文档库 最新最全的文档下载
当前位置:文档库 › 高数王博+第一讲+函数极限连续

高数王博+第一讲+函数极限连续

高数王博+第一讲+函数极限连续
高数王博+第一讲+函数极限连续

第一讲 函数 极限与连续

【题型一】分段函数的复合函数[()]f g x

【例1】设???≥<=0,10

,0)(x x x f ,?

??≤-<-=x x x x x g 1,21,2)(2

试求)]([x g f ,)]([x f g .

【详解】??

?><<≤=21,12

1,0)]([x x x x g f 或??

?≥-<=0

,10

,2)]([x x x f g 【例2】设1,1,

()0,1,x f x x ?≤?=?>??

则[]{}()f f f x 等于 ( )

(A)0 (B)1 (C)1,1,0,1,x x ?≤??>?? (D)0,1,

1,1,

x x ?≤??>??

【答案】(B)

【详解】因为1,1

()0,1x f x x ?≤?=?

>??

,所以在整个定义域内()0()1f x f x ==或,所以()1f x ≤,于是[]()1f f x =,从而[]{}()()11f

f f x f ==

【例3】设函数???<-≥=.

1,12,1,ln )(x x x x x f ,[]()y f f x =,则

d d x e

y

x ==______ .

【答案】应填

e

1

. 【分析】本题主要考查抽象函数的复合,必须分段分层讨论.

【详解】由???<-≥=.

1,12,

1,ln )(x x x x x f 得

[]()y f f x

=()1,2()1,

() 1.f x f x f x ?≥?=?

-

?

?

???<-<≤-≥.1,34,1,

1ln ,),ln 2

1ln(2122

x x e x x e x x 因此

()d ln 1d x e

x e y x x

=='

=-=

e x x =|1e

1

=. 应填 e 1.

【题型二】函数的基本特性

方法:综合应用函数特性的几种判别方法

【例4】(99,1,2,3)设()f x 是连续函数,()F x 是()f x 的原函数,则 ( ) (A)当()f x 是奇函数时,()F x 必是偶函数。 (B)当()f x 是偶函数时,()F x 必是奇函数。 (C)当()f x 是周期函数时,()F x 必是周期函数。 (D)当()f x 是单调增函数时,()F x 必是单调增函数。 【详解】应用函数定义判定函数的奇偶性、周期性和单调性.

()f x 的原函数()F x 可以表示为0

()(),x

F x f t dt C =+?于是

()0

()()().u t

x

x

F x f t dt C f u d u C =---=+=

--+?

?

当()f x 为奇函数时,()()f u f u -=-,从而有

()()()()x

x

F x f u du C f t dt C F x -=+=+=??

即 F (x )为偶函数. 故(A)为正确选项.

(B)、(C)、(D)可分别举反例如下:

2()f x x =是偶函数,但其原函数31

()13

F x x =+不是奇函数,可排除(B);

2()cos f x x =是周期函数,但其原函数11

()sin 224

F x x x =+不是周期函数,排除(C);

()f x x =在区间(,)-∞+∞内是单调增函数,但其原函数21

()2

F x x =在区间(,)-∞+∞内非

单调增函数,可排除(D).

类似题(05,1,2)设是连()F x 续函数()f x 的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有( )

(A)()F x 是偶函数?()f x 是奇函数. (B)()F x 是奇函数?()f x 是偶函数. (C)()F x 是周期函数?()f x 是周期函数. (D)()F x 是单调函数?()f x 是单调函数. 【详解】方法1:应用函数奇偶性的定义判定,

函数()f x 的任一原函数可表示为?+=x

C dt t f x F 0)()(,且).()(x f x F ='

当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-?-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;

反过来,若()f x 为奇函数,则0

()()x

F x f t dt C --=+?

,令t k =-,则有dt dk =-

所以 0

()()()()()x

x

x F x f t dt C f k dk C f k dk C F x --=+=--+=+=?

??,

从而 ?

+=

x C dt t f x F 0

)()( 为偶函数,可见(A)为正确选项.

