已知平面的斜线a 与内一直线b 且a 与相交成 1 角,a 在上的射影c 与b 相交成2 角, 则有θ??cos cos cos 21= 。 由(3)中的公式同样可以得到:平面的斜线和它在平面 内的射影所成角,是这条斜线和这个平面内的任一条直 线所成角中最小的角。 考点二:直线和平面所成的角 例2. 如图,在三棱柱ABC A B C '''-中,四 边形A ABB ''是菱形,四边形BCC B ''是矩形, C B AB ''⊥,02,4,60C B AB ABB '''==∠=, 求AC '与平面BCC B ''所成角的正切。 3:(1)在0 120的二面角P a Q --的两个面P 与Q 内分别有两点A B 、,已知点A 和点B 到棱的距离分别为2,4cm cm ,且线段10AB cm =。求: ①直线AB 和棱a 所成角的正弦值;②直线AB 和平面Q 所成角的正弦值。 A B C A ' B ' C ' ?2 ?1c b a θP α O A B

2021专题9 立体几何与空间向量(解析版)

专题9 立体几何与空间向量 从近几年的高考试题来看,所考的主要内容是: (1)有关线面位置关系的组合判断,试题通常以选择题的形式出现,主要是考查空间线线、线面、面面位置关系的判定与性质; (2)有关线线、线面和面面的平行与垂直的证明,试题以解答题中的第一问为主,常以多面体为载体,突出考查学生的空间想象能力及推理论证能力; (3)线线角、线面角和二面角是高考的热点,选择题、填空题皆有,解答题中第二问必考,一般为中档题,在全卷的位置相对稳定,主要考查空间想象能力、逻辑思维能力和转化与化归的应用能力. 预测2021年将保持稳定,一大二小.其中客观题考查面积体积问题、点线面位置关系(各种角的关系或计算)等;主观题以常见几何体为载体,考查平行或垂直关系的证明、线面角或二面角三角函数值的计算等. 一、单选题 1.(2020·山东高三下学期开学)设,,m n l 为三条不同的直线,,a β为两个不同的平面,则下面结论正确的是( ) A .若,,//m n αβαβ??,则//m n B .若//,//,m n m n αβ⊥,则αβ⊥ C .若,,m n αβαβ⊥⊥⊥,则m n ⊥ D .//,//,,m n l m l n αα⊥⊥,则l α⊥ 【答案】C 【解析】 A 选项中,,m n 可能异面; B 选项中,,αβ也可能平行或相交;D 选项中,只有,m n 相交才可推出l α⊥. C 选项可以理解为两个相互垂直的平面,它们的法向量相互垂直. 故选:C 2.(2020届山东省潍坊市高三模拟二)已知三棱锥D ABC -的所有顶点都在球O 的球面上,2AB BC ==, AC =D ABC -体积的最大值为2,则球O 的表面积为( ) A .8π B .9π C . 25π 3 D . 1219 π 【答案】D 【解析】

年高三理科专题(四)空间立体几何

2018届高三理科专题(四)立体几何专题姓名: 班别: 学号: 【知识点一:三视图求表面积体积问题】 1、(2017新课标I卷第7题).某多面体的三视图如图所示,其中正视图和左 视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直 角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(). A.10 B.12 C.14D.16 2、(2017新课标II卷第4题)如图,网格纸上小正方形的边长为1,粗实线 画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则 该几何体的体积为( ) A.90πB.63π C.42π D.36π 3、(2017年市一模第6题)如图, 网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图, 且该几何体的体积为 8 3 , 则该几何体的俯视图可以是 4、(2016年市一模第11题)(11)如图,网格纸上小正方形的边长为1, 粗线画出的是某个四面体的三视图,则该四面体的表面积为 (A)88246 ++(B)88226 ++ (C)2226 ++(D)126 224 ++ 5、(2016新课标I卷第6题)如图,某几何体的三视图是三个半径相等 的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的 表面积是()(A)17π(B)18π(C)20π (D)28π 28 3 π

6、(2016新课标II 卷第6题) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π 7、(2016新课标II I卷第9题)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) (A ) (B) (C)90 (D)81 8、(2015新课标II 卷第6题)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A. 81 B.71 C.61 D.5 1 9. (2015新课标I卷第11题)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20 π,则r=( ) (A )1 (B )2 (C)4 (D)8 【知识点二:内接球与外接球的问题】 1、(2017年市一模第10题)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖 臑, PA ⊥平面ABC , 2PA AB ==,4AC =, 三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表面积为( ) 18365+54185+

