文档库 最新最全的文档下载
当前位置:文档库 › 第九章 水电站的水锤及调节保证计算

第九章 水电站的水锤及调节保证计算

第九章 水电站的水锤及调节保证计算
第九章 水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算

本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述

一、水电站的不稳定工况

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为:

(1) 引起机组转速的较大变化

丢弃负荷:剩余能量→机组转动部分动能→机组转速升高

增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水锤”现象

管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务

(一) 水锤的危害

(1) 压强升高过大→水管强度不够而破裂;

(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;

(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算

水锤和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:

(1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;

(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水锤压强及机组转速变化的措施。

2.调节保证计算的目的

正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。

第二节 水锤现象及其传播速度

一、 水锤现象

1.定义

在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。

2.水锤特性

(1) 水锤压力实际上是由于水流速度变化而产生的惯性力。当突然启闭阀门时,由于启闭时间短、流量变化快,因而水锤压力往往较大,而且整个变化过程是较快的。

(2) 由于管壁具有弹性和水体的压缩性,水锤压力将以弹性波的形式沿管道传播。 注:水锤波在管中传播一个来回的时间t r =2L /a ,称之为“相”,两个相为一个周期2t r =T (3) 水锤波同其它弹性波一样,在波的传播过程中,在外部条件发生变化处(即边界处)均要发生波的反射。其反射特性(指反射波的数值及方向)决定于边界处的物理特性。

二、水锤波的传播速度

水锤波速与管壁材料、厚度、管径、管道的支承方式以及水的弹性模量等有关,其计算公式为:

)/(11435

1s m E DK E

DK

g

K

a δδγ

+

=

+

=

式中 K ——水的体积弹性模量,一般为2.06×103MPa ;

E ——管壁材料的纵向弹性模数(钢村E =2.06×105MPa ,铸铁E =0.98×105MPa ,混凝

土E =2.06×104MPa);

γKg

为声波在水中的传播速度,随温度和压力的升高而加大,一般取1435m/s 。

一般情况下,露天钢管的水锤波速可近似地取为1000m/s ,埋藏式钢管可近似地取为1200m/s 。钢筋混凝土管可取900m/s~1200m/s 。

第三节 水锤基本方程及边界条件

基本方程+相应的边界条件——用解析方法和数值计算方法求解水锤值及其变化过程。

一、水锤基本方程

(一) 基本方程

对有压管道而言,不论在何种情况下都应满足水流的运动方程及连续方程。当水管材料、厚度及直径沿管度不变,且不计及水力摩阻损失时,其简化方程为(取阀门端为原点,x 向上游为正)

t V

x H g

??=?? x V

g a t H ??=??2

上述方程为一组双曲线型偏微分方程, 其通解为:

)

()(0a x t f a x t F H H H ++-=-=? ??????+---

=-=?)()(0a x t f a x t F a

g V V V

注:F 和f 为两个波函数,其量纲与水头H 量纲相同,故可视为压力波。任何断面任何时刻的水锤压力值等于两个方向相反的压力波之和;而流速值为两个压力波之差再乘以-

g/a 。

)(a x t F -为逆水流方向移动的压力波,称为逆流波;)

(a x

t f +为顺水流方向移动的压

力波,称为顺流波。

(二) 水锤计算的连锁方程

水锤连锁方程给出了水锤波在一段时间内通过两个断面的压力和流速的关系。前提应满足水管的材料、管壁厚度、直径沿管长不变:

()A t B

t t A

t B t t V V g a H H -=

-?+?+ ()B t A t t B

t A t t V V g a H H --

=-?+?+

用相对值来表示为

)

(2B t t A t B t t A t v v ?+?+-=-ρξξ

)(2A t t B t A t t B t v v ?+?+--=-ρξξ

式中0

2gH aV =

ρ为管道特性系数;

0H H H H H i -=?=

ξ为水锤压力相对值;

