文档库 最新最全的文档下载
当前位置:文档库 › 研究生矩阵论试题与答案

研究生矩阵论试题与答案

研究生矩阵论试题与答案
研究生矩阵论试题与答案

中国矿业大学

级硕士研究生课程考试试卷

考试科目矩阵论

考试时间年月

研究生姓名

所在院系

学号

任课教师

一(15分)计算 (1) 已知A 可逆,求

10

d At

e t ?

(用矩阵A 或其逆矩阵表示)

; (2)设1234(,,,)T

a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T

d()d X αX

(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k

k A A ???

?

??∞→)(lim ρ。

二(15分)设微分方程组

d d (0)x

Ax t x x ?=????

?=?,508316203A ?? ?= ? ?--??,0111x ?? ?

= ?

??? (1)求A 的最小多项式)(λA m ; (3)求At

e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax =

312312

111x x x x x x =??

++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;

(3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设

11

13A ?=??

求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。

五(10分) 设(0,,2)T

n

A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2

()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n

r

A R ?∈,

(1)证明rank()n I A A n r +

-=-;

(2)0Ax =的通解是(),n

n x I A A y y R +=-?∈。

七(10分)证明矩阵

21212123

111222222243333

33644421(1)(1)n n n n

n n n n n n ---?

? ?

? ? ?

?= ? ?

?

? ? ?+++?

?

A (1)能与对角矩阵相似;(2)特征值全为实数。

八(15分) 设A 是可逆矩阵,

1

1

,B A A

αβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明

(1)B 是可逆矩阵;(2)1

1B αβ

-≤

-;(3)11

()B A βααβ---≤-。

参考答案

一(15分)计算 (1) 已知A 可逆,求

10

d At

e t ?

(用矩阵A 或其逆矩阵表示)

; (2)设1234(,,,)T

a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T

d()d X αX

(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k

k A A ???

?

??∞→)(lim ρ。 解

(1)1

11

00

At

At

de e dt A dt dt

-??=

???

??1()A

A e I -=- (2) 由??

??

?

?

??=∑∑==412411j j j j j j a x a x X α,???

? ??=∑∑==4

1241

1)(j j j j j

j T a x a x X α得

?????

?

??????????????????=24

2322

21

14131211

)()()()()()()()()(x X x X x X x X x X x X x X x X dX

X d T T T T T T T T

T

ααααααααα ???

? ?

?=43

2

1

43210

00000a a a a a a a a (3)A 的特征根为1236,0λλλ===,()6A ρ=.由于A 可对角化, 即存在可逆矩阵C ,使

1600A C C -?? ?= ? ???,从而1

10()0A C C A ρ-??

?= ? ???.故 11111lim lim 00.()600k

k

k k A C C C C A A ρ--→∞→∞?????? ? ?=== ? ? ??? ? ?????

二(15分)设微分方程组

d d (0)x

Ax t x x ?=????

?=?,508316203A ?? ?= ? ?--??,0111x ?? ?

= ?

??? (1)求A 的最小多项式)(λA m ; (3)求At

e ; (3)求该方程组的解。 解 (1)

3(1)I A λλ-=-,2()(1)A m λλ=-;

(2)()(1)t

r a b e t t λλλ=+=+-,140

8()3162014At t t t e r A e t

t t t +?? ?== ? ?--??; (3)0112()1916At t t x t e x e t t +??

?==+ ? ?-??

三(15分)对下面矛盾方程组b Ax =

312312

1

11x x x x x x =??

++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+

A ;

(3)求该方程组的最小2-范数最小二乘解LS x 。 解

(1)001011101111100111010A FG ??????

? ?=== ? ? ??

? ? ?????

(不唯一)

(2)11211126422A +

-?? ?=- ? ?-??; (3)11132LS x A b +

??

?== ? ???

四(10分)设

11

13A ?=??

求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限) 解

111124

131102A -????==??? ??

???

