文档库 最新最全的文档下载
当前位置:文档库 › 倾翻机构力能参数计算

倾翻机构力能参数计算

倾翻机构力能参数计算
倾翻机构力能参数计算

倾翻机构力能参数计算

3.1 SolidWorks简介

SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为

CAD/CAM产业中获利最高的公司。良好的财务状况和用户支持使得SolidWorks 每年都有数十乃至数百项的技术创新,公司也获得了很多荣誉。,SolidWorks 所遵循的易用、稳定和创新三大原则得到了全面的落实和证明,使用它,设计师大大缩短了设计时间,产品快速、高效地投向了市场。由于使用了Windows OLE 技术、直观式设计技术、先进的parasolid内核(由剑桥提供)以及良好的与第三方软件的集成技术,SolidWorks成为全球装机量最大、最好用的软件。

SolidWorks软件的特点:

1.第一个在Windows操作系统下开发的CAD软件,与Windows系统全兼容。

2.菜单少,使用直观、简单,界面友好SolidWorks一共只有60几个命令,其余所有命令与Windows命令是相同的;下拉菜单一般只有二层,(三层的不超过5个);图形菜单设计简单明快,非常形象化,一看即知。

3.数据转换接口丰富,转换成功率高。SolidWorks与I-DEAS、ANSYS、

Pro/Engineer、AutoCAD等之间的数据转换均非常成功、流畅。

4.独特的配置功能SolidWorks允许建立一个零件而有几个不同的配置,这对于通用件或形状相似零件的设计,可大大节约时间。

5.特征管理器特征管理器(PropertyManager)是SolidWorks的独特技术,在不占用绘图区空间的情况下,实现对零件的操纵、拖曳等操作。

6.自上而下的装配体设计技术(top-to-down)目前只有SolidWorks提供自上而下的装配体设计技术,它可使设计者在设计零件、毛坯件时于零件间捕捉设计关系,在装配体内设计新零件、编辑已有零件。

7.比例缩放技术可以给模具零件在X、Y、Z方向给定不同的收缩而得到模具型腔或型芯。

8.曲面设计工具用SolidWorks,设计者可以创造出非常复杂的曲面,如:由两个或多个模具曲面混合成复杂的分型面。设计者亦可裁减曲面、延长曲面、倒圆角及缝合曲面。

9.丰富的第三方软件支持功能。

本课题运用SolidWorks对铁水倾翻车进行三维设计,并利用该软件对铁水倾翻车进行结构的分析计算。

3.2 铁水罐及铁水的建模

图3.1 铁水罐的三视图

铁水罐为球缺底圆锥体罐。罐外壳由钢板与吊架焊接而成,内衬砌筑耐火砖。吊架上有起吊用的吊轴及供铁水罐坐于车架上的支轴,与吊架焊在一起的还有供铁水罐在铸铁机前方支柱上倾翻回转的支爪;罐下部有焊接的吊耳座,吊耳

座上装有销轴供铁水罐翻转时,卷扬机吊钩提升用。

根据铁水罐的设计图纸,按照1:1的建模,画出铁水罐的三维模型。如图3.2所示。

1.罐壳

2.吊耳座

3.支轴

4.吊轴

5.支爪

6.内衬(耐火砖)

图3.2 铁水罐的三维图

根据铁水罐倾翻角度,对未倾翻时的铁水和倾翻时的铁水建模,如图 3.3

和图3.4

所示。

图3.3 未倾动铁水建模图3.4 倾动铁水建模

3.3 铁水罐参数设计合理性验证

1.空罐时重心位置的查询:

图3.5 空罐重心查询

由图3.5可以看出,空罐时重心所在位置在吊轴下方,所以在吊运时不会倾翻,设计合理。

2.如图

3.6所示的为铁水罐安放在罐座上时的示意图,经过查询,罐体和罐座的总质量为30t。重心位置如图3.6所示。查询方法为点击“工具”菜单—“质量特性”选项。

图3.6 空罐与罐座

3.空罐倾动时重心查询:

图3.7 空罐倾动

当空铁水罐倾动到极位时,重心位于两支轴之间,距离右侧支轴的水平距离368mm,因此罐体不会离开罐座倾翻,能够安全工作(图3.7)。

4.装入铁水时的罐体质量及重心

图3.8 装入铁水未倾动

重心位置如图3.8所示,吊运时不会倾翻;通过质量查询得质量为70.9t。

5.装入铁水倾动到35°

图3.9 装入铁水倾动

罐体与铁水总重心位于两支点之间,与右支点距离367mm,因此倾动35°时罐体不会在罐座上倾翻,能够安全工作,如图(3.9)。

6.带罐座空罐倾动

图3.10 带罐座空罐倾动

如图3.10所示,空罐倾翻35°时罐座及铁水罐重心位于支点左侧,因此不会倾翻,且能够自动回到水平位置。

7.带罐座装入铁水未倾动时

图3.11 装入铁水未倾动

如图3.11所示,总质量为76t。重心位置如图所示。

8.装满铁水带罐座倾翻示意图

图3.12 装入铁水倾动

如图(3.12)所示,当装入铁水倾翻时,铁水及罐体罐座重心如图示位置,重心位于支点左侧,罐体不会倾翻。

3.4 倾翻力矩的计算

图3.13开始倾动时倾动力矩计算

1)开始倾动时倾动力矩计算:

k y m M M M M =++ (3.1)