0V V

v =

为管道相对流速。

二、水锤的边界条件

应用水锤基本方程计算水电站压力管道中水锤时,首先要确定其起始条件和边界条件。 (一) 起始条件

当管道中水流由恒定流变为非恒定流时,把恒定流的终了时刻看作为非恒定流的开始时刻。即当t=0时,管道中任何断面的流速V =V 0;如不计水头损失,水头H=H 0。

(二) 边界条件

1.管道进口

管道进口处一般指水库或压力前池。水库和压力前池水位变化比较慢,在水锤计算中不计风浪的影响,一般认为水库和前池水位为不变的常数是足够精确的。

即进口边界边界条件为: H p =H 0 2.分岔管

分岔管的水头应该相同, H p1=H p2=H p3=…=H p 分岔处的流量应符合连续条件, ΣQ =0 3.分岔管的封闭端

在不稳定流的过程中,当某一机组的导叶全部关闭,或某一机组尚未装机,而岔管端部用闷头封死,其边界条件为:Q p =0

4.调压室

把调压室作为断面较大的分岔管,其边界条件为: 调压室内有自由水面,而隧洞、调压室与压力管道的交点和分岔管相同。

5.水轮机

水电站压力管道出口边界为水轮机,水轮机分冲击式和反击式,两种型式的水轮机对水锤的影响不同。

(1) 冲击式水轮机

冲击式水轮机的喷嘴是一个带针阀的孔口,符合孔口出流规律,水轮机转速变化对孔口出流没有影响。阀门处A 点的边界条件:

A

i i A i A i q v ξτ+==1

式中:

max ωωτi i =——称为相对开度;ω

max ——喷嘴全开时断面积

0/H H i ?=ξ ——为任意时刻水锤压力相对值。

A

i A i i

i q v FV FV Q Q ===max

max ——为任意时刻相对流速及相对流量。

(2) 反击式水轮机

反击式水轮机的过水能力与水头H 、导叶开度a 和转速n 有关。即 Q=Q(H,a,n) 反击式水轮机与冲击式水轮机的不同之处是要考虑水轮机转速变化的影响,因此增加了问题的复杂性。为了简化计算,常假定压力管道出口边界条件为冲击式水轮机,然后再加以修正。

第四节 简单管水锤的解析计算

简单管是指压力管道的管径、管壁材料和厚度沿管长不变。

解析法的要点是采用数学解析的方法,引入一些符合实际的假定,直接建立最大水锤压力的计算公式。简单易行,物理概念清楚,可直接得出结果。

一、直接水锤和间接水锤

水锤有两种类型:直接水锤和间接水锤。

(一) 直接水锤

当水轮机开度的调节时间T S ≤2L /a 时,由水库处异号反射回来的水锤波尚未到达阀门之前,阀门开度变化已经终止,水管末端的水锤压力只受开度变化直接引起的水锤波的影响,这种水锤称为直接水锤。

)(00V V g a

H H H --

=-=?

注:水锤波在管道中传播一个来回的时间为2L /a ,称为“相”。

(1) 当阀门关闭时,管内流速减小,V -V 0<0为负值,△H 为正,产生正水锤;反之当开启阀门时,即V -V 0>0,△H 为负,产生负水锤。

(2) 直接水锤压力值的大小只与流速变化(V -V 0)的绝对值和水管的水锤波速a 有关,而与开度变化的速度、变化规律和水管长度无关。

当管道中起始流速V 0=4m/s ,a =1000m/s ,终了流速V =0时,压力升高值为:

7.40781.9/)40(1000)(0=--=--

=?V V g a

H m ,因此在水电站中应当避免发生直接

水锤。

(二) 间接水锤

若水轮机开度的调节时间T S >2L /a 时,当阀门关闭过程结束前,水库异号反射回来的降压波已经到达阀门处,因此水管末端的水锤压力是由向上游传播的水锤波F 和反射回来的水锤波f 叠加的结果,这种水锤称为间接水锤。降压波对阀门处产生的升压波起着抵消作用,使此处的水锤值小于直接水锤值。

间接水锤是水电站中经常发生的水锤现象,也是要研究的主要对象。

二、 计算水管末端各相水锤压力的公式

工程中最关心的是最大水锤压力。由于水锤压力产生于阀门处,从上游反射回来的降压波也是最后才达到阀门,因此最大水锤压力总是发生在紧邻阀门的断面上。应用前面的水锤连锁方程及管道边界条件,推求阀门处各相水锤压力计算公式 。

(一) 计算公式

阀门关闭情况:

ρξτξ

τ21101

1A

A

-

=+ 第一相末的水锤压力

ρξρξτξ

τ212102

2A

A A -

-=+ 第二相末的水锤压力

…………………………..

