文档库 最新最全的文档下载
当前位置:文档库 › 加法原理和乘法原理练习题

加法原理和乘法原理练习题

加法原理和乘法原理练习题

加法原理和乘法原理练习题(1)

1.从武汉到上海,可以乘飞机、火车、轮船和汽车。一天中飞机有3班,火车有4班,轮船有3班,汽车有6班。那么一天中从武汉到上海共有多少种不同的走法?-

2.商店有铅笔8种,钢笔7种,圆珠笔3种,水笔2种。小华要从中任选一种,有多少种不同的选法?-

3. 从南京经上海到南通。一天中从南京到上海乘火车有5班;从上海到南通,一天中乘轮船有4班。那么,乘火车和轮船从南京经上海到南通共有多少种不同的走法?-

4.小明家到学校共有4条路可走,从学校到少年宫共有3条路可走。小明从家出发,经过学校然后到少年宫,他共有多少种不同的走法?-

加法原理和乘法原理

教师姓名 学科 数学 上课时间 年 月 日 --- 学生姓名 年级 课题名称 加法原理和乘法原理 教学目标 1、理解加法原理和乘法原理;2、解决具体的加乘原理的题目 教学重点 加法原理和乘法原理 教学过程 加法原理和乘法原理 知识要点一:加法原理——分类计数原理 【知识导入1】 我们先来看这样一些问题: 问题1:从西安到北京,每天有3个航班的飞机,有4个班次的火车,有两个班次的汽车.那么,乘坐以上工具从西安到北京,在一天中一共有多少种选择呢? 问题2:用一个大写英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码? 问题3:一个学生从3本不同的物理资料、4本不同的英语资料、6本不同的课外书中任取一本来学习,不同的选法有多少种? 【提炼特点】 (1)完成一件事有若干种方法,这些方法可以分成n 类; (2)每一类中的每一种方法都可以完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数。 【抽象概况】 分类加法计数原理:完成一件事情,可以有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有 n m m m N +???++=21 种不同的方法. 注意:○ 1 这个原理也称为“加法原理”; ○ 2 分类加法计数原理针对的是“分类”问题,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.

【例1】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法? 【解析】运用加法原理,把组成方法分成三大类: ①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。 ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。 ③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。 所以共有组成方法:3+5+2=10(种)。 举一反三 1、书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 2、一列火车从上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票? 3、已知往返于甲、乙两地的火车中途要停靠四个站,问:要有多少种不同车票票价(来回票价一样)?需准备多少种车票? 4、各数位的数字之和是24的三位数共有多少个?

加法原理与乘法原理

加法原理与乘法原理 教学内容: 思维训练内容《加法原理与乘法原理》。 教学目标: (1)知识教学目标:理解和掌握加法原理和乘法原理。 (2)能力训练目标:通过分析、探究将现实情景问题转化为加法原理与乘法原理的数学问题来解决。 (3)情感、态度、价值观目标:通过对问题的解决激发学生的学习兴趣,感受数学与生活的密切联系 教学过程: (一)加法原理 如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。 例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法? 解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法 (二)乘法原理 如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。 例:用1、2、3、4这四个数字可以组成多少个不同的三位数? 解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。 选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法 选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法 选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法 单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数 二、加法原理和乘法原理的区别 什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。 三、加乘法原理的综合应用 有时候,做某件事有几类方法,而每一类方法又要分几个步骤完成。在计算做这件事的方法时,既要用到加法原理,也要用到乘法原理,这就是加乘法原理的综合应用。 例:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3

高中数学第一册(上)加法原理和乘法原理的应用

加法原理和乘法原理的应用 【教学目标】 1.进一步理解两个基本原理. 2.会利用两个原理分析和解决一些简单的应用问题 【教学重点】两个基本原理的进一步理解和体会. 【教学难点】正确判断是分类还是分步,分类计数原理的分类标准及其多样性. 【教学过程】 一、复习引入: 1.分类计数原理: 2.分步计数原理: 3.原理浅释 分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以. 分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏. 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理. 可以看出“分”是它们共同的特征,但是,分法却大不相同. 这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要合理、灵活而巧妙地分类或分步. 强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比. 两个基本原理的作用:计算做一件事完成它的所有不同的方法种数 两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 二、范例分析: 例1.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种? 解:取b b+是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,a+与取a 由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法. 例2.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种? 解:分类标准一:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种. 分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,