五(10分) 设(0,,2)T

n

A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2

()tr()m A λλλ=- (2)求A 的Jordan 形(需要讨论)。 证

(1)易知rank()1A =,tr()T

A βα=,故

2()tr()()()T T m A A A A A A O βαβα=-=-=

又对任意的一次多项式()g c λλ=+,()g A A cI O =+≠。反证,如果A cI O += 当0c =时,A O =,矛盾。当0c ≠时,rank()rank()2A cI n =-=≥,矛盾。 (2)由()(tr())0m A λλλ=-=根知,A 的特征值只能是0或tr()T

A βα=

当tr()0T

A βα=≠时,()m λ无重根,A 可对角化,再由rank()1A =知

0~0

T A J βα??

?

?= ? ??

?

当tr()0T

A βα==时,A 的特征值全是00λ=,由

0rank()1n I A n λ--=-

知00λ=对应的特征向量只有1n -的线性无关的,从而

0~010A J ??

?

?= ?

??

?

六(10分)设m n

r

A R ?∈,

(1)证明rank()n I A A n r +

-=-;

(2)0Ax =的通解是(),n

n x I A A y y R +=-?∈。

(1)1r r T T T

r

n n n O I O O I A A I V U U V I V V O O O O O O -+

∑??∑????-=-=- ?

? ?????

??

r T T

n r O O I O V I V V V O I O O -??????=-= ?

? ???????

所以rank()n I A A n r +

-=-。

(2)由()n A I A A A AA A A A O ++-=-=-=,知n I A A +

-的列都是0Ax =的解, 其中又有n r -个线性无关的,故其线性组合(),n

n I A A y y R +-?∈就是0Ax =通解。

七(10分)证明矩阵

21212123

111222222243333

33644421(1)(1)n n n n

n n n n n n ---?

? ?

? ? ?

?= ? ?

?

? ? ?+++?

?

A (1)能与对角矩阵相似;(2)特征值全为实数。 证:(1)1)

1(1

1)

1(1

1

1

<+-

=+=

--=∑n n i i

k k k k

R k G 互不交,说明A 有n 个不同的特征值,从而可对角化。

(2)k G 关于实轴对称,如果A 有复特征值必成对共轭出现,而k G 中只有一个特征值,所以必为实数。

八(15分) 设A 是可逆矩阵,

1

1

,B A A

αβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明

(1)B 是可逆矩阵;(2)1

1B αβ

-≤

-;(3)11

()B A βααβ---≤-。

证 (方法一)

(1)1

1

1

()x A Ax A

Ax A B x Bx α

--=≤=-+

()1

()A B x

Bx α

≤-+1

x Bx βαα

+ ()

x Bx αβ-≤ (*)

因此,00x Bx ?≠?≠,说明B 可逆。 (2)由式(*),取1

x B y -=

()1111

B y BB y y B y y αβαβ

----≤=?≤

-

由算子范数的定义得1

1

B

αβ

-≤

- (3)11

111111()()

B A B A B A B A B A β

βαβαααβ-------=-≤-≤

??=-- (方法二)

引理:设n n

A C

?∈,若1A <,则A I -可逆,并有1

1

()

1I A A

--≤

-。

(1)111

()1I A B A B A A

B A β

α

----=-≤-=

< (**) 由引理知,1

1

()A B I I A B --=--可逆,从而B 可逆。 (2)()1

1

11()B

I I A B A ----=--,由式(**)和引理

()

1

11

1

11

1111

()11B A I I A

B I A B βαααβα

-----≤--≤

?