ρξξρτξ

τ21

11

11

0A

n n A

A n

n -

-=+∑- 第n 相末的水锤压力

阀门或导叶开启:管道中压力降低,产生负水锤,其相对值用y 表示。

ρττ211

011y y +

=-

……

ρρ

ττ21

111

0n

n i i i n n y y y +

+

=-∑-==

利用上述公式,可以依次解出各相末的阀门处的水锤压力,得出水锤压力随时间的变化关系。

(二)计算公式的条件

(1) 没有考虑管道摩阻的影响,因此只适用于不计摩阻的情况;

(2) 采用了孔口出流的过流特性,只适用于冲击式水轮机,对反击式水轮机必须另作修改;(3) 这些公式在任意开关规律下都是正确的,可以用来分析非直线开关规律对水锤压力的影响。

三、开度依直线变化的水锤

进行水锤计算,最重要的是求出最大值。在开度依直线规律变化情况下,不必用连锁方程求出各相末水锤,再从中找出最大值,可用简化方法直接求出。

(一) 开度依直线变化的水锤类型

当阀门开度依直线规律变化时,根据最大压强出现的时间可归纳为两种类型:

第一类:当0ρτ<1时,最大水锤压力出现在第一相末, A A 1max ξξ=,称第一相水锤。

第二类:当0ρτ>1时,最大水锤压力出现在第一相以后的某一相,其特点是最大水锤压力接近极限值

m ξ,即m ξ>1ξ,称为极限水锤。

注:第一相水锤是高水头电站的特征;极限水锤常发生在低水头水电站上。

(二) 开度依直线变化的水锤简化计算

1.第一相水锤计算的简化公式

关闭阀门时

σρτσ

ξ-+=

0112A

开启阀门时

σ

ρτσ

++=

0112A y

发生第一相水锤的条件是

0ρτ<1,对于丢弃负荷情况,0τ=1,有

12/0m a x <=gH aV ρ,若a =1000m/s ,V max=5m/s ,则H 0>250m ,故在丢弃负荷的情况下,只有高水头电站才有可能出现第一相水锤。

2.极限水锤计算简化公式

()4

2

2+±

=

σσσ

ξA m

当水锤压强A m

ξ≤0.5时,可得到更为简化的近似公式:

σσ

ξ-=

22A m σσ+=

22A

m y

3.间接水锤类型的判别条件

仅用

0ρτ大于还是小于1作为判别水锤类型的条件是近似的。水锤的类型除与0ρτ有

关,还与σ 有关。

水锤类型判别图中,曲线表示极限水锤和第一相水锤的分界线,直线0ρτσ=表示第一

相水锤和直接水锤的分界线。

σ

ρτ

I 区为极限正水锤;II 区为第一相正水锤; III 区为直接水锤; IV 区为极限负水锤;V

区为第一相负水锤;

简单判别方法:

0ρτ<1.0时,常发生第一相水锤; 0ρτ>1.5时,常发生极限水锤;

1.0<

0ρτ<1.5时,

则随σ值的不同而发生第一相或极限水锤,个别情况下发生直接水锤。

此时按图判别。

四、起始开度对水锤的影响

水电站可能在各种不同的负荷情况下运行,当机组满负荷运行时,起始开度0τ=1;当

机组只担任部分负荷运行时,0τ<l 。因此机组由于事故丢弃负荷时的起始开度0τ可能有各

种数值。

起始开度对水锤压强的影响

由极限水锤σσ

ξ-=

22A m 只与σ有关,而与0τ无关,图中A m ξ是一根平行于0τ轴的水平

线。

对第一相水锤σρτσ

ξ-+=

0112A ,随着0τ的减小而增大,所以在图中表示为一根曲线。

对直接水锤,

2ρτξ=A d ,为一通过坐标轴原点的直线,其斜率为2ρ。图中三条曲

线的交点为:

(1)直接水锤和第一相水锤: 令

2ρτξ=A d 和

σρτσ

ξ-+=

0112A 相等,可以解出:ρστ/0=

(1) 第一相水锤和末相水锤

σρτσξ-+=

0112A 和

σσ

ξ-=

22A m 相等,可以解出:ρτ/10=

因此可得出以下结论: (l) 当起始开度ρτ/10>,0ρτ>1时,1ξξ>m ,最大水锤压强发生在阀门关闭的终了,

即极限水锤;