《排列组合问题之—加法原理和乘法原理》

排列组合问题之—加法原理和乘法原理 华图教育梁维维 加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。 1.加法原理 加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。 例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成 ⑴多少个数字不重复的三位数? ⑵多少个数字不重复的三位偶数? 【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。 【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。 在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。例如如下的两道题: 【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( ) A.7种 B.12种 C.15种 D.21种 【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。所以每个同学有4+6+4+1=15种订报方式。

加法原理与乘法原理练习题(2)

加法原理与乘法原理 1. 一个礼堂有4个门,若从一个门进,从任一门出,共有不同走法( ) A . 8 种B. 12 种 C. 16 种D. 24 种 2. 从集合A=(0,1,2,3,4}中任取三个数作为二次函数y= ax2 + bx+ c的系数a, b, c.则可构成不同的二次函数的个数是() A . 48 B. 59 C. 60 D . 100 3. 某电话局的电话号码为168?xx xxx,若后面的五位数字是由6或8组成的,则这样的电话号码一共有() A . 20 个B. 25 个C. 32 个D. 60 个 4. 在2、3、5、7、11这五个数字中,任取两个数字组成分数,其中假分数的个数为() A . 20 B. 10 C. 5 D . 24 5. 将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有() A . 8 种B. 15 种 C. 125 种D. 243 种 6. 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有() A . 24 种B. 18 种 C. 12 种D . 6 种 7. 已知异面直线a, b上分别有5个点和8个点,则经过这13个点可以确 定不同的平面个数为()

A . 40 B . 13 C. 10 D. 16 8. 书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有() A . 336 种B. 120 种 C. 24 种D . 18 种 9. 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,

则不同的报名方法共有() A . 10 种B. 20 种 C. 25 种D. 32 种 10. 有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球, 若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是() A . 14 B . 23 C. 48 D. 120 11. 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有 1 门相同的选法有() A . 6 种B. 12 种C. 24 种D. 30种 12. 从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得偶数. 13. 从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有 中不同的取法.

第一讲 加法原理和乘法原理 (练习题)

第一讲加法原理和乘法原理(练习题) 1. 从武汉到上海,可以乘飞机·火车·轮船和汽车。一天中飞机有两班,火车有4班,轮船有2班,汽车有3班。那么一天从武汉到上海,一共有多少种不同的走法? 2. 商店有铅笔5种,钢笔6种,圆珠笔3种。小红要从中任选一种,一共有多少种不同的选法? 3. 4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的照法? 4. 有0、2、3三个不同的数字组成不同的三位数,一共可以组成多少种不同的三位数? 5. 一列火车从甲地到乙地中途要经过5个站,这列火车从甲地到乙地共要准备多少种不同的车票? 6. 五个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场? 7. 在5×5的方格中(如右图),共有多少个正方形?

8. 书架上有8本故事书和6本童话书,王刚要从书架上去一本故事书和一本童话书,一共有多少种不同的取法? 9. 服装店里有5件不同的儿童上衣、4条不同的裙子。妈妈为小红买了一件上衣和一条裙子配成一套,一共有多少种不同的选法? 10. 从1、3、5、7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 11.用1、2、3、4这四个数字可以组成多少个不同的三位数? 12.(如图所示):A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种涂色。如果要求相邻的区域涂不同的颜色,共有多少种不同的涂色方法? 13. 从4名男生和2名女生中选出班干部3名,其中至少要有一名女生,一共有多少种不同的选法? 14. 有红、黄、蓝、白四种颜色的旗各一面,从中选一面、两面、三面或者四面旗从上到下挂在旗杆上表示不同的信号(顺序不同时,表示的信号也不同),一共可以表示多少种不同的信号?

小学数学《加乘原理综合》练习题

小学数学《加乘原理综合》练习题 一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决。 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决。 二、加乘原理应用 应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。 ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步。 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”。 乘法原理运用的范围:这件事要分几个彼此互不影响 ....来完成,这几步是完成这件任务 ....的独立步骤 缺一不可的 .....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”。 模块一:简单加乘原理综合应用 【例 1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友。 ⑴如果小明只买一种糖,他有几种选法? ⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法? 【巩固】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择? 【例 2】某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多 少种不同的信号? 【巩固】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号? 【例 3】五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号? 【例 4】奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由5个字母a、b、c、d、e组成,并且所有的单词都有着如下的规律,⑴字母e不打头,⑵单词中每个字母a后边必 然紧跟着字母b,⑶c和d不会出现在同一个字母之中,那么由四个字母构成的单词一共有