方法2:排除法,

令()1f x =, 则取()1F x x =+, 排除(B)、(C);

令()f x x =, 则取2

1()2

F x x =

, 排除(D); 【例5】下列结论正确的是 ( )

(A )1sin

x x 在()0,+∞上是无界 (B )0x →时211

sin x x 是无穷大量 (C )0sin x t dt t ?在(]0,2010上是无界 (D )11

sin x x

在()0,+∞上是无界 【详解】对A ,函数1()sin f x x x =在()0,+∞上连续,而01lim sin 0x x x +→=,1

lim sin 1x x x

→+∞=,故1

sin x x

在()0,+∞上是有界

对C ,函数()0sin x t f x dt t =?在(]0,2010上连续,而00sin lim 0x x t t

+→=?,故0sin x t

dt t ?在(]0,2010上是有界 或()sin x f x x '=,而0sin lim 1x x x

+

→=,()f x '在(]0,2010有界,所以()f x 在(]0,2010有界

对D ,取10()22

n x n n π

π=→→∞+

此时()22

n f x n π

π=+→∞,

所以11

sin x x 在()0,+∞上是无界 对B ,取10()2n x n n π=

→→∞,此时()0n f x =,即2011

lim sin x x x

→≠∞,故选D

【例6】以下四个命题中正确的是

(A )若()f x '在)1,0(内连续,则)(x f 在)1,0(内有界; (B )若)(x f 在)1,0(内连续,则)(x f 在)1,0(内有界; (C )若()f x '在)1,0(内有界,则)(x f 在)1,0(内有界;

(D )若)(x f 在)1,0(内有界,则()f x '在)1,0(内有界。

【详解】解法1 直接法:由于)('x f 在)1,0(内有界,则)(x f 在)1,0(内有界,故选(C ). 解法2 排除法: 令x x f 1)(=

,则21

)('x

x f -=,显然,()f x '和)(x f 都在)1,0(内连续,但)(x f 在)1,0(内无界,则(A )(B )都不正确. 令x x f =)(,显然)(x f 在)1,0(内有界,但x

x f 21)(=

在)1,0(内无界,则(D )不正确.

故应选(C)

【例7】(04,3)设)(x f '在[,]a b 上连续,且0

)(,0)(<'>'b f a f ,则下列结论中错误的是( )

(A)至少存在一点0(,)x a b ∈,使得()0()f x f a >. (B)至少存在一点0(,)x a b ∈,使得()0()f x f b >. (C)至少存在一点0(,)x a b ∈,使得0'()0f x = (D)至少存在一点0(,)x a b ∈

,使得0()0f x = 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2

()4,11f x x x =--≤≤,

11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.

方法2:证明(A)、(B)、(C)正确.

由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确; 另外,由导数的定义0)

()(lim

)(>--='+

→a

x a f x f a f a x ,根据极限的保号性,至少存在一

点),(0b a x ∈使得

0)

()(00>--a

x a f x f ,即)()(0a f x f >,所以选项(A)正确.

同理,()()

()lim 0x b

f b f x f b b x

-

→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使

)()(0b f x f >. 所以选项(B)正确,故选(D).

【练习】设函数()f x 连续,且'(0)0f >,则存在0δ>,使得( ) (A )()f x 在()0,δ内单调增加 (B )()f x 在()0,δ内单调减少 (C )对任意的(0,)x δ∈有()(0)f x f > (D )对任意的(0,)x δ∈有()(0)f x f <

【例8】设(),()f x g x 是恒大于0的可导函数,且()()()()0f x g x f x g x ''-<,则当

a x

b <<时有( )

(A )()()()()f x g b f b g x > (B )()()()()f x g a f b g x > (C )()()()()f x g x f b g b > (D )()()()()f x g x f a g a >

【详解】令)()()(x g x f x F =,则0)

()()()()()(2'''

<-=x g x g x f x g x f x F ,)(x F 单调减,由

b x a <<知)()(x F b F <,即

)

()

()()(x g x f b g b f <,)()()()(x g b f b g x f <故应选(A )。 【题型三】极限概念、性质及存在准则

【例9】(03,1,2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞

→n n a ,1lim =∞→n n b ,∞=∞

→n n c lim ,

则必有( )

(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞

→lim 不存在. (D) 极限n n n c b ∞

→lim 不存在.