≤?=

---- (3)同上。

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

2014年矩阵论试题A

长 春 理 工 大 学 研 究 生 期 末 考 试 试 题 科目名称: 矩 阵 论 命题人:姜志侠 适用专业: 理 工 科 审核人: 开课学期:2013 ——2014 学年第 一 学期 □开卷 √闭卷 一、(10分)F 为数域,对于线性空间22?F 中任意矩阵??? ? ??=d c b a A ,规则σ,τ分别为??? ? ??=???? ??=c a A c b a A )(,0)(τσ,问σ,τ是否为22?F 上的变换,如果是,证明该变换为线性变换,并求该变换在基???? ??=000111E ,???? ??=001012E ,???? ??=010021E ,??? ? ??=100022E 下的矩阵. 二、(10分) 已知正规矩阵??? ? ??-=1111A ,求酉矩阵U ,使得AU U H 为对角形矩阵。三、(10分) 用Schmidt 正交化方法求矩阵???? ? ??=101011110A 的QR 分解. 四、(10分) 设矩阵?????? ? ? ?-=2000120010201012A ,求A 的行列式因子,不变因子,初等因子组, Jordan 标准形。 五、(10分) 求可对角化矩阵460350361A ?? ?=-- ? ?--?? 的谱分解式. 六、(10分) 在线性空间n m C ?中,对任意矩阵n m ij a A ?=)(,定义函数ij j i a mn A ,max ?=,证明此函数是矩阵范数。

七、(10分) 已知函数矩阵 ???? ??????=32010cos sin )(x x e x x x x A x , 其中0≠x ,试求)(lim 0x A x →,dx x dA )(,2 2)(dx x A d ,dx x dA )(. 八、(10分)已知矩阵?? ????--=1244916A ,写出矩阵函数)(A f 的Lagrange-Sylvester 内插多项式表示,并计算A πcos . .

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

矩阵论2015年试题

2015年矩阵论 一、判断题(2 X 6=12分) (1) 线性空间R 3中的正交投影是正交变换。 (2) 如果g (λ)=(λ?2)(λ?5)2是矩阵A 的化零多项式,即g(A)=0,则2和5是矩阵A 的特征值。 (3) 设A 为n 阶方阵,矩阵函数f(A)有意义,如果A 相似于对角矩阵,则f(A)也相似于 对角矩阵。 (4) 如果矩阵运算A ?B =0,则矩阵A=0或者B=0。 (5) 如果矩阵A 既有左逆又有右逆,则矩阵A 一定是方阵,且为可逆矩阵。 (6) 对于矩阵A 和矩阵A +的秩,有rank(A) = rank(A +) 二、填空题(每个空3分,共27分) (1) 设矩阵A =[11+2i 3 23?i ?21?22?3i ],其中 i =√?1,则‖A ‖∞=___________________ (2) 线性空间W =*A ∈R 4x4| A T =A +的维,dimW=____________________________ (3) 设A =[130?2 ],矩阵B 的特征值为2,3,4,则矩阵A ?B 的特征值为 (4) 设线性空间R 3中的线性变换T 被定义为绕向量e 2=,010-T ,逆时针旋转一个θ 角的旋转变换,则变换T 的一个二维不变子空间是 (5) 设矩阵A 的UV 分解为A =[50 033064?1][1270250 02],则矩阵A 的LDV 分解为 (6) 设函数矩阵A(t)=[10t 3t ],则d(A ?1(t))dt = _____________________________ 三、 (12分)设P 为R 3中的正交投影,P 将空间R 3中的向量投影到平面π上, π=*(x y z )T |x +y ?z =0+,求P 在线性空间R 3的自然基*e 1 e 2 e 3+下的变换矩阵A 。 四、 (15分)设矩阵A =[3 1?112?1210 ], (1) 求可逆矩阵P 和矩阵A 的Jordan 矩阵J A ,使得P -1AP = J A (2) 设参数t ≠0,求矩阵函数e At 和矩阵e At 的Jordan 矩阵J e At 五、 (15分)设矩阵A =[1 1111 ?1],(1)求矩阵A 的奇异值分解 (2)求A + 六、 (15分)设矩阵A =[?120t ],B =[1?2?10],D =[132?3 ],矩阵方程为AX+XB=D , (1) 讨论t 为何值,矩阵方程有唯一解 (2) 在矩阵方程有唯一解时,求解其中的未知矩阵X 七、证明题(6分+7分=13分) (1) 如果矩阵A 是正规矩阵,且矩阵函数f(A)有意义,证明f(A)也是正规矩阵。(6分) (2)(7分)假设A ∈C n×n 是可逆的,证明: ‖A ‖2‖A ?1‖2=σmax σmin 其中σmax ,σmin 分别为A 的最大和最小的奇异值