式中:k M -----空罐力矩 y M ---铁水力矩

m M --弧形板与导轨的接触处的摩擦力矩

用SolidWorks 建模,可以得到空罐铁水罐座的总的重心,如图(3.13)所示

4

3

k y 761036010

273600M M G L -+=?=???=总N.m

摩擦力矩m M

k y m k M G G =

+ () (3.2) 式中:k G --空炉时炉子倾动部分的重力,N ; k-变形臂,取k 2

C

= 按赫茨理论,圆柱形扇形板与直轨的接触面宽度的半值:

6

1

3.2610

h P R

C -=? (m ) (3.3) 式中 P=弧形板上的载荷(N ); R---弧形板半径(m )

1h ---弧形板与导轨接触宽度

(m )。

对支点1O 取矩,0M =∑,(图3.14)

1120F L G L -?+?= 1F =154576 N

5217.610154576605424F G F =-=?-=N

2

3027122

F P =

=N

图3.14 力矩计算

61

6 3.2610m h 302712 1.389

0.12

0.0061m

P R

C --=???= ()=3.2610

0.00610.0030522

C k =

==m 4

k y m k =7.6100.00305231.8M G G =

+??= ()N m k y m M M M M =++

273600231.8273832=+= N m

2)当罐体倾翻35°时,求倾动力矩:

图3.15 倾动求力矩

k y m M M M M =++

43761056510429400k y M M G L -+=?=???=总N k y m k M G G =+ ()

对支点1O 取矩,0M =∑,

1120F L G L -?+?= 1F =162344N

根据力的三角形,求得2F =610923N

2610923

30546222

F P =

==N 61

63.2610305462 1.389

3.26100.12

p R

C h --=??=? 图3.16 力三角形

=0.0061m

0.00610.0030522

C k =

==m 4k y m k =7.6100.00305231.8M G G =+??= () N m k y m M M M M =++

429400231.8429632=+= N m

线路设计常用参数

线路设计常用参数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、线路路径、安全距离 1、与道路距离 (1) 跨越时的垂直距离 (2) 平行时的水平距离(基础边缘与公路排水沟) 类比:电力设施保护条例(先用电力线,后有建筑适用;边线延伸) 2、交叉跨越角度 (1)与广梅汕铁路交叉时,交叉角必须大于60°。 (2)与弱电线路的交叉角 3、与建筑物间的距离 (1) 跨越建筑时(最大计算弧垂,垂直距离) (2) 城市建筑(最大计算风偏,净空距离) (3) 非城市规划区建筑(无风,水平距离) 4、按塔高计算的水平距离

5、跨树距离 (1) 导线与树木间垂直距离 (2) 无准确资料时估算树木自然生长高度 6、与石场距离 条件允许:500m以外;条件不允许:200m(背向爆破面)或300m(正向爆破面)以外。 7、接地体与石油天然气埋地管道距离 8、与机场距离 与跑道端或跑道中心线距离≥4km。 9、接地体与埋地通信线免计算保证距离 10、与无线电台间距离 11、交叉跨越时塔位与控制物距离(m)

12、规程中与铁路、公路、河流、管道、索道及各种架空线路交叉或接近的基本要求

二、电气间隙 1、带电部分与杆塔构件的最小间隙 2、变电站OY引下线 3、跳线对横担底部距离 4、档中线间距离 5、上下层导地线水平偏移 6、绝缘地线绝缘子间隙 一般为15mm。

三、绝缘配合、防雷 1、爬电比距配置 (1) 爬电比距要求(按额定电压) (2)有效系数(悬垂钟罩型、深棱型玻璃和瓷绝缘子) 零~II级:~;III~IV级:~ 2、复合绝缘子防雷选择 3、等高绝缘配置绝缘子片数

钢筋工程量计算规则、公式大全

钢筋工程量计算规则 (一)钢筋工程量计算规则 1、钢筋工程,应区别现浇、预制构件、不同钢种和规格,分别按设计长度乘以单位重量,以吨计算。 2、计算钢筋工程量时,设计已规定钢筋塔接长度的,按规定塔接长度计算;设计未规定塔接长度的,已包括在钢筋的损耗率之内,不另计算塔接长度。钢筋电渣压力焊接、套筒挤压等接头,以个计算。 3、先张法预应力钢筋,按构件外形尺寸计算长度,后张法预应力钢筋按设计图规定的预应力钢筋预留孔道长度,并区别不同的锚具类型,分别按下列规定计算: (1)低合金钢筋两端采用螺杆锚具时,预应力的钢筋按预留孔道长度减0.35m,螺杆另行计算。 (2)低合金钢筋一端采用徽头插片,另一端螺杆锚具时,预应力钢筋长度按预留孔道长度计算,螺杆另行计算。 (3)低合金钢筋一端采用徽头插片,另一端采用帮条锚具时,预应力钢筋增加0. 15m,两端采用帮条锚具时预应力钢筋共增加0.3m计算。 (4)低合金钢筋采用后张硅自锚时,预应力钢筋长度增加0. 35m计算。 (5)低合金钢筋或钢绞线采用JM, XM, QM型锚具孔道长度在20m以内时,预应力钢筋长度增加lm;孔道长度20m以上时预应力钢筋长度增加1.8m计算。 (6)碳素钢丝采用锥形锚具,孔道长在20m以内时,预应力钢筋长度增加lm;孔道长在2 0m以上时,预应力钢筋长度增加1.8m.