人教版2020高中数学 专题01 空间几何体专题复习考点精准剖析与创新训练 新人教A版必修2

专题01 空间几何体专题 本重点包括柱、锥、台、球的概念、性质、表面积与体积,直观图与三视图,这些是立体几何的基础,也是研究空间问题的基本载体,所以是高考考查的热点。 知识框架 1、空间几何体的结构 2、空间几何体的三视图和直观图 3、空间几何体的表面积和体积 一、考查形式与特点 1、本章内容多以客观题出现,考查基本知识,对空间几何体的特征与性质的理解,三 视图和直观图,几何体表面积与体积的计算等。三视图考查特点:一是给出空间图形,选择其三视图;二是已知其中两种三视图,画出另外一种视图;三是三视图与面积体积计算结合在一起考查。 2、球体在近几年的高考中出现频率较高,特别是棱柱、棱锥中球的内切、外接问题,在复习时更要注意多练习相关的题目。对球中的体积、表面积、球面距离等问题也要进行重点掌握。

3、培养与发展考生的空间想象能力、推理证明能力、运用图形语言进行交流的能力。考查空间想象能力及空间模型的构造能力。 二、方法策略 1、“化整为零”是本章的基本思想。 将一个复杂的几何体分割成若干个常见的熟悉的几何体,或者把几个简单的几何体组 合成一个新的几何体,目的在于化繁为简,寻求解题的捷径。 立体几何和平面几何有着密切的联系,空间图形的局部性往往可以透过平面图形的性质去研究,利用截面可以把锥体中的元素关系转化为三角形中的元素关系。 2、“以直代曲”的思想方法 即通过空间图形的展开将立体几何问题转化为平面几何问题,曲面问题转化为平面问题,如在推导圆柱、圆锥、圆台的侧面积公式时,就是将其侧面展开,转化为长方形、扇形、圆环来解决。 3、三视图之间的投影规律为:正、俯视图――长对正;正、侧视图――高平齐;俯、侧视图――宽相等。三视图是新增内容,是高考考查重点,它能极大培养学生的空间想象能力与感知能力,熟悉常见简单几何体三视图在数量上的关系,善于将三视图中的数量关系与原几何体的数量关系联系起来,进行相关的计算。 4、球的表面积与体积的计算的关键是求出球的半径,然后再利用表面积公式及体积公式求解.球的表面积与体积问题常置于多面体的组合体中,解答时要充分利用切、接点正确作出过球心截面,从而使空间问题转化为平面问题,再利用球的半径与多面体的元素的关系求解.特别要注意的题型是球与长方体、正方体的组合体. 5、解决问题的重要手段:截、展、拆、拼 (1)“截”是指截面,平行于柱、锥、台底面的截面,旋转体的轴截面是帮助我们解题的有力“工具”。 (2)“展”指的是侧面或某些面的展开图。 (3)“拆”指的是将一个几何体拆成几个几何体,比如,探求三棱锥的体积公式还有一种方法是将一个三棱柱拆成三个等体积的三棱锥。 (4)“拼”指的是将小几何体嵌入一个大几何体中去,比如,求三棱锥体积公式,既可用上面“拆”的方法,也可用“拼”的方法。 三.复习指导 1、在正棱锥、台体中,要利用直角三角形(高、斜高及底面边心距组成一个直角三角形、高、侧棱于底面外接圆的半径组成一个直角三角形,底面的边心距、外接圆半径及底边一半组成一个直角三角形,侧棱、斜高与底面一半组成一个直角三角形),进行有关计算。

立体几何-空间角题型

立体几何-空间角求法题型 空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。下面针对几何法举例说明。 一、异面直线所成的角: 【例】如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =, 12AA =。E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。求直线1EC 与1FD 所成的角的余弦值。 解:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。 在Rt △BE 1F 中, 2222115126E F E F BF = += += 。 在Rt △D 1DE 1中, 222221111112 2 2 13214 D E DE DD AE AD DD =+=++=++= 在Rt △D 1DF 中,22 11222222124224 FD FD DD CF CD DD =+=++=++= 在△E 1FD 1中,由余弦定理得:

222111111111cos 2D E FD E F E D F D E FD +-∠==?? ∴直线1EC 与1FD 所成的角的余弦值为 14 。 可见,“转化”是求异面直线所成角的关键。平移线段法,或化为向量的夹角。 一般地,异面直线l 1、l 2的夹角的余弦为: cos AC BD AC BD β?=?u u u r u u u r u u u r u u u r 。 二、线面角 【例】已知直三棱柱111,,ABC A B C AB AC F -=为1BB 上一点, 12,BF BC a FB a ===。 (1)若D 为BC 的中点,E 为AD 上不同于A D 、的任意一点,证明:1EF FC ⊥; (2)若113A B a =,求1FC 与平面11AA B B 所成角的正弦值。 提示:(1)转证线面垂直;证明FC1与面ADF 垂直(2)sin θ=。 三、二面角的求法: 几何法:二面角转化为其平面角,要掌握以下三种基本做法: ①直接利用定义,图(1)。 ②利用三垂线定理及其逆定理,图(2)最常用。 ③作棱的垂面,图(3)。 A B F C E 1 A 1 B 1 C D

相关文档
相关文档 最新文档