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空 间和列空间. 2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。 3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。 4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。 5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ???? ? ??101010001 6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。 7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ???? ?????? ?????? ?????? ??1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。 9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。 10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。 二、判断题 1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。(R ) 2、两个子空间的并集是一个子空间。(F ) 3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。(F ) 4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。(R ) 5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。(F ) 6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。(F ) 7、任何N ×N 的实矩阵都可以对角化。(F ) 8、矩阵的左逆就是矩阵的最小范数广义逆。(F ) 9、任何M ×N 实矩阵都有奇异值分解。(R ) 10、正交投影矩阵都是幂等矩阵。(R ) 三、(矩阵的四个基本子空间和投影矩阵) 设矩阵A 为 A=??? ? ??4242 1、求矩阵A 的四个基本子空间的基和维数 初等变换 ??? ? ??0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ???? ??22 R(T A )的基 ???? ??42 N(A)的基???? ??-12 N(T A )的基 ??? ? ??-11 2、画出矩阵A 的四个基本子空间的示意图。 自己画很好弄 3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

矩阵论考试试题(含答案)

矩阵论试题 、(10 分)设函数矩阵 sin t cost At cost sin t 求: A t dt 和( 0 t 0 A t dt )'。 解: A t dt = 0 tt sin t dt 00 t costdt cost dt t sin tdt = 1 cost sint sint 1 cost t2 ( A t dt )' 2 = A t 2 2t sint2 2t cost 2 cost cost2 sint2 、(15分)在R3中线性变换将基 1 0 1 1 1 , 2 2 ,30 1 1 1 1 0 0 变为基 1 1 , 2 1 ,33 0 1 2 (1 )求在基 1, 2, 3 下的矩阵表示A; (2 ) 求向量1,2,3 T及在基1, 2, 3下的坐标; (3 ) 求向量1,2,3 T及在基1, 2, 3下的坐标。解:(1)不难求得: 1 1 1 2

因此 在 1, 2, 3 下矩阵表示为 1 1 1 A 1 1 2 011 k 1 (2) 设 1 , 2 , 3 k 2 ,即 k 3 0 1 k 1 解之得: k 1 10, k 2 4, k 3 9 解:容易算得 在 1, 2 , 3下坐标可得 y 1 1 1 1 10 23 y 2 1 1 2 4 32 y 3 0 1 1 9 13 (3) 在基 1, 2 , 3下坐标为 10 10 1 10 1 A 1 4 11 14 15 9 11 09 6 在基 1, 2 , 3 下坐标为 23 10 1 23 10 A 1 32 11 1 32 4 13 11 0 13 9 0 02 三、(20 分)设 A 0 1 0 ,求 e At 。 1 03 2 , 3下坐标为 10, 4, 9 T 。 所以 在 1,

10-11(1)-10级-矩阵论试题与答案

参考答案 ‘1 0 0、 一(15 分〉、设 A= 0 3 1 , - b (1)求可逆矩阵P使得P'AP=J ,其中丿为A的Jordan标准形; (2)计算0; (3)求微分方程组斗卩=Ax(t), x(0) = 的解。 解:(1) |27-4| = (2-1)(2-2)2 ‘1 0(P 21 — A= 0 —1 -1 , rank(2/ — A) = 2, dim N(2/ — A) = 3 — 2 = 1 w 1 1 > 故A的Jordan标准形为 <1 、 J= 2 1 <1 、 记P = [a^a2,a3],由P~l AP = J = 2 1 得 1 2 丿 Aa x = a x T r 0、了 Aa2 = 2a2=> ?)=0 ,0 = J 1 ,巾= 0 Aa, =G2+ 2a30 、一 1丿 1 ‘1 0 0、 p =0 1 0 (不唯一)9P-}AP = J = 2 1 1 ° -1 b < J (2)根据