方法1:(推理法)由题设lim 1n n b →∞

=,假设lim n n n b c →∞

存在并记为A ,则lim lim

n n

n n n n

b c c A b →∞

→∞==,

这与lim n n c →∞

=∞矛盾,故假设不成立,lim n n n b c →∞

不存在. 所以选项()D 正确.

方法2:(排除法)

取1n a n

=

,1n n b n -=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;

取1

n n b n

-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;

取1

n a n

=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.

【例10】(00,3)设对任意的x ,总有()()()x f x g x ?

≤≤,且[]

l i m ()()0x g x x ?→∞

-=,则lim ()x f x →∞

( )

(A)存在且一定等于零. (B)存在但不一定等于零.

(C)一定不存在. (D)不一定存在. 用排除法. 令211)(x x -

=?,2

11)(x x g +=,1)(=x f 显然)()()(x g x f x ≤≤?,且0)]()([lim =-∞

→x x g x ?,此时1)(lim =∞

→x f x 。 则(A )和(C )不正确。 若令21)(x x x -

=?,x x f =)(,21)(x

x x g +=, 则)()()(x g x f x ≤≤?,且0)]()([lim =-∞

→x x g x ?,但∞=∞

→)(lim x f x (不存在)。 从而(B )不正确,故(D )正确

【例11】(08,2)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,

下列命题正确的是( ) ()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛. ()D 若{}()n f x 单调,则{}n x 收敛.

【答案】B

直接法:由于)(x f 单调有界,则当{}n x 单调时,数列{})(n x f 单调有界,从而{})(n x f 收敛,故选(B ) 排除法:令??

?>+≤=0

,arctan 10,

arctan )(x x x x x f

n

x n

n )1(-=显然)(x f 在),(+∞-∞上单调有界,0lim =∞→n x x 收敛,但

??

???

+-=为偶数

为奇数n n n n x f n ,1

arctan 1),1arctan()(

)(lim n n x f ∞

→不存在,则(A )不正确。

令x x f arctan )(=,n x n =

2

arctan lim )(lim π

=

=∞

→∞

→n x f n n n 收敛,且n x f n arctan )(=单调,但∞=∞

→n n x lim ,则(C )(D )

均不正确,故应选(B )

【题型四】求函数的极限(未定式)

【例12】(00,1)求1

402sin lim .1x x x e x x e →??+ ?+ ? ?+??

【分析】由于极限中含有1x

e 与x ,故应分别求其左极限与右极限,若左极限与右极限相等,则极限值存在且等于其极限值,否则极限不存在. 【详解】

11

44002sin 2sin 2lim lim 11111x x x x x x e x e x x x e e --→→????++ ? ?+=-=-= ? ? ? ?++????; 1144002sin 2sin lim lim 01111x x

x x x x e x e x x x e e ++→→????++ ? ?+=+=+= ? ? ? ?++????

; 左极限与右极限相等,所以1

402sin lim 1.1x x x e x x e →??+ ?+= ? ?+??

【例13】2

13)21ln(sin lim

0--+++→x x x x x

【详解】原式x x x x x x x x x 1113)

21ln(sin lim 0--+

-++

=→1

3ln 26213ln 21-=

-+= 【例14】(97,1)求201

3sin cos

lim

(1cos )ln(1)

x x x x x x →+=++ .

【分析】这是

00型极限.注意两个特殊极限00sin ln(1)

lim

1,lim 1x x x x x x

→→+==. 【详解】将原式的分子、分母同除以x ,得

2001sin 1

3sin cos 3cos

3lim

lim .ln(1)(1cos )ln(1)2

(1cos )

x x x x x x x x x x x x x x

→→++==++++ 评注:使用洛必达法则的条件中有一项是0

()

lim

()

x x f x g x →''应存在或为∞,而本题中, []20

0111

(3sin cos )3cos 2cos sin

lim

lim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x x

x x x x x

→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则

【例15】(04,2)求极限3

01

2cos lim 13x x x x

→??+??-?? ?