(7)碳素钢丝两端采用镦粗头时,预应力钢丝长度增加0. 35m计算。 (二)各类钢筋计算长度的确定 钢筋长度=构件图示尺寸-保护层总厚度+两端弯钩长度+(图纸注明的搭接长度、弯起钢筋斜长的增加值) 式中保护层厚度、钢筋弯钩长度、钢筋搭接长度、弯起钢筋斜长的增加值以及各种类型钢筋设计长度的计算公式见以下: 1、钢筋的砼保护层厚度 受力钢筋的砼保护层厚度,应符合设计要求,当设计无具体要求时,不应小于受力钢筋直径,并应符合下表的要求。 (2)处于室内正常环境由工厂生产的预制构件,当砼强度等级不低于C20且施工质量有可靠保证时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于露天或室内高湿度环境的预制构件,当表面另作水泥砂浆抹面且有质量可靠保证措施时其保护层厚度可按表中室内正常环境中的构件的保护层厚度数值采用。(3)钢筋砼受弯构件,钢筋端头的保护层厚度一般为10mm;预制的肋形板,其主肋的保护层厚度可按梁考虑。 (4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm;梁、柱中的箍筋和构造钢筋的保护层厚度不应小于15mm。 2、钢筋的弯钩长度 Ⅰ级钢筋末端需要做1800、 1350 、 900、弯钩时,其圆弧弯曲直径D不应小于钢筋直径d 的2.5倍,平直部分长度不宜小于钢筋直径d的3倍;HRRB335级、HRB400级钢筋的弯弧

电子电路设计的基础知识

电子电路设计的基础知识 一、电子电路的设计基本步骤: 1、明确设计任务要求: 充分了解设计任务的具体要求如性能指标、内容及要求,明确设计任务。 2、方案选择: 根据掌握的知识和资料,针对设计提出的任务、要求和条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进行分析,做到心中有数。 3、根据设计框架进行电路单元设计、参数计算和器件选择: 具体设计时可以模仿成熟的电路进行改进和创新,注意信号之间的关系和限制;接着根据电路工作原理和分析方法,进行参数的估计与计算;器件选择时,元器件的工作、电压、频率和功耗等参数应满足电路指标要求,元器件的极限参数必须留有足够的裕量,一般应大于额定值的1.5倍,电阻和电容的参数应选择计算值附近的标称值。 4、电路原理图的绘制: 电路原理图是组装、焊接、调试和检修的依据,绘制电路图时布局必须合理、排列均匀、清晰、便于看图、有利于读图;信号的流向一般从输入端或信号源画起,由左至右或由上至下按信号的流向依次画出务单元电路,反馈通路的信号流向则与此相反;图形符号和标准,并加适当的标注;连线应为直线,并且交叉和折弯应最少,互相连通的交叉处用圆点表示,地线用接地符号表示。 二、电子电路的组装 电路组装通常采用通用印刷电路板焊接和实验箱上插接两种方式,不管哪种方式,都要注意: 1.集成电路:

认清方向,找准第一脚,不要倒插,所有IC的插入方向一般应保持一致,管脚不能弯曲折断; 2.元器件的装插: 去除元件管脚上的氧化层,根据电路图确定器件的位置,并按信号的流向依次将元器件顺序连接; 3.导线的选用与连接: 导线直径应与过孔(或插孔)相当,过大过细均不好;为检查电路方便,要根据不同用途,选择不同颜色的导线,一般习惯是正电源用红线,负电源用蓝线,地线用黑线,信号线用其它颜色的线;连接用的导线要求紧贴板上,焊接或接触良好,连接线不允许跨越IC或其他器件,尽量做到横平竖直,便于查线和更换器件,但高频电路部分的连线应尽量短;电路之间要有公共地。 4.在电路的输入、输出端和其测试端应预留测试空间和接线柱,以方便测量调试; 5.布局合理和组装正确的电路,不仅电路整齐美观,而且能提高电路工作的可靠性,便于检查和排队故障。 三、电子电路调试 实验和调试常用的仪器有:万用表、稳压电源、示波器、信号发生器等。调试的主要步骤。 1.调试前不加电源的检查 对照电路图和实际线路检查连线是否正确,包括错接、少接、多接等;用万用表电阻档检查焊接和接插是否良好;元器件引脚之间有无短路,连接处有无接触不良,二极管、三极管、集成电路和电解电容的极性是否正确;电源供电包括极性、信号源连线是否正确;电源端对地是否存在短路(用万用表测量电阻)。 若电路经过上述检查,确认无误后,可转入静态检测与调试。 2.静态检测与调试 断开信号源,把经过准确测量的电源接入电路,用万用表电压档监测电源电压,观察有无异常现象:如冒烟、异常气味、手摸元器件发烫,电源短路等,如发现异常情况,立即切断电源,排除故障; 如无异常情况,分别测量各关键点直流电压,如静态工作点、数字电路各输入端和输出端的高、低电平值及逻辑关系、放大电路输入、输出端直流电压等是否在

电力系统潮流计算

课程设计论文 基于MATLAB的电力系统潮流计算 学院:电气工程学院 专业:电气工程及其自动化 班级:电自班 学号: 姓名:

目录 摘要 (3) 一、问题重述 (3) 1.1题目原始资料 (3) . 1.1.1、系统图 (3) 1.1.2、发电厂资料 (4) 1.1.3、变电所资料 (4) 1.1.4、输电线路资料 (4) 1.2 课程设计基本内容 (4) 1.3课程设计要求 (5) 二、问题分析 (5) 2.1系统的等值电路 (5) 2.2 参数求取 (6) 2.3 计算方法 (7) 2.4 牛顿—拉夫逊法 (7) 三、问题求解 (10) 3.1 等值电路的计算 (10) 3.2 潮流计算及结果分析 (10) 3.2.1、初始条件下的潮流计算及分析 (10) 3.2.2、负荷按一定比例变化时的潮流计算及分析 (13) 3.2.3、轮流断开支路双回线中的一条时的潮流计算及分析 (21) 心得体会 (34) 参考文献 (35) 附录 (35)