te 严=p e J,p-1 0 (T 2 、0 0、'e!0 0 0 1 0 e" te210 1 0 = 0 e"(l+f) te21 -1 1 / X e21 z 1 b 0 -te2'戶(1-?(3) x(t) = e At x(0) = e2t 二(15分人设 5 1 0、0 A = 1 2 1 ,b = 1 <0 1 1> kb (1)求A的满秩分解A = FG, (2)求A的广义逆矩阵?r: (3)求Ax=b的最小2—范数最小二乘解X”。 (2) fl 2 (3) x Ls. = A'b = — 2 9b r (1 o -n 1 2 '0 1 0 , <0 1> \ / FG(不唯一) 解:(1) A = 5

2016北京邮电大学《矩阵分析与应用》期末试题

北京邮电大学 《矩阵分析与应用》期末考试试题(A 卷) 2015/2016学年第一学期(2016年1月17日) 注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。 一、 已知22 R ?的两组基: 111000E ??=? ??? ,120100E ??=????,210010E ??=????,220001E ??=????; 11100 0F ??=? ???,121100F ??=????,211110F ??=????,221111F ??=????。 求由基1112212,,,E E E E 到11122122,,,F F F F 的过渡矩阵,并求矩阵 3542A -?? =?? ?? 在基11122122,,,F F F F 下的坐标。 二、 假定123x x x ,,是3 R 的一组基,试求由112323y x x x =-+, 2123232y x x x =++,312413y x x =+;生成的子空间()123,,L y y y 的基。 三、 求下列矩阵的Jordan 标准型 (1)1 0002 10013202 31 1A ???? ? ?=??????(2)310 0-4-1007121-7-6-10B ?? ????=?????? 四、 设()()123123,,,,,x y ξξξηηη==是3 R 的任意两个向量, 矩阵 210=120001A ?? ???????? ,定义(),T x y xAy = (1) 证明在该定义下n R 构成欧氏空间; (2) 求3 R 中由基向量()()()1231,0,0,1,1,0,1,1,1x x x ===的度量矩阵; 五、 设y 是欧氏空间V 中的单位向量,x V ∈,定义变换 2(,)Tx x y x y =- 证明:T 是正交变换。

南航07-14矩阵论试卷

南京航空航天大学07-14硕士研究生矩阵论试题 2007 ~ 2008学年《矩阵论》 课程考试A 卷 一、(20分)设矩阵 ?? ??? ??-----=111322211 A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子; (3)求A 的最小多项式,并计算I A A 236 -+; (4)写出A 的Jordan 标准形。 二、(20分)设2 2?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。 (1)求2 2?R 的维数,并写出其一组基; (2)设W 是全体22?实对称矩阵的集合, 证明:W 是2 2?R 的子空间,并写出W 的维数和一组基; (3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基; (4)给出22?R 上的线性变换T : 22,)(?∈?+=R A A A A T T 写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。 三、(20分) (1)设 ? ??? ??-=121312A ,求1A ,2A ,∞A ,F A ; (2)设n n ij C a A ?∈=)(,令 ij j i a n A ,*max ?=, 证明: *是 n n C ?上的矩阵范数并说明具有相容性; (3)证明:*2*1 A A A n ≤≤。 四、(20分)已知矩阵 ?????? ? ??-=10010001111 1A ,向量 ??? ??? ? ??=2112b , (1)求矩阵A 的QR 分解;

吉大矩阵论2011试题

矩阵论2011试题 一、 计算 1. 设025021i i i ????=????-?? A ,20i ????=??????x ,其中i =,求1,,∞∞1及A A Ax Ax 2. 设1211 2222 1,,3x x x x x e d x d x x +??+??==????????求A A x x 二、 设线性空间22?R 的变换为:2212(),,34x τ???==∈? ???x BxB B R , (1) 证明:τ是线性变换 (2) 求τ在基123410010000,,,00001001????????====? ??????????????? E E E E 的矩阵 三、 设1212301011,101032 1211????????????==????????????A b (1) 求A 的满秩分解 (2) 求+A (3) 若方程组=Ax b 是相容的,求出最小范数解;若方程组=Ax b 是不相容的,求出 极小范数最小二乘解。 四、 已知矩阵311121210-????=-?????? A ,求A 的若当标准型,并求sin A 五、 求矩阵530640631--????=????--?? A 的异根谱分解式 六、 设V 是一个3维欧氏空间,123,,ααα是V 的一组基,内积在这组积下的度量矩阵