(2) 当起始开度ρτρσ/1/0<<时,m ξξ>1最大水锤压强发生在第一相末;

(3) 当起始开度

ρ

στ/0<时,发生直接水锤,但非最大的水锤值;

(4) 当阀门起始开度为临界开度ρστ/0=时,发生最大直接水锤:由02ρτξ=A d ,得

五、开度变化规律对水锤压力的影响

前面有关第一相或极限水锤的一些概念及计算公式是在假定阀门开度按直线变化条件推得的,在水电站运行实践中,阀门的启闭规律不完全是直线而往往采用非直线的。

注:阀门启闭时间相同,但启闭规律不同,水锤压强变化过程也不相同。

曲线Ⅱ表示开始阶段关闭速度较快,因此水锤压强迅速上升到最大值,而后关闭速度减慢,水锤压强逐渐减小;曲线Ⅲ的规律与曲线Ⅱ相反,关闭速度是先慢后快,而水锤压强是先小后大。水锤压强的上升速度随阀门的关闭速度的加快而加快,最大压强出现在关闭速度较快的那一时段末尾。从图中可以看出,关闭规律Ⅰ较为合理,最不利的是规律Ⅲ。

1

2

3

4

5

6

7

8

0.0

0.1

0.2

0.3

0.4

0.5

II I

III

ζ

t(Phase)

τ

t(Phase)

由此可见,通过调速器或针阀等设备,采取比较合理的启闭规律,可以作为减小水锤压力和解决调节保证问题的措施之一。在高水头电站中常发生第一相水锤,可以采取先慢后快的非直线关闭规律,以降低第一相水锤值;在低水头水电站中常发生极限水锤,可采取先快后慢的非直线关闭规律,以降低末相水锤值。

六、水锤压力沿管长的分布

在进行压力管道强度设计时,不仅需要计算管道末端的压强,而且需要管道沿线各点的最大正水锤压力和最大负水锤压力的分布情况,以便进行管道的强度设计及检验管道内部是否有发生真空的可能。

水锤压强沿管道的分布

(一) 极限水锤压力的分布规律

理论研究证明,极限水锤无论是正、负水锤,管道沿线线的最大水锤压强均按直线规律分布,如图中实线所示。若管道末端A 点的最大水锤为A

m

ξ和A m

y ,则任意点C 点的最大

水锤为

A m C L l ξξ=

max ; A m C y L l y =max

(二) 第一相水锤压力的分布规律

第一相水锤压力沿管线不依直线规律分布,正水锤压力分布曲线是向上凸的,负水锤压力分布曲线是往下凹的。任意点C 近似表达式为

AC AC

C

σρτσσ

ρτσξ-+-

-+=

00max 1212

式中

s T gH LV 0max =

σ;s AC s AC T gH V l T gH V l L 0max

0max )(=

-=σ

上面的两式可以看出,等号右端的第一项为管长为L 时A 点第一相末A 点的水锤压强,第二项为管长为L-l (相当于水库移至C 点)时A 点第一相末A 点的水锤压强,C 点最大水锤压强为两者之差。

对于第一相负水锤,任意点C 的最大水锤降压为

BC

BC

C

y σρτσ-+=

0max 12

式中

s BC BC T gH V l 0max

=

σ

绘制水锤压力沿管线分布图时,应根据管线的布置情况,选择几个代表性的断面,求出各断面上的最在正、负水锤压力。当丢弃负荷时可不计管路的水损失,在上游最高静水位上绘制水锤压力分布图;当增加负荷时,必须计算开启终了时管路的水头损失与流速水头,在上游最低水位线以下,考虑水头损失、流速水头与负水锤压力,绘制水锤压力分布图。

第五节 复杂管道水锤计算

在实际工程中,这种简单管是不多见的,常见的是复杂管路系统,共有三种类型: (1) 管壁厚度、直径和材料随水头增加自上而下逐段改变,这种复杂管称为串联管。 (2) 分岔管,这在分组供水和联合供水中经常遇到。