摘要 本文运用MATLAB 软件进行潮流计算,对给定题目进行分析计算,再应用DDRTS 软件,构建系统图进行仿真,最终得到合理的系统潮流。 在电力系统的正常运行中,随着用电负荷的变化和系统运行方式的改变,网络中的损耗也将发生变化,系统运行中个节点出现电压的偏移是不可避免的。为了保证电力系统的稳定运行,要进行潮流调节。电力系统潮流计算是电力系统分析计算中最基本的内容,也是电力系统运行及设计中必不可少的工具。 根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线电压的幅值及相角、各元件中流过的功率、整个系统的功率损耗等。对不同的负荷变化,分析潮流分布,并进行潮流的调节控制。 关键词 潮流计算 牛顿-拉夫逊法 MATLAB DDRTS 仿真 一、问题重述 1.1题目原始资料 .1.1.1、系统图 两个发电厂分别通过变压器和输电线路与四个变电所相连。 变电所1 变电所2 母线

齿轮各参数计算公式

模数齿轮计算公式: 名称代号计算公式 模数m m=p/π=d/z=da/(z+2) (d为分度圆直径,z为齿数)齿距p p=πm=πd/z 齿数z z=d/m=πd/p 分度圆直径 d d=mz=da-2m 齿顶圆直径da da=m(z+2)=d+2m=p(z+2)/π 齿根圆直径df df=d-2.5m=m(z-2.5)=da-2h=da-4.5m 齿顶高ha ha=m=p/π 齿根高hf hf=1.25m 齿高h h=2.25m 齿厚s s=p/2=πm/2 中心距 a a=(z1+z2)m/2=(d1+d2)/2 跨测齿数k k=z/9+0.5 公法线长度w w=m[2.9521(k-0.5)+0.014z]

13-1 什么是分度圆?标准齿轮的分度圆在什么位置上? 13-2 一渐开线,其基圆半径r b=40 mm,试求此渐开线压力角=20°处的半径r和曲率半径ρ的大小。 13-3 有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径d a=106.40 mm,齿数z=25,问是哪一种齿制的齿轮,基本参数是多少? 13-4 两个标准直齿圆柱齿轮,已测得齿数z l=22、z2=98,小齿轮齿顶圆直径d al=240 mm,大齿轮全齿高h=22.5 mm,试判断这两个齿轮能否正确啮合传动? 13-5 有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z1=19、z2=81,模数m=5 mm,压力角 =20°。若将其安装成a′=250 mm的齿轮传动,问能否实现无侧隙啮合?为什么?此时的顶隙(径向间隙)C 是多少? 13-6 已知C6150车床主轴箱内一对外啮合标准直齿圆柱齿轮,其齿数z1=21、z2=66,模数m=3.5 mm,压力角=20°,正常齿。试确定这对齿轮的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。 13-7 已知一标准渐开线直齿圆柱齿轮,其齿顶圆直径d al=77.5 mm,齿数z1=29。现要求设计一个大齿轮与其相啮合,传动的安装中心距a=145 mm,试计算这对齿轮的主要参数及大齿轮的主要尺寸。 13-8 某标准直齿圆柱齿轮,已知齿距p=12.566 mm,齿数z=25,正常齿制。求该齿轮的分度圆直径、齿顶圆直径、齿根圆直径、基圆直径、齿高以及齿厚。 13-9 当用滚刀或齿条插刀加工标准齿轮时,其不产生根切的最少齿数怎样确定?当被加工标准齿轮的压力角 =20°、齿顶高因数h a*=0.8时,不产生根切的最少齿数为多少? 13-10 变位齿轮的模数、压力角、分度圆直径、齿数、基圆直径与标准齿轮是否一样? 13-11 设计用于螺旋输送机的减速器中的一对直齿圆柱齿轮。已知传递的功率P=10 kW,小齿轮由电动机驱动,其转速n l=960 r/min,n2=240 r/min。单向传动,载荷比较平稳。 13-12 单级直齿圆柱齿轮减速器中,两齿轮的齿数z1=35、z2=97,模数m=3 mm,压力=20°,齿宽b l=110 mm、b2=105 mm,转速n1=720 r/min,单向传动,载荷中等冲击。减速器由电动机驱动。两齿轮均用45钢,小齿轮调质处理,齿面硬度为220-250HBS,大齿轮正火处理,齿面硬度180~200 HBS。试确定这对齿轮允许传递的功率。 13-13 已知一对正常齿标准斜齿圆柱齿轮的模数m=3 mm,齿数z1=23、z2=76,分度圆螺旋角β=8°6′34″。试求其中心距、端面压力角、当量齿数、分度圆直径、齿顶圆直径和齿根圆直径。 13-14 图示为斜齿圆柱齿轮减速器 1)已知主动轮1的螺旋角旋向及转向,为了使轮2和轮3的中间轴的轴向力最小,试确定轮2、3、4的螺旋角旋向和各轮产生的轴向力方向。 2)已知m n2=3 mm,z2=57,β2=18°,m n3=4mm,z3=20,β3应为多少时,才能使中间轴上两齿轮产生的轴向