??????

. 【答案】1

6- 【详解】此极限属于

型未定式.可利用洛必达法则,并结合无穷小代换求解. 方法1: 2cos 2cos ln ln 332cos 3x

x

x x x x e

e

++???? ?

?

?

??

?+??

== ???

原式2cos ln 33

1lim

x x x e

x +?? ???

→-=1x e x -302cos ln 3lim x x x x →+?? ???202cos ln 3lim x x x

→+?? ???=

2

0ln 2cos ln 3

lim x x x →+-=()20

(ln 2cos ln 3)lim ()

x x x →'

+-'()洛

01

sin 2cos lim

2x x x x

→?-+()

=011sin lim 22cos x x x x →=-?+ 0011sin 11lim lim 122cos 23

x x x x x →→=-?=-??+16=-

方法2:原式2cos ln 33

1lim

x x x e

x +??

???

→-=1x e x -202cos ln 3lim x x x

→+??

???

2

cos 1ln 3lim

x x x →-+

=(1)()ln 1x x +22

00cos 11cos lim

lim

33x x x x

x x →→--=-

2

22021cos lim 23x x x x

x → - -16

=-.

【例16】(

97,2)求极限lim x 【分析】这是

型的极限,

可以设法约去分子、分母中极限为∞的因子,从而转化为确定型的极限.

在计算过程中应注意x 趋于负无穷.

x =-(0)x <,则

原式1lim

11x ===.

【例17】求极限???

?

??-+++∞→e x x x x x x )1(lim 1 【详解】原式?

????

?

??-+=+∞→e x x x x x )11(lim x x x x e x e x )11())11((lim ++-=+∞

→ x

x e e x

x 1)1

1(lim

12+-=+∞

→ (令t x =1) t

e t e t

t -+-=

+→102)1(lim 1t

e

e e t

t t --=+→+)1ln(02lim

1

t

e e t

t

t t 1

lim 1)1ln(0

--=-+→+

2

0)1(lim 1t t

t e t -+-=+

→ ( t

t

t e t

t

t -+--+)1ln(~

1)1ln() t t

e t 21

11lim 10-+-=+→ e

t t t e t 21

21lim 10=+--=+→ 【例18】求极限)(lim 1

112

+∞

→-x x

x a

a x 。0a >

【详解】原式)

1(lim 1

111

1

2

-=++∞

→x x

x x a

a a

x

a x x a

x a

x x x x x ln )

1(ln lim )1(lim 2)

1(12

=+=-=∞→+∞

【练习】求极限)18(lim

333

2+-+∞

→x x x x

【详解1】原式=3

7

)1()18()8(7lim 23332332=

+++?+++∞→x x x x x x 【详解2】原式

=lim

1)x

1

37111x x ????=+- ??

+????

17

31x x =?

+717lim 133x x x x

==+

【练习】(2012数3)求极限4cos 2202

lim x

e e x

x x -→-. 【分析】利用等价无穷小代换与洛必达法则求解.

【详解1】4

cos 2202lim

x e e x x x -→-4

cos 22cos 220)1(lim 2

x e e x

x

x

x -+-→-=4

cos 220

1

lim

2

x e x

x

x -=+-→

420cos 22lim x x x x +-=→3

04sin 22lim x x

x x -=→ 206cos 1lim x

x x -=→x x x 12sin lim 0→=121=. 【详解2】4

cos 2202

lim

x e e x x x -→-4

cos 22cos 220)1(lim 2

x e e x

x

x

x -+-→-=4

cos 220

1

lim

2

x e x

x

x -=+-→

420cos 22lim x x x x +-=→3

0sin lim 2x x x

x →-= 33016lim 2x x

x →=121

=. (31sin ~6

x x x -) 【例19】求极限21lim ln 1x x x x →∞

????-+

???????