(3) 装有反击式水轮机的管道系统,应考虑蜗壳和尾水管的影响,而且其过流特性与孔口出流不一样,流量不仅与作用水头有关,而且与水轮机的机型和转速有关。

一、串联管水锤的简化计算

一般把串联管转化为等价的简单管来计算,即将串联管转化为简单管后应满足管长、相长和管中水体动能等与原管相同的原则。这种简化计算方法称为“等价水管法”。

设一根串联管的管道特性为:

L 1,V 1,a 1; L 2,V 2,a 2; …… ;L n ,V n ,a n

(1) 等价管的总长为:

∑==n

i i

L L 1

(2) 根据管中水体动能不变的要求,则 L V m =L 1V 1+L 2V 2+……L n V n =∑L i V i ,由此可得

加权平均流速:

L

V

L V n

i i

i m ∑==

1

(3) 根据相长不变的要求,水锤波按平均波速由断面A 传到断面B 所需的时间等于水锤波在各段传播时间的总和,即

∑==+++=n

i i

i n n m a L a L a L a L a L

12211

由此可得波速的加权平均值:∑==

n

i i

i m a L L

a 1

对于间接水锤,管道的平均特性常数为

2gH V a m m m =

ρ;

s

m m T gH LV 0=

σ ;

m

r a L t 2=

求出管道平均特性常数后,可按简单管的间接水锤计算公式求出复杂管道的间接水锤值。

二、分岔管的水锤压力计算

分岔管的水锤计算方法之一是截肢法。这种方法的特点是:当机组同时关闭时,选取总长为最大的一根支管,将其余的支管截掉,变成串联管道,然后用各管段中实际流量求出

各管段的流速,再用加权平均的方法求出串联管中的平均流速和平均波速,最后采用串联管的简化公式相应地求出水锤值。

分岔管的截肢法

三、蜗壳、尾水管水锤压力计算

反击式水轮机的过流部件包含有蜗壳和尾水管。

(1) 首先将蜗壳视作压力水管的延续部分,并假想把导叶移至蜗壳的末端,尾水管也作为压力管道的一部分。把压力管道、蜗壳和尾水管组合视为一串联管,再将该串联管简化为等价简单管进行计算。

设压力水管、蜗壳及尾水管长度、平均流速和水锤波速分别为L T 、V T 、a T ;L c 、V c 、a c ;L b 、V b 、a b ,则

L =L T +L c + L b

)/(

b

b

c c T T m a L a L a L L a ++=

V m =( L T V T +L c V c + L b V b )/L

求出等价管的特性系数

m ρ、m σ,计算出管道末端最大水锤压力ξ值。

(2) 以管道、蜗壳、尾水管三部分水体动能为权,将水锤压力值ξ进行分配,求出压力管道、蜗壳末端和尾水管进口的水锤压力。

压力水管末端最大压力上升相对值为:

ξ

ξm

b c T T

T T V L L L V L )(++=

蜗壳末端最大水锤压力上升相对值:

ξ

ξm

b c T c

c T T c V L L L V L V L )(+++=

尾水管进口处压力下降相对值为:

ξ

m

b c T b

b b V L L L V L y )(++=

注:尾水管在导叶或阀门之后,水锤现象与压力管道相反

(3) 求出尾水管的负水锤后,应校核尾水管进口处的真空度H r ,以防水流中断。

m

g V H y H H b b s r 9~822

0<++=

式中 Hs — 水轮机的吸出高度;V b — 尾水管进口断面在出现y b 时的流速。

注:对于中高水头水电站,压力管道较长,蜗壳和尾水管的影响较小,通常可略去不计。对于低水头水电站,必须考虑蜗壳和尾水管的影响,而尾水管的影响往往较蜗壳更为显著。

第六节 机组转速变化计算

水轮机调节机构开始关闭导叶,水轮机的引用流量逐渐减小,机组出力逐渐下降,同时在引水系统产生水锤压力。当关闭到空转开度时出力变为零。导叶关闭过程中所产生的能量,完全被机组转动部分所消耗,造成机组转速的升高。

在机组调节过程中,转速变化通常以相对值表示,称为转速变化率β。

丢弃负荷

m ax n n n -=

β ; 增加负荷

m in

0n n n -=

β

一、机组转速变化率计算近似公式

(一) 列宁格勒金属工厂公式

丢弃负荷时: 136512

2

010-+

=GD n f

T N s β

增加负荷时:

2

201036511GD n f T N s -

-=β

T s1 —— 导叶关闭至空转的时间;对于冲击式和混流式水轮机T s1=0.9T s ;对于轴流式水轮

机T s1=0.7T s ;

N 0 —— 机组丢弃负荷前的出力,以kW 计。

G ——转动部分重量(t);D ——是转动部分惯性直径(m),如果以kg 计,

22

41000k g m s

g GD J =。

f ——水锤修正系数。

(二)《长江流域规划办公室》公式

列宁格勒工厂公式未考虑迟滞时间的缺点,我国“长办”提出修正公式。当水电站突丢负荷后,由于调速系统惯性的影响,导叶经过一小段迟滞时间T c 以后才开始关闭动作,

机组转速经历T c 和升速时间T n 。(T n 定义为水轮机出力自N 0降到零时的历时)后达到最大

值n max 。

1)2(.36512

2

00

-++

=f T T GD n N n c β

式中 T c ——调节迟滞时间,T c = T A +0.5δT a ,T A 是导叶不动作时间,电调调速器取0.1s ,

机调调速器取0.2s ;δ是调速器残留不均衡度,一般为0.02~0.06;T a 为机组时间常数,以s 计,02

20365N GD n T a =

;;

T n ——升速时间,T n =(0.9-0.00063n s )T s ,n s 为比转速;

f ——水锤影响系数。

第七节 调节保证计算标准和改善调节保证的措施

一、调节保证计算标准和计算条件

所谓调节保证计算标准,是指水锤压力和转速变化在技术经济上合理的允许值。这种标准在技术规范中有所规定,但这是在一定时期和一定技术水平和经济条件下制定的,应用时应结合具体情况加以确定。

(一) 水锤压力的计算标准

1.压力升高

水锤压力的最大升高值通常以相对值ξmax =(H max -H 0)/H 0表示。

当H 0>100m 时,ξmax =0.15~0.30 当H 0=40~100m 时,ξ

max =0.30~0.50

当H 0<40m 时,ξmax =0.50~0.70

2.压力降低

在压力引水系统的任何位置均不允许产生负压,且应有2~3m 水柱高的余压,以保证管道尤其是钢管的稳定和防止水柱分离。尾水管进口的允许最大真空度为8m 水柱高。

(二) 转速变化的计算标准

限制机组转速过大的变化主要是为了保证机组正常运行和供电的质量。在丢弃全负荷的情况下,主要是防止机组强度破坏、振动和由于过速引起过电压而造成发电机电气绝缘的损坏。

最大转速变化值通常以相对值βmax =(n max -n 0)/n 0

表示。考虑到目前国内机组的设计、

制造、运行等情况,其允许值β

max 可按以下情况考虑:

1.当机组容量占电力系统总容量的比重较大,且担负调频任务时,宜小于45%; 2.当机组容量占电力系统总容量的比重不大或担负基荷时,宜小于55%;对斗叶式水轮机,宜小于30%。

注:当大于上述值时,应有所论证。

(三) 调节保证的计算条件

1.水锤压强计算条件

管道中的最大内水压强一般控制在以下两种工况:

(1) 上游最高水位时电站丢弃负荷。此时电站流量和水锤压强都不是最大值,但由于管道中的静水压较高,叠加的结果可能成为控制工况。

(2)设计水头下电站丢弃负荷。管道中的静水压较低,但电站的流量和水锤压力较大,叠加的结果也可能成为控制工况。

当压力管道为单元供水时,一般按丢弃全负荷考虑;当压力管道为联合供水时,若与管道连接的所有机组由一个回路出线,则应按这些机组同时丢弃全负荷考虑;若这些机组由两个或两个以上回路出线,则应根据具体情况分析而定。

管道中的最小内水压强一般控制在以下两种工况:

(1) 上游最低水位时电站丢弃负荷。导叶关闭后的正水锤经水库和导叶反射而成的负水锤;

(2)上游最低水位时,电站最后一台机组投入运行。

2.转速上升率的控制工况

设计水头+水电站丢弃全负荷。

二、减小水锤压强的措施

(一) 缩短压力管道的长度

缩短压力管道长度,使从进水口反射回来的水锤波能够较早地回到压力管道末端,从而减小水锤值。从管道特性系数σ=L V max/g H0T s中可看出,减小L可以减小σ,再从水锤