地铁线路平面曲线设计相关参数的确定

地铁线路平面曲线设计相关参数的确定

地铁线路平面曲线设计相关参数的确定 地铁线路平面曲线设计相关参数的确定 内容简介: 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 1 曲线半径选择曲线半径应根据行车速度、沿 论文格式论文范文毕业论文 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 1 曲线半径选择曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。例如,天津地铁1 号线南段,因受津萍大厦桩基和城市干道交叉口及地铁设站位置控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。 2 曲线超高与限速计算列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度式中 g 重力加速度, 9. 8 m s2 ; r 曲线半径,m; s 内外轨头中心距离,取1 500 mm; v 、V 行车速度, v 单位为m s , V 单位为km h ; h 所需外轨超高度,mm。 图1 超高与向心力关系图对某一实设曲线而言, 超高h 是定值。当列车以vmax 通过时,将产生最大的欠超高hqmax 为hqmax = h-Sv

电力系统潮流计算课程设计

课程设计 电力系统潮流计算 学院:电气工程学院 班级: 学号: 姓名:

电力系统潮流计算课程设计任务书 一 .题目原始资料 1、系统图:两个发电厂分别通过变压器和输电线路与四个变电所相连。 2、发电厂资料: 母线1和2为发电厂高压母线,发电厂一总装机容量为( 300MW ),母线3为机压母线, 机压母线上装机容量为( 100MW ),最大负荷和最小负荷分别为40MW 和20MW ;发电厂二总装机容量为( 200MW )。 3、变电所资料: (一) 变电所1、2、3、4低压母线的电压等级分别为:10kV 10kV 35kV 35kV (二) 变电所的负荷分别为: (4)50MW 50MW 60MW 70MW (三)每个变电所的功率因数均为cos φ=0.85; (四)变电所3和变电所4分别配有两台容量为75MV A 的变压器,短路损耗414kW , 变电所1 变电所2 母线 电厂一 电厂二

短路电压(%)=16.7;变电所1和变电所2分别配有两台容量为63MV A 的变压器,短路损耗为245kW ,短路电压(%)=10.5; 4、输电线路资料: 发电厂和变电所之间的输电线路的电压等级及长度标于图中,单位长度的电阻为 Ω17.0,单位长度的电抗为Ω0.402,单位长度的电纳为S -610*2.78。 二、 课程设计基本内容: 1. 对给定的网络查找潮流计算所需的各元件等值参数,画出等值电路图。 2. 输入各支路数据,各节点数据利用给定的程序进行在变电所在某一负荷情况下的潮 流计算,并对计算结果进行分析。 3. 跟随变电所负荷按一定比例发生变化,进行潮流计算分析。 1) 4个变电所的负荷同时以2%的比例增大; 2) 4个变电所的负荷同时以2%的比例下降 3) 1和4号变电所的负荷同时以2%的比例下降,而2和3号变电所的负荷同时 以2%的比例上升; 4. 在不同的负荷情况下,分析潮流计算的结果,如果各母线电压不满足要求,进行电 压的调整。(变电所低压母线电压10KV 要求调整范围在9.5-10.5之间;电压35KV 要求调整范围在35-36之间) 5. 轮流断开环网一回线,分析潮流的分布。 6. 利用DDRTS 软件,进行绘制系统图进行上述各种情况潮流的分析,并进行结果的 比较。 7. 最终形成课程设计成品说明书。 三、课程设计成品基本要求: 1. 在读懂程序的基础上画出潮流计算基本流程图 2. 通过输入数据,进行潮流计算输出结果 3. 对不同的负荷变化,分析潮流分布,写出分析说明。 4. 对不同的负荷变化,进行潮流的调节控制,并说明调节控制的方法,并列表表示调 节控制的参数变化。 5. 打印利用DDRTS 进行潮流分析绘制的系统图,以及潮流分布图。

地铁线路平面曲线设计相关参数的确定(精)

地铁线路平面曲线设计相关参数的确定 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数, 各参数相互关联制约。1993 年发布的现行《地下铁道设计规范》( GB50157 92) (以下简称《设规》) 中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用, 因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。 1 曲线半径选择 曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。例如,天津地铁1 号线南段,因受津萍大厦桩基(地下线) 和城市干道交叉口及地铁设站位置(高架线) 控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。 2 曲线超高与限速计算 列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。 列车在曲线上运行时产生惯性离心力使乘客有不适感。因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。 从理论上分析,车体重力P 产生的离心力为: J= Pv 2/gR (1) 由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1) 为Fn= P h/s (2) 当Fn =J 时,可得h = Sv 2/gR = 11. 8 V2/R (3) 式中g 重力加速度,9. 8 m/ s2 ;

标准齿轮参数通用计算汇总

标准齿轮模数尺数通用计算公式 齿轮的直径计算方法: 齿顶圆直径=(齿数+2)×模数 分度圆直径=齿数×模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34×3.5 齿顶圆直径=(32+2)×4=136mm 分度圆直径=32×4=128mm 齿根圆直径=136-4.5×4=118mm 7M 12齿 中心距D=(分度圆直径1+分度圆直径2)/2 就是 (12+2)×7=98mm 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(GB1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30 上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法