【详解】法1:令1

x t

=

原式()

2

001

1ln 111lim

lim

22

x x t t t t t →→-

-++===

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

第一章函数、极限、连续

第一章 函数 极限 连续 1.1 数列极限的求法 一 基本概念 数列极限、数列收敛、数列发散 1. 数列极限:lim n n x a →∞ = 描述语言:当n 充分大时,数列一般项n x 无限趋于(无限接近,充分接近)某个确定的常数a ,则称a 就是数列{}n x 的极限. “N ε-”语言:0ε?>,N ?,当n N >时,有n x a ε-<. 二 基本结论 1. 收敛数列性质:唯一性;有界性;保号性;子序列的收敛性. 2. 单调有界原理:单调有界数列必有极限;或叙述为:单调增加有上界必有极限,单调减少有下界必有极限. 3. 夹逼法则:若n n n y x z ≤≤,n N >,且lim lim n n n n y z a →∞ →∞ ==,则lim n n x a →∞ =. 4. 数列极限运算法则:设lim n n x A →∞ =,lim n n y B →∞ =,那么 (1)lim()n n n x y A B →∞ ±=±; (2)lim n n n x y AB →∞ ?=; (3)lim (0)n n n x A B y B →∞ =≠. (4)lim() n y B n n x A →∞ = 5. 两个重要极限:10 lim(1)e x x x →+=;0sin lim 1x x x →=. 这两个极限公式可以推广为:当0x x →时,()0f x →,则 1() lim(1()) e f x x x f x →+=;0sin () lim 1() x x f x f x →=. 三 基本方法 数列极限的未定式(不确定型)有八种形式: 00;∞∞ ;0?∞;∞±∞;1∞;0 ∞;00;无限个无穷小的和.

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

函数极限与连续习题(含答案)

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经 过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题:(1)若 f (x ) 在 x 0 点连续,则 f (x ) 在 x → x 0 点必有极限 2)若 f (x )在x → x 0点有极限,则 f (x )在x 0点必连续 3)若 f (x )在x → x 0点无极限,则 f (x )在x = x 0点一定不连续 (4)若 f (x ) 在 x = x 0 点不连续,则 f (x ) 在 x → x 0 点一定无极限。 其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、4 2、若 lim f ( x ) = a ,则下列说法正确的是( C ) x →x 0 A 、 f (x )在x =x 0处有意义 B 、 f (x 0)=a C 、 f (x )在x = x 0处可以无意义 D 、x 可以只从一侧无限趋近于x 0 3、下列命题错误的是( D ) A 、函数在点x 0 处连续的充要条件是在点x 0 左、右连续 B 、函数 f (x )在点x 0处连续,则lim f (x )= f (lim x ) 0 x →x 0 x → x 0 C 、初等函数在其定义区间上是连续的 D 、对于函数 f (x )有lim f (x ) = f (x 0) x → x 0 0 4、已知f (x )= 1 ,则lim f (x +x )- f (x )的值是( C ) x x →0 x 11 A 、 B 、 x C 、 - D 、 - x x 2 x 2 5、下列式子中,正确的是( B ) x 2 + ax + b 6、lim x +ax +b =5,则a 、b 的值分别为( A ) x →1 1 - x A 、- 7和6 B 、7和- 6 C 、- 7和- 6 D 、7和6 7、已知f (3) = 2, f (3) = -2,则lim 2x - 3 f (x )的值是( C ) x →3 x - 3 8、l x i →m a 3 x x --3a a =( D ) A 、lim x = 1 B 、lim x -1 = 1 C 、lim x -1=1 x →0 x x →1 2(x -1) x →-1 x - 1 lim x x → 0 x =0 A 、-4 B 、0 C 、8 D 、不存在 D 、

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

函数极限与连续习题加答案(供参考)