四年级加法与乘法原理练习题

加法与乘法原理 本讲知识要点: 1、加法原理:如果做完一件事情有几类方式,在每一类方式中又有不同的方法, 那么把每类的方法数相加就得到所有的方法数。 2、乘法原理:如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法, 那么把每步的方法数相乘就得到所有方法数。 3、分类与分步的区别:分类是指完成事情的不同方法,从中任意选取一类即可, 它们之间可以相互替代,任意选取一类都可以完成这件事。这些时候一般用加法原理;分布是指完成事情的不同步骤,每一步都必须执行,它们之间不可以相互替代,少一步都不能完成这件事。这种情况一般要用乘法原理。4、用乘法原理解题,分步应注意的事项: 1)每步必须全部完成才能满足结论; 2)必须先确定以什么来分步; 3)定好第一步后,再确定第二步,第三步,……。一般是特殊优先原则,即谁的条件要求苛刻,先确定谁。 4)每一步前后相互独立,前面的步骤不能影响后面的步骤,否则就不能用乘法原理解决。 本讲例题练习: 例题1:阿奇一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机。经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班。他们乘坐这些交通工具,一共可以有多少种不同的选择? 例题2:“IMO”是“国际数学奥林匹克”的缩写,要求把这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色。现在有五种不同颜色的笔,按上述要求能有多少种不同颜色搭配的“IMO”? 例题3:老师要求冬冬在黑板上写出一个减法算式,要求被减数必须是三位数,减数必须是两位数,冬冬共有多少种不同的写法?

例题4:书架上有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书都各不相同。请问: 1)如果从所有的书中任取1本,共有多少种不同的取法? 2)如果从每一层中各取1本,共有多少种不同的取法? 3)如果从中取出2本不同类别的书,共有多少种不同的取法? 例题5:如图,从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路。如果要求所走路线不能重复,那么从甲地到丙地有多少条不同的路线? 2、4、 7、8,从中任取三张,排成一行,就可以组成一个三位数。 一共可以组成多少个不同的三位数?其中有多少个不同的奇数? 例题7:奥运场馆实行垃圾分类处理,每个地方放置五个垃圾筒,从左向右依次标明:电池、塑料、废纸、易拉罐、不可再造。现在准备把五个垃圾筒染成红、绿、蓝这三种颜色之一, 要求相邻两个垃圾筒颜色不同,且回收废纸的垃圾筒不

四年级奥数专题 加法原理和乘法原理

二讲加法与乘法原理 知识导航 加法原理:做一件事情,完成 ..它有n类办法,在第一类办法中有M1种不 同的方法,在第二类办法中有m 2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这件事情共有m 1+m 2 +……+m n 种不同的方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完 成第二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件 工作共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 精典例题 例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法?

思路点拨 ①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。所以是加法原理的问题。 ②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。 模仿练习 孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。问: (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 例2:一把钥匙只能开一把锁,淘气有7把钥匙和7把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙? 思路点拨 要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试6次(如果6次配对失败,第7把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试5次;……第6把锁最多试1次,最好一把锁不用试。

小学数学《加、乘原理综合运用》练习题 (含答案)

小学数学《加、乘原理综合运用》练习题(含答案) Ⅰ、简单加乘原理综合运用 【例1】(★)如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法? 分析:根据乘法原理,经过乙地到丙地的走法一共有4×2=8种方法,经过丁地到丙地一共有3×3=9种方法,根据加法原理,一共有8+9=17种走法. [前铺]从小红家到小明家有4条路可走,从小明家到小海家有2条路可走,从小红家到小海家有3条路可走,那么从小红家到小海家共有多少种走法? 分析:经过小明家到小海家的走法一共有4×2=8种方法,从小红家直接去小海家一共有3条路可走,一共有11种走法. 【例2】将5列车停在5条不同的轨道上,其中a车不能停在第一道上,b车不能停在第二道上,那么不同的停车方法共有多少种? 分析:对于a车停放的轨道进行分类考虑:当a车排在第二道的时候,其余的四列车没有任何限制,有4×3×2×1=24种停车法;当a车不排在第二道的时候,a车也不能排在第一道,a车有3种停车法,b 不能停在第二道,也不能停在a车已经停放的车道,所以也只有3种停车法,剩下的3辆车可以任意停入剩下的三条轨道,有3×2×1=6种停法,由乘法原理,共有3×3×6=54种停法,最后根据加法原理,一共有24+54=78种不同停车方案. [巩固](★★走进美妙数学花园少年数学邀请赛) 如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法. 分析:填在黑格里的数是5和4时,不同的填法有2!×3!=12(种);填在黑格里的数是5和3时,不同的填法有2×2=4(种).所以,共有不同填法12+4=16(种). Ⅱ、加乘原理与数论