Circular Pitch (CP)周节 齿轮分度圆直径d的大小可以用模数(m)、径节(DP)或周节(CP)与齿数(z)表示 径节P(DP)是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言 径节与模数有这样的关系: m=25.4/DP CP1/8模=25.4/DP8=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米(mm)。 除模数外,表示轮齿大小的还有CP(周节:Circular pitch)与DP(径节:Diametral pitch)。 【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按ISO标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。 头数越多,导程角越大。 5) 如何区分R(右旋)?L(左旋)? 齿轮轴垂直地面平放 轮齿向右上倾斜的是右旋齿轮、向左上倾斜的是左旋齿轮。 6) M(模数)与CP(周节)的不同是什么? CP(周节:Circular pitch)是在分度圆上的圆周齿距。单位与模数相同为毫米。 CP除以圆周率(π)得M(模数)。 M(模数)与CP得关系式如下所示。 M(模数)=CP/π(圆周率) 两者都是表示轮齿大小的单位。 (分度圆周长=πd=zp d=z p/π p/π称为模数) 7)什么是「齿隙」? 一对齿轮啮合时,齿面间的间隙。 齿隙是齿轮啮合圆滑运转所必须的参数。 8) 弯曲强度与齿面强度的不同是什么? 齿轮的强度一般应从弯曲和齿面强度的两方面考虑。 弯曲强度是传递动力的轮齿抵抗由于弯曲力的作用,轮齿在齿根部折断的强度。齿面强度是啮合的轮齿在反复接触中,齿面的抗摩擦强度。 9) 弯曲强度和齿面强度中,以什么强度为基准选定齿轮为好? 一般情况下,需要同时讨论弯曲和齿面的强度。 但是,在选定使用频度少的齿轮、手摇齿轮、低速啮合齿轮时,有仅以弯曲强度选定的情况。最终,应该由设计者自己决定。 10) 什么是螺旋方向与推力方向? 轮齿平行于轴心的正齿轮以外的齿轮均发生推力。 各类型齿轮变化如下所示。

钢筋工程量计算方法总结

钢筋算量基本方法小结 一、梁 (1)框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d } 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋

拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)*2+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。 7、吊筋 吊筋长度=2*锚固(20d)+2*斜段长度+次梁宽度+2*50,其中框梁高 度>800mm 夹角=60° ≤800mm夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为:Ln/3+中间支座值+Ln/3; 第二排为:Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度:第一排为:该跨净跨长+(Ln/3+前中间支座值)+(Ln/3+后中间支座值);

电力系统潮流计算

电力系统潮流计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电力系统 课程设计题目: 电力系统潮流计算 院系名称:电气工程学院 专业班级:电气F1206班 学生姓名: 学号: 指导教师:张孝远 1 2 节点的分类 (5) 3 计算方法简介 (6) 牛顿—拉夫逊法原理 (6) 牛顿—拉夫逊法概要 (6) 牛顿法的框图及求解过程 (8) MATLAB简介 (9) 4 潮流分布计算 (10)

系统的一次接线图 (10) 参数计算 (10) 丰大及枯大下地潮流分布情况 (14) 该地区变压器的有功潮流分布数据 (15) 重、过载负荷元件统计表 (17) 5 设计心得 (17) 参考文献 (18) 附录:程序 (19) 原始资料 一、系统接线图见附件1。 二、系统中包含发电厂、变电站、及其间的联络线路。500kV变电站以外的系统以一个等值发电机代替。各元件的参数见附件2。 设计任务 1、手动画出该系统的电气一次接线图,建立实际网络和模拟网络之间的联系。 2、根据已有资料,先手算出各元件的参数,后再用Matlab表格核算出各元件的参数。 3、潮流计算 1)对两种不同运行方式进行潮流计算,注意110kV电网开环运行。 2)注意将电压调整到合理的范围 110kV母线电压控制在106kV~117kV之间; 220kV母线电压控制在220 kV~242kV之间。 附件一:

72 水电站2 水电站1 30 3x40 C 20+8 B 2x8 A 2x31.5 D 4x7.5 水电站5 E 2x10 90+120 H 12.5+31.5 F G 1x31.5 水电站3 24 L 2x150 火电厂 1x50 M 110kV线路220kV线路课程设计地理接线示意图 110kV变电站220kV变电站牵引站火电厂水电站500kV变电站

地铁线路平面曲线设计相关参数的确定

收稿日期:20030317 作者简介:欧阳全裕(1938)),男,高级工程师,1963年毕业于长沙铁道学院铁道建筑专业。 地铁线路平面曲线设计相关参数的确定 欧阳全裕 (铁道第三勘察设计院 天津 300051) 摘 要 针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词 地铁 线路 曲线 设计 参数 确定 地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数,各参数相互关联制约。1993年发布的现行5地下铁道设计规范6(GB5015792)(以下简称5设规6)中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用,因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。1 曲线半径选择 曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁5设规6规定:/最小曲线半径一般情况300m,困难情况250m 。0在实际设计中,对250m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300m 。例如,天津地铁1号线南段,因受津萍大厦桩基(地下线)和城市干道交叉口及地铁设站位置(高架线)控制,经多次研究比选,设计了3处300m 半径曲线,最终经市建委审批确定。2 曲线超高与限速计算 列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。 列车在曲线上运行时产生惯性离心力使乘客有不适感。因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。 从理论上分析,车体重力P 产生的离心力为: J =Pv 2/gR (1) 由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1)为 F n =P h/s (2)当F n =J 时,可得 h =Sv 2 /gR =11.8V 2 /R (3) 式中 g )))重力加速度,9.8m/s 2; r )))曲线半径,m ; s )))内外轨头中心距离,取1500mm ;v 、V ))) 行车速度,v 单位为m/s ,V 单位为 km/h ; h )))所需外轨超高度,mm 。 图1 超高与向心力关系图 由式(3)可见,当曲线半径一定时,速度越高,要求设置的超高就越大。为保证行车安全,又必须限制超高的最大值h max ,因此,当速度要求的超高超过h max 时,即产生了欠超高h q 和未被平衡的离心力而影响乘客舒适度,因而对欠超高值也必须有所限制。我国客货混运铁路规定,一般情况下,曲线最大超高150mm ,允许欠超高75mm ,曲线限速为4.32R 。地铁5设规6规定了曲线最大超高值120mm ,而对欠超高值未作条文规定,但从乘客舒适要求角度,根据国内外试验资料,规定/允许有不超过0.4m/s 2 的未被平衡横向加速度0,据此可推算出地铁线路允许的最大欠超高值。 对某一实设曲线而言,超高h 是定值。当列车以v max 通过时,将产生最大的欠超高h qma x 为 #线路/路基#