第一章 函数、极限与连续 第一讲:函数 一、是非题 1.2x y = 与x y =相同; ( ) 2.)1ln()22(2x x y x x +++=-是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. )0(2 >=x x y 是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( ) 6.实数域上的周期函数的周期有无穷多个; ( ) 7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( ) 8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。 ( ) 二、填空题 1.函数)(x f y =与其反函数)(x y ?=的图形关于 对称; 2.若)(x f 的定义域是]1,0[,则)1(2 +x f 的定义域是 ; 3.1 22+=x x y 的反函数是 ; 4.1)(+=x x f ,2 11 )(x x += ?,则]1)([+x f ?= , ]1)([+x f ?= ; 5.)2(sin log 2+=x y 是由简单函数 和 复合而成; 6.1)(2 +=x x f ,x x 2sin )(=?,则)0(f = ,___________)1(=a f , ___________)]([=x f ?。 三、选择题 1.下列函数中既是奇函数又是单调增加的函数是( )

A 、x 3sin B 、13+x C 、x x +3 D 、x x -3 2.设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为( ) A 、1 B 、-1 C 、2 D 、-2 3.)sin()(2x x x f -=是( ) A 、有界函数 B 、周期函数 C 、奇函数 D 、偶函数 四、计算下列各题 1.求定义域5 23arcsin 3x x y -+-= 2.求下列函数的定义域 (1)342+-=x x y (2)1 142++ -=x x y (3)1)2lg(++=x y (4)x y sin lg = 3.设2 )(x x f =,x e x g =)(,求)]([)],([)],([)],([x g g x f f x f g x g f ;

第一讲 函数极限连续1003

第一讲 函数、极限与连续 一、考试要求 1. 理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2.了解函数的奇偶性、单调性、周期性和有界性。 3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。 5. 理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极 限存 在与左、右极限之间的关系。 6. 掌握(了解)极限的性质,掌握四则运算法则。 7. 掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极 限求极限的方法。 8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷 小量求极限。 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质 (有界性、最大值和最小值定理、介值定理),并会应用这些性质。 11. 掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数 (1)函数的概念: y=f(x),重点:要求会建立函数关系. (2)复合函数: y=f(u), u=??()[()]x y f x ?=,重点:确定复合关系并会求复合函数的定义域. (3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。 (5)函数的特性:单调性、有界性、奇偶性和周期性 * 注:1、可导奇(偶)函数的导函数为偶(奇)函数。 特别:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则?x dt t f 0)(为奇函数; 若)(x f 为奇函数,则?x a dt t f )(为偶函数; 3、可导周期函数的导函数为周期函数。 特别:设)(x f 以T 为周期且)(0x f '存在,则)()(00x f T x f '=+'。 4、若f(x+T)=f(x), 且0 )(0 =? T dt t f ,则?x dt t f 0 )(仍为以T 为周期的周期函数. 5、设)(x f 是以T 为周期的连续函数,则

高等数学 函数与极限 教案

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a M. 集合的表示: 列举法: 把集合的全体元素一一列举出来.

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

大一高等数学总结

第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质) 1. (等价小量与洛必达) 2.已知

(洛必达) 3. (重要极限) 4.已知a、b为正常数, (变量替换)5. 解:令 6. (变量替换)

7.已知在x=0连续,求a 解:令(连续性的概念) 三、补充习题(作业) 1.(洛必达) 2.(洛必达或Taylor) 第二讲导数、微分及其应用 一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题 3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法

A.导数微分的计 算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则 B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0 C.导数应用问题 6.已知, ,求点的性质。 解:令,故为极小值点。 7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

2015函数、极限与连续习题加答案

2015函数、极限与连续习题加答案

制题人: 兰 星 第一章 函数、极限与连续 2 第一章 函数、极限与连续 第一讲:函数 一、是非题 1 . 2 x y =与 x y =相同; 2. ) 1ln()22(2x x y x x +++=-是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. ) 0(2>=x x y 是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( ) 6.实数域上的周期函数的周期有无穷多个;