四年级加法与乘法原理练习题

四年级加法与乘法原理练习题 本讲知识要点: 1、加法原理:如果做完一件事情有几类方式.在每一类方式中又有不同的方法.那么把每类的 方法数相加就得到所有的方法数. 2、乘法原理:如果完成一件事分为几个步骤.在每一个步骤中又有不同的方法.那么把每步的 方法数相乘就得到所有方法数. 3、分类与分步的区别:分类是指完成事情的不同方法.从中任意选取一类即可.它们之间可以 相互替代.任意选取一类都可以完成这件事.这些时候一般用加法原理;分布是指完成事情的不同步骤.每一步都必须执行.它们之间不可以相互替代.少一步都不能完成这件事.这种情况一般要用乘法原理. 4、用乘法原理解题.分步应注意的事项: 1)每步必须全部完成才能满足结论; 2)必须先确定以什么来分步; 3)定好第一步后.再确定第二步.第三步.…….一般是特殊优先原则.即谁的条件要求苛刻.先确定谁. 4)每一步前后相互独立.前面的步骤不能影响后面的步骤.否则就不能用乘法原理解决. 本讲例题练习: 例题1:阿奇一家人外出旅游.可以乘火车.也可以乘汽车.还可以坐飞机.经过网上查询.出发的那一天中火车有4班.汽车有3班.飞机有2班.他们乘坐这些交通工具.一共可以有多少种不同的选择? 例题2:“IMO”是“国际数学奥林匹克”的缩写.要求把这三个字母涂上三种不同的颜色.且每个字母只能涂一种颜色.现在有五种不同颜色的笔.按上述要求能有多少种不同颜色搭配的“IMO”? 例题3:老师要求冬冬在黑板上写出一个减法算式.要求被减数必须是三位数.减数必须是两位数.冬冬共有多少种不同的写法?

例题4:书架上有三层书.第一层放了15本小说.第二层放了10本漫画.第三层放了5本科普书.并且这些书都各不相同.请问: 1) 如果从所有的书中任取1本.共有多少种不同的取法? 2) 如果从每一层中各取1本.共有多少种不同的取法? 3)如果从中取出2本不同类别的书.共有多少种不同的取法? 例题5:如图.从甲地到乙地有3条路.从乙地到丙地有3条路.从甲地到丁地有2条路.从丁地到丙地有4条路.如果要求所走路线不能重复.那么从甲地到丙地有多少条不同的路线? 2、4、7、8.从中任取三张.排成一行.就可以组成一个三位 例题7:奥运场馆实行垃圾分类处理.每个地方放置五个垃圾筒 .从左向右依次标明:电池、塑料、废纸、易拉罐、不可再造. 现在准备把五个垃圾筒染成红、绿、蓝这三种颜色之一.要求 .一共有多少种染色方法? .、E .且相邻的部分不能使用同一种颜色.不相邻的部分可以使用同一种颜色.这幅图共有多少种不同的染色方法? 8 7 4 2

四年级数学思维训练:加法原理与乘法原理

四年级数学思维训练:加法原理与乘法原 理 1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个? 分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个 2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页? 分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;

三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166 3=722个,所以本书有722+99=821页。 3、上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页? 分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)2=351个(351- 189)3=54,54+99=153页。 4、从1、2、3、4、 5、 6、 7、 8、 9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。 分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55 从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55 最接近的

两组为27+28 所以共有27-15+1=13个不同的积。 另从15到27的任意一数是可以组合的。 5、将所有自然数,自1开始依次写下去得到:12345678910111213 ,试确定第206788个位置上出现的数字。 分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899 5=33579 4 所以答案为33579+100=33679的第4个数字7. 6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法? 分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5