潮流计算简答题

潮流计算数学模型与数值方法 1. 什么是潮流计算?潮流计算的主要作用有哪些? 潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。 潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。 2. 潮流计算有哪些待求量、已知量? (已知量:1、电力系统网络结构、参数 2、决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等) 3. 潮流计算节点分成哪几类?分类根据是什么? (分成三类:PQ 节点、PV 节点和平衡节点,分类依据是给定变量的不同) 4. 教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程?可否采用其它类型方程? 答:基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。 5. 教材牛顿-拉夫逊法是基于节点阻抗方程、还是基于节点导纳方程进行迭代计算的?试阐述这两种方程的优点与缺点。 1.不能由等值电路直接求出 2.满秩矩阵内存量大 3.对角占优矩阵。。 节点导纳矩阵的特点:1.直观容易形成2.对称阵3.稀疏矩阵(零元素多):每一行的零元素个数=该节点直接连出的支路数。 6. 说出至少两种建立节点导纳矩阵的方法,阐述其中一种方法的原理与过程。 方法:1.根据自导纳和互导纳的定义直接求取2.运用一节点关联矩阵计算3.阻抗矩阵的逆矩阵 节点导纳矩阵的形成:1.对角线元素ii Y 的求解)1,,0(=≠==i j I i ii U i j U U I Y 【除i 外的其他节点接地,0=j U ,只在i 节点加单位电压值】解析ii Y 等于与i 节点直接相连的的所有支路导纳和2.互导纳),0,1(j k U U U I Y k j j i ij ≠===,ji ij Y Y =(无源网络导纳之间是对称的)解析:ij Y 等于j i ,节点之间直接相连的支路导纳的负值。 7. 潮流计算需要考虑哪些约束条件? 答: 为了保证系统的正常运行必须满足以下的约束条件:

手工计算钢筋工程量知识交流

手工计算钢筋工程量 (一)基础: 常见的基础类型 1、独立基础:框架结构中常用,在计算钢筋中要注意底板受力钢筋的长度,可取边长或宽 度的0.9倍,并交错布置; 2、筏板基础:一般用于剪力墙结构,详见04G101—3标准图集; 3、条形基础:一般用于砖混结构。 (二)上部构件: 1、柱:柱钢筋分为纵筋和箍筋。纵筋计算难点在基础插筋问题上,顶层柱纵筋计算难点在边柱、中柱、角柱上,详图参见03G101-1或11G101-1标准图集;箍筋要注意加密区长度取值问题:底层柱根加密>=Hn/3,柱上部加密长度>=Hn/6、>=500、hc柱长边尺寸三者取最大值(Hn所在楼层的柱净高;hc柱长边尺寸)。柱子连接分为绑扎连接、机械连接、焊接连接;其中绑扎和节点(如梁)处箍筋需要加密。 2、梁:梁钢筋按照03G101-1或11G101-1标准图集计算。梁上部有通长筋、支座负筋(梁上部一排1/3Ln,二排1/4Ln;Ln是左右两跨较大值),梁下部钢筋一般按照每跨分别向两边支座伸入锚固长度的情况进行计算的。 3、剪力墙:剪力墙中的构件一定要计算完全。其中包括:墙体分布钢筋(有水平钢筋和纵向钢筋,要注意墙和墙交接部位的水平钢筋的锚固、各种转角的锚固)、翼柱的钢筋(墙和墙交接部位形成的柱子)、剪力墙的连梁钢筋(门窗洞口上面形成的连梁)、暗柱钢筋(门窗洞口两侧形成的暗柱)、端柱钢筋(剪力墙断头的柱子)、暗梁钢筋(由于构造要求在墙体中所配置的梁)。 钢筋计量常用公式 一、梁 (1)框架梁 一、首跨钢筋的计算 1、梁上部钢筋 梁上部通长筋长度=通跨净跨长Ln+首尾端支座锚固值 注意:Ln为净跨长度,当采用绑扎连接时,还要计算搭接长度Lle或Ll。 梁的纵向钢筋锚入支座的长度与锚固构造的直锚和弯锚有关。 当端支座宽度hc-保护层bhc>=锚固长度Lae,则直锚;当端支座宽度hc-保护层bhc<=锚固长度Lae,则弯锚(即钢筋伸至支座对边,并作15d弯钩)。 通长筋锚固有三种情况: 通长筋两端均直锚,锚固长度=Max(Lae,0.5hc+5d) 通长筋两端均弯锚,锚固长度=hc-保护层+15d 通长筋一端直锚,一端弯锚,锚固长度=Max(Lae,0.5hc+5d)+ hc-保护层+15d 2、端支座负筋 端支座负筋长度: 梁上部第一排钢筋长度=首(尾)跨净长Ln/3+首(尾)端支座锚固长度; 梁上部第二排钢筋长度=首(尾)跨净长Ln/4+首(尾)端支座锚固长度; 其中首尾端支座锚固长度与锚固构造的直锚和弯锚有关。当端支座宽度hc-保护层bhc>=锚固长度Lae,则直锚;当端支座宽度hc-保护层bhc<=锚固长度Lae,则弯锚(即钢筋伸至支座对边,并作15d弯钩)。