为110121013????=-????-?? A (1) 设112123123,,,==+=++βαβααβααα证明:123,,βββ也是V 的一组基,并求 向量123=+αα-αα在基123,,βββ下的坐标 (2) 将123,,βββ正交化,由此求出V 的一组正交基 七、设A 为n 阶非零矩阵,证明:A 相似于对角矩阵的充分必要条件是对于任意常数k ,2()()k k -=-秩秩E A E A ,其中E 为单位矩阵。

(完整版)《2015矩阵论》试卷

2015年专业硕士生《矩阵论》试卷 学号 专业 姓名 一、填空题(除了第5小题外每小题4分,共27分) 1、设V 是由n 阶实对称矩阵按通常的矩阵加法与数乘构成的线性空间,则dimV= ,并且V 有基 。 2、设线性空间n V 上的线性变换σ在基n e e e ,,,21Λ下的矩阵为A ,在另一组 基n e e e ''',,,21 Λ下的矩阵为B ,由基n e e e ,,,21Λ到基n e e e ''',,,21Λ的过渡矩阵是C ,则B= (用A,C 表示)。 3、=??? ? ??∑ ∞ =k k 6.05.04.03.00 。 4、已知)(λA 的行列式因子1)(1-=λλD ,222)2()1()(--=λλλD , 5433)1()2()1()(+--=λλλλD ,则)(λA 的初等因子为 。 5、已知???? ??=3113A ,??? ? ??=21x ,则=2m A ,∞m A = , =1A , 2cond()A = ,=1Ax , =∞Ax 。 6、已知??? ? ??=2143A ,则)(A ρ= 。 二、判断题(10分) 1、同一个线性变换在不同基下的矩阵是相合关系。 ( ) 2、A 是收敛矩阵的充要条件是其谱范数小于1。 ( ) 3、 n 阶矩阵A 与B 相似的充要条件是它们的不变因子相同。 ( )

4、 A 的算子范数是其所有范数中最小的。 ( ) 5、正交变换的必要条件是保持两个向量的夹角不变。 ( ) 三、(8分)设A 是[]2x P 中的线性变换,已知2121x e +-=,x e -=32,23x x e +=, 2135)(x e A +-=且,2295)(x x e A +--=,236)(x x e A +=(1)证明[]1232,,e e e x 是P 的 一组基 ;(2)求向量下的坐标在基3212,,321e e e x x +-。 四、(9分)在[]2x P 中,设2321)(x k x k k x f ++=,线性变换A 为23(())A f x k k =++ 21312()()k k x k k x +++。(1)试写出A 在基2,,1x x 下的矩阵;(2)求[]2x P 中的 一组基,使A 在该组基下的矩阵为对角矩阵。

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

矩阵理论期末试题2016-2017第一学期A卷

1 电子科学与工程学院 硕士研究生 《 矩阵论 》期末考试试卷 闭 卷 任课教师姓名:____ ___ 考试日期: 2016.12.29 上午10:00-12:00 考试时长: 120 分钟 考生年级 考生专业 考生学号 考生姓名 一 .(10分) 设n s ?∈C A ,证明: )()()( +++-==AA I K A A R A R 二.(10 分) 设 ,求500 A -549A 。 三.(10分) 四.(15分) 设求 的特征值、最小多项式和Jordan 标准形。 ?? ??? ??---=502613803A ??? ?? ??----=411301221A 假设3[]V R x =中的内积定义为 1 1(),()()()f x g x f x g x dx -<>=? 求2x η=在(1,)W L x =中的正投影。