制题人: 兰 星 第一章 函数、极限与连续 3 ( ) 7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( ) 8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。 ( ) 二、填空题 1.函数)(x f y =与其反函数)(x y ?=的图形关于 对称; 2.若)(x f 的定义域是]1,0[,则) 1(2 +x f 的定义域 是 ; 3. 1 22+=x x y 的反函数是 ; 4.1)(+=x x f ,2 11)(x x +=?,则]1)([+x f ?= , ]1)([+x f ?= ; 5.) 2(sin log 2 +=x y 是由简单函数 和 复合而成; 6.1 )(2 +=x x f ,x x 2sin )(=?,则)0(f = , ___________)1 (=a f , _ __________)]([=x f ?。

制题人: 兰 星 第一章 函数、极限与连续 4 三、选择题 1.下列函数中既是奇函数又是单调增加的函数是( ) A 、 x 3 sin B 、1 3 +x C 、 x x +3 D 、 x x -3 2.设5 4)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为 ( ) A 、1 B 、-1 C 、2 D 、-2 3.) sin()(2 x x x f -=是( ) A 、有界函数 B 、周期函数 C 、奇函数 D 、偶函数 四、计算下列各题 1.求定义域5 23arcsin 3x x y -+-= 2.求下列函数的定义域

(完整版)高等数学第一章函数与极限试题2

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1 )(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1-,x ≠0,1,则f [)(1 x f ]= ( D ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( C ) A ) lim 0 + →x )x 1 +1(x =1 B ) lim 0 + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e

5.已知9)( lim =-+∞→x x a x a x ,则=a ( C )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1(lim ( C ) A.1; B.∞; C.2-e ; D.2e 7.极限:∞ →x lim 332x x +=( A ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0 -+→ =( C ) A.0; B.∞; C 2 1; D.2. 9. 极限:)(lim 2x x x x -+∞ +→=( D ) A.0; B.∞; C.2; D. 2 1 . 10.极限: x x x x 2sin sin tan lim 30-→=( C ) A.0; B.∞; C. 16 1; D.16. 二. 填空题 11.极限1 2sin lim 2+∞ →x x x x = 2 . 12. lim 0 →x x arctanx =_______________. 13. 若)(x f y =在 点 x 连续,则 f )]()([lim 0→-0 x f x f x x =______f ’(xo)_________; 14. =→x x x x 5sin lim 0_________0.2__; 15. =-∞→n n n )2 1(lim _______e*e__________; 16. 若函数2 31 22+--=x x x y ,则它的间断点是___________2___1_____

第一讲函数极限连续(学生用).docx

高等数学 第一讲函数、极限、连续 I ?考试要求 1.理解函数概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限Z间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数I'可断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最人值和最小值定理、介值定理),并会应用这些性质. H.考试内容 —.函数 (-)函数的概念对应关系,定义域 (二)函数的性质 1?有界性3M>0, 均有\f(x)\ M2有下界 /(兀)有界o /(兀)有上界II有下界 2.单调性Xfx i .f (兀2)),单调增加(减

少).

3.周期性3r>0,Vx€(-oo,+oo),均有/(x + T) = /(x)侧称/⑴为周期函数 4.奇偶性 VXG (-/,/),均有/(-%) = f(x) ( -/(X )),则于(兀)为偶(奇)函数. 【例1】设F\x) = f(x),则下列结论正确的是( )? (A) 若/'(X )为奇函数,则尸(兀)为偶函数. (B) 若/⑴ 为偶函数,则F ⑴为奇函数. (C) 若/(兀)为周期函数,则F(x)为周期函数. (D) 若/(X )为单调函数,则F(x)为单调函数. (三)函数的类型 1. 基本初等函数 y = C, y - x ,u , y - a x , y = y = sinx , y = cos , y = arcsinx f y = arccos . 2. 复合函数 名合一 y 二 /(w), u =(p{x)「:〉y 二 /(0(x)) 一拆多 3?反函数),=/(兀),x= 4. 初等函数 5. 隐函数 F(x, y) = 0 (x+y = 0, y = sinxy ). 6?幕指函数 f(xY (x) = ^(x),n/(v),/(x) >0. 隐含的分段函数 ①,y=|/(兀)|,② y =[/(兀)],③ y = sgn /(%) ④y = max {/(x),g(x)}=心巴心网, _ \x = rcos3 9?极坐标方程r = 询,\ .八 [y =厂 sm& 二.极限 (一) 极限定义 7.分段函数: /;(%),%< x 0 f (x\x>x y = mm{f(x\g(x)} = /(兀)+ g(x)-|/(x)-gCr)| 2 &参数方程(数一.二要求) x =(p(t) y = 0(/)