第3章作业答案电力系统潮流计算(已修订)

第三章 电力系统的潮流计算 3-1 电力系统潮流计算就是对给定的系统运行条件确定系统的运行状态。系 统运行条件是指发电机组发出的有功功率和无功功率(或极端电压),负荷的有 功功率和无功功率等。运行状态是指系统中所有母线(或称节点)电压的幅值和 相位,所有线路的功率分布和功率损耗等。 3-2 电压降落是指元件首末端两点电压的相量差。 电压损耗是两点间电压绝对值之差。当两点电压之间的相角差不大时, 可以近似地认为电压损耗等于电压降落的纵分量。 电压偏移是指网络中某点的实际电压同网络该处的额定电压之差。电压 偏移可以用kV 表示,也可以用额定电压的百分数表示。 电压偏移= %100?-N N V V V 功率损耗包括电流通过元件的电阻和等值电抗时产生的功率损耗和电压 施加于元件的对地等值导纳时产生的损耗。 输电效率是是线路末端输出的有功功率2P 与线路首端输入的有功功率 1P 之比。 输电效率= %1001 2 ?P P 3-3 网络元件的电压降落可以表示为 ()? ? ? ? ? +=+=-2221V V I jX R V V δ? 式中,?2V ?和? 2V δ分别称为电压降落的纵分量和横分量。 从电压降落的公式可见,不论从元件的哪一端计算,电压降落的纵、横分量计算公式的结构都是一样的,元件两端的电压幅值差主要有电压降落的纵分量决定,电压的相角差则由横分量决定。在高压输电线路中,电抗要远远大于电阻,即R X ??,作为极端的情况,令0=R ,便得 V QX V /=?,V PX V /=δ 上式说明,在纯电抗元件中,电压降落的纵分量是因传送无功功率而产生的,而电压降落的横分量则是因为传送有功功率产生的。换句话说,元件两端存在电压幅值差是传送无功功率的条件,存在电压相角差则是传送有功功率的条件。 3-4 求解已知首端电压和末端功率潮流计算问题的思路是,将该问题转化成 已知同侧电压和功率的潮流计算问题。

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

KV线路典型设计

10KV架空配电线路典型设计 第一章概述 1、设计依据文件 1.1《国家电网公司输变电工程典型设计10kV和380V/220V配电线路分册 (2006年版)》; 1.2《国家电网公司输变电工程通用设计220V~10kV电能计量装置分册》; 1.3《新疆电力公司10kV及以下配网工程典型设计》的委托书; 1.4《国家电网公司十八项电网重大反事故措施》。 2、主要设计标准、规程和规范 2.1DL/T5220-2005《10kV及以下架空配电线路设计技术规程》; 2.2DL/T601-1996《架空绝缘配电线路设计技术规程》; 2.3DL/T5154-2002《架空送电线路杆塔结构设计技术规定》; 2.4GB50217-2007《电力工程电缆设计规范》; 2.5Q/GDW371-2009《10(6)~500kV电缆技术标准》; 2.6GB50052-2009《供配电系统设计规范(报批稿)》; 2.7GB50054-1995《低压配电设计规范》; 2.8DL/T499-2001《农村低压电力技术规程》; 2.9DL/T5131-2001《农村电网建设与改造技术导则》; 2.10Q/GDW370-2009《城市配电网技术导则》; 2.11Q/GDW347-2009《电能计量装置通用设计》; 2.12国网生(2009)133号《电力系统电压质量和无功电力管理规定》; 2.13Q/GDW212-2008《电力系统无功补偿配置技术原则》; 2.14国网农(2009)378号《农网完善工程技术要点》; 2.15DL/T620-1997《交流电气装置过电压保护与绝缘配合》; 2.16DL/T621-1997《交流电气装置的接地》。 3、设计内容 本工程设计范围从10kV线路接入系统联结点至低压线路接户线,工程主要内容:3.110kV架空线路:120mm2及以下、185mm2~240mm2单、双回路水泥砼杆杆型设计。 3.2低压架空线路:185mm2及以下0.4kV砼杆杆型,低压接户线部分。 3.3柱上设备:单回路杆型带电缆上杆、断路器、隔离开关、电容器等设备;双回路杆型电缆上杆、断路器、隔离开关、电容器等设备。 3.410kV钢管杆带0.4kV架空线路:240mm2及以下带钢芯绝缘导线带0.4kV低压线单回路杆型;240mm2及以下带钢芯绝缘导线带0.4kV低压线双回路杆型。 3.5电缆及电缆敷设:电缆上杆、电缆头安装、电缆排管、电缆隧道及电缆工作井。 3.610kV带0.4kV高低压砼杆:120mm2及以下、185mm2~240mm2单回路水泥砼杆带0.4kV杆型设计。 4、气象条件 气象条件的选取一般应采用工程所在地气象台站提供的15年一遇的气象资料,对最大风速应采用10m高度持续10分钟的平均最大风速做样本。考虑到新疆地区地广人稀气象台站分布较少的特殊情况,当工程所在地无气象台站时可参考当地的线路运行维护经验,并咨询当地长期居住(一般应在20年以上)居民的气象描述以及当地县志等历史资料,综合确定气象条件的取值。 国网典设中将设计规范中的七种典型气象区进行了归并整合,归纳出了三种气象区,本典型设计结合新疆地区的气候特点,决定采用国网典设中的C类气象区,该气象区能够代表新疆绝大多数地区的气候特点。 气象条件成果表

相关文档
相关文档 最新文档