计算近似公式中可看出,σ减小可使

A

m

ξ

A

1

ξ

减小。在较长的引水系统中,设置调压室,

是缩短压力管道的常用措施。

(二) 减小压力管道中的流速

减小流速可减小压力管道中单位水体的动量,从而减小水锤压力。但是水电站在运行中要求流量是一定的,要减低流速势必要加大管径,增加管道造价。因此用加大管径办法降低水锤压强,往往是不经济的,但在一定条件下,如果适当加大管径后便可不设调压室,还是比较合理的。

(三) 延长有效的关闭时间

延长有效的关闭时间T s,可使管道内水体动量的变化率减小,从而降低水锤压力。但增大T s会使机组转速变化率β值增加,甚至超过允许值。要解决这个矛盾,可采取以下措施:

1.反击式水轮机设置减压阀(空放阀):在蜗壳的进口附近装设减压阀。在关闭过程中,导叶按照保证转速变化率不超过允许值所要求的关闭时间T s关闭,同时,受到同一

调速器控制的减压阀及时打开,向下游泄放部分流量。导叶完全关闭时,减压阀的流量达最大值,以后减压阀逐渐地关闭。整个泄水历时为T,因而水锤压力可以减小。

注:减压阀在机组增加负荷时不起作用。

减压阀装置示意图

2.冲击式水轮机的机组装置偏流器(折流器)

在喷嘴出口装置偏流器,丢弃负荷时,它能以较快速度在l~2s内动作,将射流偏折,离开转轮,防止机组转速变化过大。针阀以较慢速度关闭,从而减小水锤压力。

注:偏流器在增荷时不起作用。

偏流器构造简单,造价便宜,且无需增加厂房的尺寸,在水斗式水轮机的机组经常采用。

3.设置水阻器

水阻器是一种利用水阻消耗能量的设备,它与发电机母线相联,用调速器操作。当机组丢弃负荷时,调速器使水阻器投入,将机组原来输入系统的功率消耗于水阻之中,也就是用水阻代替机组原有的负荷,然后调速器在一个较长时间内将水轮机导叶逐渐关闭。

注:水阻器对于增加负荷时不起作用。

(四) 选择合理的调节规律

采用合理的关闭规律能有效地降低水锤压力值。

1

2

3

4

5

6

7

8

0.0

0.1

0.2

0.3

0.4

0.5

II

I III

ζ

t(Phase)τ

t(Phase)

中低水头电站:最大水锤压强常出现在调节过程终了,水轮机导叶可采取先快后慢的关闭规律,以提高开始阶段的水锤压强,降低终了阶段的水锤值;

高水头电站:最大水锤压强通常出现在调节过程开始阶段,可采用先慢后快的调节规律。 注:采用合理的关闭规律减小水锤压强,简单易行,又比较经济,应优先考虑。

(4)--水电站调节保证计算,调压室考核试卷及答案

《水电站》 考核(四) 学生姓名: 班级学号: 浙江水利水电学院 水电站课程组编制

2013年8月(修改) 使 用 说 明 本考核是《水电站》课程形成性考核的依据,与文字教材配套使用。 考核作业是课程考核的重要组成部分,是强化教学管理,提高教学质量,反馈学习信息,提高学生综合素质和能力的重要保证。 通过形成性考核有助于学生理解和掌握本课程的基本概念、基本理论。同时,形成性考核对于全面测评学生的学习效果,督促和激励学生完成课程学习,培养学生自主学习和掌握知识的能力也具有重要作用。 全部课程要求完成5次计分考核。 学生应按照教学进度按时完成各次计分考核,教师根据学生完成的情况评定成绩,每次作业以100分计,并按5次考核的平均成绩计算学生的形成性考核成绩。考核成绩占课程总成绩的20% 。