加法原理与乘法原理练习题49410

加法原理与乘法原理 1.一个礼堂有4个门,若从一个门进,从任一门出,共有不同走法( ) A.8种B.12种C.16种D.24种 2.从集合A={0,1,2,3,4}中任取三个数作为二次函数y=ax2+bx+c的系数a,b,c.则可构成不同的二次函数的个数是( ) A.48 B.59 C.60 D.100 3.某电话局的电话号码为168~×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有( ) A.20个B.25个C.32个D.60个 4.在2、3、5、7、11这五个数字中,任取两个数字组成分数,其中假分数的个数为( ) A.20 B.10 C.5 D.24 5.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( ) A.8种B.15种C.125种D.243种 6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种B.18种C.12种D.6种 7.已知异面直线a,b上分别有5个点和8个点,则经过这13个点可以确定不同的平面个数为( ) A.40 B.13 C.10 D.16 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有( )

A.336种B.120种C.24种D.18种 9.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A.10种B.20种C.25种D.32种 10.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( ) A.14 B.23 C.48 D.120 11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ) A.6种B.12种C.24种D.30种 12.从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得________个偶数.13.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法. 14.动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种? 15.用五种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色. (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,则共有多少种不同的涂色方法? 16.用0,1,…,9这十个数字,可以组成多少个.Array (1)三位整数? (2)无重复数字的三位整数? (3)小于500的无重复数字的三位整数? (4)小于500,且末位数字是8或9的无重复数字的三位整数? (5)小于100的无重复数字的自然数?

小学数学《乘法原理》练习题(含答案)

小学数学《乘法原理》练习题(含答案) 知识要点 完成一件事,这件事情可以分成n个步骤来完成,第1步有A种不同的方法,第二步有B种不同的方法,第n步有N种不同的方法。那么完成这件事情一共有A×B×.....×N 种不同的方法。用乘法算出一共有多少种方法,这就是乘法原理。 例:李老师周五要去新城,首先得从家到公交总站,然后得再坐公交车到新城。如果说李老师的家到公交总站有5种可选择的路线,然后再从公交总站到新城有2条可选择的路线,李老师从家到新城一共有多少条路线? 从上面示意图看出,李老师必须先的到公交总站,然后再到新城。李老师要完成从家到新城的这件事,需要2个步骤,第1步是从家到公交总站,一共5种选择;第2步从公交总站到新城,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条,因为从家到公交总站的每一步都有2种路线到新城。 解题指导1 1.乘法原理在解决搭配问题中的应用,先明确第一步有几种方法,再明确第二步有几种方法,然后两种方法数相乘的积,就是方法的总数。 【例1】马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 分析与解:由下图可以看出,帽子和鞋共有6种搭配。 事实上,小丑戴帽穿鞋是分两步进行的。第一步戴帽子,有3种方法;第二步穿鞋,有2种方法。对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有3×2=6(种)。

【变式题1】 贝奇打算吃过面包、喝点饮料后去运动,一共有2种面包、3种饮料、2种运动可供选择,贝奇一共有多少种选择? 解题指导2 2.乘法原理在组数中的应用。 用几个数组数,要先选定最高位上的数有几种方法,用去一个数后,还有几个数能满足下一数位,这个数位上就有几种方法。依次类推,再把每个数位组的方法数相乘,就得到一共的组数方法。 【例2】用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?【分析与解】组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。根据乘法原理,可以组成三位数有: 5×6×6=180(个)。 答:可以组成180个三位数. 【变式题2】用0,1,2,3,4这五个数字可以组成多少个不相等的四位数? 解题指导3