2 五.(15分) () 2222??∈C C Hom f ,,定义为:22C X ?∈?, X 1122(X)??? ? ??∈f 1. 求 f 在基22211211,,,E E E E 下的矩阵; 2. 求f 的特征值及其相应的特征子空间的基; 3. 问是否存在22C ?的基,使得f 的矩阵为对角阵,给出理由。 六.(10分) 七.(15分) 设 , 求A e e At A cos ,,。 八.(15分) 设矩阵 , 求A +。 ??? ?? ??=421101104321A 。3求行列式,)2(并且,,103满足,已知2I A p I A r I A A C A n n -=++=∈?? ???? ??---=10142681330A

级研矩阵论试题与答案

中国矿业大学 08级硕士研究生课程考试试卷 考试科目矩阵论 考试时间2008年12月 研究生姓名 所在院系 学号 任课教师 中国矿业大学研究生培养管理科印制

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 336 44421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A L L L M M M M L (1)能与对角矩阵相似;(2)特征值全为实数。

矩阵理论试题参考答案

矩阵理论2007年考试参考答案 一、判断题(40分)(对者打∨,错者打?) 1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥ ≥>,'' ' 120n σσσ≥≥ ≥>, 如果'(1,2, ,)i i i n σσ>=,则22||||||||A B ++>. ( ? ) 2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ ) 3、设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆. ( ∨ ) 4、设323 12 1 00a a A a a a a -?? ?=- ? ?-?? 为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵 ( ∨ ) 5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ∨ ) 6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( ? ) 7、如果12(,, ,)T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( ? ) 8、00101 40110620 1 1 8A ????? ?=?????? 至少有2个实特征值. ( ∨ ) 9、设,n n A C ?∈则矩阵范数m A ∞ 与向量的1-范数相容. ( ∨ ) 10、设n n A C ?∈是不可逆矩阵, 则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩 阵. ( ∨ ) 二、计算与证明(60分) 1. (10分)设矩阵n n A C ?∈可逆, 矩阵范数||||?是n C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||11||||1 max ||()||||||||||min ||()||v v v x v y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1 max ||()||||||x L x A ==, 1 11 00||||1||||1 0||||||||111||||max max ||||||||||||min ||||min ||()||min |||| y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠===== ,

博士试题2011-矩阵论_最终版_

矩阵论考试试题 一 ( 20 分)已知23012012[]{()|,,}F t f t a a t a t a a a R ==++∈为所有次数小于3的实系数多项式所成的线性空间,对于任意的3[]F t 中的元素2012()f t a a t a t =++,定义3[]F t 上的线性变换T : 2122001[()]()()()T f t a a a a t a a t =+++++ 1.求T 在基21,,t t 下的矩阵A ; 2.求象子空间3([])T F t 和核1(0)T ?的维数; 3.是否可以求出3[]F t 的一组基,使得线性变换T 在这组基下的矩阵为对角阵?如果不可以,请说明原因。 二(20分) 已知1010011,11011A b ???? ????==???? ???????? , 1.求矩阵A 的满秩分解; 2.求 ; 3.用广义逆矩阵方法判断方程组Ax b =是否有解; 4.求方程组Ax b =的最小二乘解,并求其极小最小二乘解。 三 (15分)已知矩阵308316205A ????=????????? 。 1.求A 的行列式因子,不变因子,初级因子; 2.求A 的Jordan 标准形; 3.求A 的最小多项式。

四 (15分)已知126103114A ?????? =????????? 。 1.求sin At ; 2.计算sin d At dt 。 五 (10分)求矩阵121001121A ????=?????? 的QR 分解。 六(10分)设T 是n 维线性空间V 上的线性变换,证明: 1()(0)T V T ?? 的充要条件是20T =。 七 (10分) 设?是n n C ×上的F-范数。证明:若1A <, E 为n 阶单位 阵,则矩阵E A ?可逆,且 1 11()1E A E A A ?≤?≤??。

相关文档
相关文档 最新文档