函数极限和连续试题及答案

极限和连续试题(A 卷) 1.选择题(正确答案可能不止一个)。 (1)下列数列收敛的是( )。 A . n n x n n 1)1(--= B . n x n n 1)1(-= C . 2 sin πn x n = D . n n x 2= (2)下列极限存在的有( )。 A . x x sin lim ∞ → B . x x x sin 1 lim ∞→ C . 121lim 0-→x x D . 1 21 lim 2+∞→n n (3)下列极限不正确的是( )。 A . 2)1(lim 1 =+-→x x B . 11 1 lim =+→x x C . ∞=-→2 12 4 lim x x D . +∞=+→x x e 20 lim (4)下列变量在给定的变化过程中,是无穷小量的有( )。 A . )0(12 →--x x B . )0(sin →x x x C . )(+∞→-x e x D . )0()1 sin 2(12→-+x x x x (5)如果函数.0;0;0,1sin ,,sin 1 )(>=

第一章函数、极限与连续习题

第一章 函数、极限与连续 一、 选择题 1、 )(x f 与)(x g 不表示同一函数的是( ) A x x f =)(与0,00 ,{)(=≠=x x x x g B x x f =)(与2)(x x g = C x x x f -+=11)(与22 )1(1)(x x x g --= D x x f arcsin )(=与x x g arccos 2)(-= π 2、 函数51arcsin )(-=x x f 的定义域是( ) A []6,4- B []5,5- C []1,1- D []∞+,0 3、下列函数中,奇函数是( ) A x x y cos += B 2x x e e y -+= C x x y cos = D )1ln(2x x y += 4、 下列极限存在的有( ) A 10lim x x e → B 01lim 21 x x →- C 01lim sin x x → D 2(1)lim x x x x →∞+ 5、若232lim 43 x x x k x →-+=-,则k =( ) A 3 B -3 C 1 D -1 6、函数()y f x =在点a 处连续是()f x 在a 点有极限的( ) A 必要条件 B 充分条件 C 必要充分条件 D 无关条件

7、 ()x f x x =在0x →时的极限是( ) A 1 B -1 C 0 D 不存在 8、极限=∞→x x x sin lim ( ) A.1 B.∞ C.不存在 D.0 9、=+∞→x x e 1lim ( ) A.∞+ B. 不存在 C.0 D.1 10、1sin y x =( ) A 当0x →时为无穷小量 B 当0x →时为无穷大量 C 在区间()01内为无界变量 D 在区间()01内为有界变量 11、 若lim ()x f x →∞ 存在,lim ()x g x →∞不存在,则以下正确的是( ) A lim(()())x f x g x →∞+与lim ()()x f x g x →∞ 都存在; B lim(()())x f x g x →∞+与lim ()()x f x g x →∞ 都不存在; C lim(()())x f x g x →∞+必不存在,lim ()()x f x g x →∞可能存在; D lim ()()x f x g x →∞ 必不存在,lim(()())x f x g x →∞+可能存在; 12、 若0 lim () 1 x x f x →=,则( ) A 0() 1 f x = B 0 () 1 f x > C 0() 1 f x < D 0()f x 可能不存在 13、当0x →时,下面四个无穷小量中,( )是比其他三个更高阶的量。 A 2x B 1cos x -1 D 2 (1)x x e - 14、设x cos 1-=α,22x =β,则当0→x ,则( )

相关文档
相关文档 最新文档