3年级加法原理与乘法原理

加法原理与乘法原理 例1 书架上有1 0本故事书、3本历史书、1 2本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 例2 一列火车从上海到南京,中途要经过6个站,这列火车要准备多少种不同的车票? 例3 . 数数图中有多少正方形。 例 4 爸爸、妈妈和小明三人在公园照相,共有多少种不同的照法? 例5 从甲地到乙地有2条路可走,从乙地到丙地有3条路可走。试问从甲地经乙地到丙地共有多少种不同的走法? 例6 书架上有4本故事书,7本科普书,志远从书架上任 取1本故事书和1本科普书。共有多少种不同的取法? 例7 用9、8、7、6这4个数字可以组成多少个没有重复数字的三位数?这些三位数的和是多少? 例8如图,A 、B 、C 、D 4个区域分别用红、黄、蓝、白4种颜色中的某一种染色。若要求相邻的区域染不同的颜色,那么共有多少种不同的染色方法? 例9 如图,小明家到学校有3条东西向的马路和5条南北向的马路。他每天步行从家到学校只能向东或向南 思考与练习: 1.从甲城到乙城,可乘汽车、火车或飞机。已知一天中汽车有2班,火车有4班,飞机有3班,从甲城到乙城共有多少种不同的走法 2.书架上层放有7本不同的故事书,中层有6本不 同的科技书,下层有4本不同的历史书。如果从书架上任取一本书,有多少种不同的取法? 3.平面上有8个点(其中没有任何三个点在一条直线上),经过每两点画一条直线,共可以画多少条直线? 4.从2、3、5、7 、11、13这六个数中,每次取出两个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数? 5.十把钥匙开十把锁,但钥匙已经搞乱了,问:最多试多少次即可将钥匙和锁配起来? 6.用1、2.3.4、5这五个数字可以组成多少个没有重复数字的四位数?将它们从小到大排列起来,5124是第几个? 7.某人到食堂去买饭,主食有3种,副食有5种,他 主食和副食各买一种,共有多少种不同的买法? 8.衣架上有2顶帽子、3件上衣、3条裤子。从中任取1顶帽子、1件上衣、1条裤子可以组成一套装束,最多可配成多少种不同的装束? 9.甲、乙两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛多少场? 10.从5、7、11、13这四个数中每次取2个数组成分数,一共可以组成多少个分数?

乘法原理练习题

十五、乘法原理(2) 年级 班 姓名 得分 一、填空题 1.“IMO ”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出 种不同颜色搭配的“IMO ”. 市的电话号码有七个数字,其中第一个数字不为0,也不为1.这个城市、数字不重复的电话号码共有 个. 3.这是一个棋盘(如图),将一个白子和一个黑子放在棋盘线的交叉点上,但不能在同一条棋盘线上,共 种不同的放法. … 4.电影院有六个门,其中A 、B 、C 、D 门只供退场时作出口,甲、乙门作为入口也作为出口.共有 种不同的进出路线. / 5.将3封信投到4个邮筒中,一个邮筒最多投一封信,有 种不同的投法. 6.两人见面要握一次手,照这样的规定,五人见面共握 次手. 7.有四张卡片,上面分别写有0,1,2,4四个数字,从中任意抽出三张卡片组成三位数.这些卡片共可组成 个不同的三位数. 8.圆周上有A 、B 、C 、D 、E 、F 、G 、H 8个点,每任意三点为顶点作三角形.这样共可作出 个不同的三角形 ¥ 9.用1,2,3这三个数字可以组成多少个不同的三位数.如果按从小到大的顺序排列,213是第 个数. 10.一排房有四个房间,在四个房间中住着甲、乙、丙三人,规定每个房间只许住一人,并且只允许两个人住的房间挨在一起.第三个人的房间必须和前两个人隔开,有 种住法. 二、解答题 11.在一次晚会上男宾与每一个人握手(但他的妻子除外),女宾不与女宾握手,如果有8对夫妻参加晚会,那么这16人共握手多少次

名运动员进行乒乓球球比赛,每两名运动员都要比赛一场,每场比赛3局2胜,全部比赛结束后,所有各局比赛最高得分为25:23,那么,至少有多少局的比分是相同的 — 13.下面五张卡片上分别写有数字: ,求所有这些五位 数的平均数. 14.有一种用六位数表示日期的方法,如:890817表示的是1989年8月17日,也就是从左到右第一、二位数表示年,第三、四位数表示月,第五、六位数表示日.如果用这种方法表示1991年的日期,那么全年中六个数字都不相同的日期共有多少天 ) ———————————————答案—————————————————————— 1. 60. 先写I,有5种方法;再写M,有4种方法;最后写O,有3种方法.一共有5×4×3=60(种)方法. 2. 483840. } 先排首位,有8种方法.再依次排后面六位,依次有9,8,7,6,5,4种方法.故一共有8×9×8×7×6×5×4=483840(个)数字不同的电话号码. 3. 72. 先排黑子,它可以放在任一格,有12种放法.再排白子,它与黑子不能在同一行,也不能在同一列,只有6种方法.一共有12×6=72(种)放法. 4. 12. 先选入口,有2种方法,再选出口,有6种方法,一共有12种方法. 5. 24. 第一封信有4种投法,第二封信有3种投法,第三封信有2种投法,共有4×3×2=24(种)投法. } 6. 10. 每一人要握4次手,五人共握4×5=20(次),但在上述计算中,每次握手都被计算了2次,故实际上握手次数为20÷2=10(次). 7. 18. 先排百位,有3种方法(0不能在首位);再排十位,也有3种方法;最后排个位,有2种方法,一共有3×3×2=18(种)方法.即可以组成18个不同的三位数. 8. 56. 选第一个顶点,有8种方法;选第二个顶点,有7种方法;选第三个顶点,有6种方法.共有8×7×6(种)选法.但在上述计算中,每个三角形都被计算了6次,故实际上有(8×7×6)÷6=56(个)三角形.

加法原理与乘法原理随堂练习含答案

加法原理与乘法原理随堂练习含答案 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

加法原理与乘法原理 一、选择题 1. [2013·苏州联考]某电话局的电话号码为139××××××××,若最后五位数字是由6或8组成的,则这样的电话号码一共有( ) A. 20个 B. 25个 C. 32个 D. 60个 答案:C 解析:采用分步计数的方法,五位数字由6或8组成,可分五步完成,每一步有两种方法,根据分步乘法计数原理有25=32个,故选C. 2. [2013·四川德阳第二次诊断]现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A. 81 B. 64 C. 48 D. 24 答案:A 解析:每个同学都有3种选择,所以不同选法共有34=81(种),故选A. 3. [2013·抚顺模拟]只用1、2、3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有( ) A. 6个 B. 9个 C. 18个 D. 36个 答案:C 解析:对于1、2、3三个数组成一个四位数,其中必有一个数要重复,从三个中选一个有C1 3 种,这样重复的数有2个,利用插空法知共有 A3 3种,因此共有3A3 3 =18个这样的四位数. 4. [2013·福州质检]如图所示2×2方格,在每一个方格中填入一 个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方

格的数字大于B 方格的数字,则不同的填法共有( ) A. 192种 种 C. 96种 D. 12种 答案:C 解析:可分三步:第一步,填A 、B 方格的数字,填入A 方格的数字大于B 方格中的数字有6种方式(若方格A 填入2,则方格B 只能填入1;若方格A 填入3,则方格B 只能填入1或2;若方格A 填入4,则方格 B 只能填入1或2或3);第二步,填方格 C 的数字,有4种不同的填 法;第三步,填方格D 的数字,有4种不同的填法.由分步计数原理得,不同的填法总数为6×4×4=96. 5. 若从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A. 66种 B. 63种 C. 61种 D. 60种 答案:D 解析:从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇 数的取法分为两类:第一类取1个奇数,3个偶数,共有C 15C 3 4=20种取法;第二类是取3个奇数,1个偶数,共有C 35C 14=40种取法.故不同的取 法共有60种,选D. 6. [2013·西安调研]某种体育彩票规定:从01至36共36个号码中抽出7个号码为一注,每注2元,某人想从01至10中选3个连续的号码,从11至20中选2个连续的号码,从21至30中选1个号码,从31至36中选1个号码,组成一注,则要把这种特殊要求的号码买全,至少要花费( ) A. 3360元 B. 6720元 C. 4320元 D. 8640元 答案:D

奥数:加法原理、乘法原理

海豚教育个性化简案 学生姓名:年级:科目: 授课日期:月日上课时间:时分------ 时分合计:小时 教学目标1. 培养学生的观察能力及逻辑思维能力。. 2. 初步了解“乘法原理”,“加法原理(一)”,“加法原理(二)”。 重难点导航1. 了解掌握奥数阶梯思维. 2. 把奥数思维带入解决应用题中. 教学简案: 一、个性化教案 二、错题汇编 三、个性化作业 授课教师评价:□ 准时上课:无迟到和早退现象 (今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况 (大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字: 备注:请交至行政前台处登记、存档保留,隔日无效(可另附教案内页)大写:壹贰叁肆签章:

海豚教育个性化教案 奥数讲解八 题型一:乘法原理 【知识要点】 1. 乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法……做第n步有mn种方法,那么按照这样的步骤完成这件任务共有 N=m1×m2×…×mn 种不同的方法。 2. 从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。 【典型例题】 例1:马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 例2:从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法? 例3:用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)? 例4:如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法? 例5:有10块糖,每天至少吃一块,吃完为止。问:共有多少种不同的吃法? 【同步训练】 1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束?

相关文档
相关文档 最新文档