考核四 说明:本部分覆盖引水系统水力计算(水锤和调压室)部分,在学完本单元课程后,先完成与本单元相关的题目, 待学完本模块所有内容后,全部完成此次考核。 一、判断题(20分) 1.导叶的关闭时间Ts愈大,水锤压力愈大,机组转速升率愈小。 2.对高水头电站,一般可采用先快后慢的机组关闭规律,以达到降低水锤的目的。 ( ) 3.对低水头电站,一般可采用先慢后快的机组关闭规律,以达到降低水锤的目的。 ( ) 4.水电站甩负荷时,初始开度越大,水锤压力就越大。起始开度越小,水锤压力越小。( ) 5.调压室底部流速对调压室的稳定有利。( ) 6.阻抗式调压室的阻抗越大越好。( ) 7.调压室离进水口越近,则其水位波动幅值越小,故调压室应当尽量靠近进水口。( ) 8.水头愈低,需要的调压室稳定断面越小。( ) 9.压力钢管的糙率对调压室的稳定断面没有影响。( ) 10.调压室越靠近厂房时,会使波动稳定断面减小。( ) (二)填空题(40分) 1.延长机组关闭时间可以使__________减小,但___________将会增大。2.极限水锤沿管道的分布规律为____ ___第一相水锤为 ____ ____。 3.改善调节机组保证计算的措施有____________________________、_____

第四节 水锤计算的特征线法

第四节水锤计算的特征线法 前面介绍了水锤计算的解析法。解析法的优点是应用简便,但难以求解较为复杂锤问题。水锤计算的特征线法原则上可以解决任何形式的边界条件问题,可以较合理应水轮机的特性,能较方便地计人摩阻的影响,也便于用数字计算机计算。 特征线法有两种,一种以ζ-v(或H-V)为坐标场,一种以x-t为坐标场,两法的结果是一致的。 图14-12 简单管示意图 一、以ζ-v为坐标场的特征线法 图14-12表示一特性沿管长不变的水管,P为管中任意一点,距A点和B点的距离分为和。根据基本方程式(14-5)和式(14-6)可导出求解P、B、A三点水锤压强时征线方程。 (一)任意断面P的水锤求解 根据基本方程式(14-5)和式(15一6),P点在时刻t的压强和流速变化为 式中上标“P”表示地点,下标“t”表示时间,例如,表示P点在时刻t的水头,余类推。对于某一确定的断面P,为一常数,为便于书写,在波函数F和f中略去了。 对于A点,在时刻可写出下列相似的方程 因F是由A向P传播的反向波,故。由于水管特性不变,。考虑以上关系,将式(a)和式(b)两组方程相减,得 以上二式消去f,并将ζ=△H/Ho、v=V/Vmax和ρ=cVmax/2gHo。 对于B点,在时刻可以写出与式(b)相似的方程

因f是由B向P传播的正向波,故,将式(c)与(a)两组方程相减,以上法处理,得 从形式上看,式(14-35)是反x向写出的,称之为反向方程,在ζ-v坐标场上是一根斜率为2ρ的直 线,如图14-13中的线;式(9-36)是顺x向写出的方程,成为正向方程,在ζ-v坐标场上是一根斜率为-2ρ的直线,如图14-13中的线。 图14-13 ζ-v坐标场上得特征线 在式(14-35)和式(14-36)中,如已知A点在时刻和B点在时刻的压强和流速 ,即可求出P点在时刻t的压强和流速。和为图14-13中Pt的坐标值,可用 和两条直线的交点求出。用特征线法求解压强和流速的方法就是过去广为采用的水锤计算的图解法。 (二)进口B点的水锤求解 已知P点在时刻t的压强和流速,列出PB间反向方程 压力水管进口为水库或平水建筑物,,故由上式可确定未知量。 (三)管末A点的水锤求解 已知P点在时刻t的压强和流速,列出PA间的正向方程

水电站的水锤6

第十四章水电站的水锤 第七节机组转速变化的计算 一、调节保证计算的任务在水电站的外界负荷突然改变后,调速系统由于惯性作用,不可能将水轮机的导叶或针阀在瞬时内调整到与改变后的负荷相适应的开度,同时,由于水锤压强的 限制,这样做也是不允许的。在开度的调整过程中,水轮机的出力与外界的负荷是不平衡的,此不平衡的能量将转化为机组转速的变化。例如,在丢弃负荷时,开度调整过程中的剩留能量将转化为机组的动能而使转速升高;反之,在增加负荷时,调整过程中不足的能量将由机组的动能补充而使转速降低。机组的惯性一般用飞轮力矩表示,G为机组转动部分的重量,D为转动部分的惯性直径。在一定的情况下,水轮机的开度变化越缓慢(即调整的时间越长),机组的转速变化越大;在开度变化一定的情况下,机组的越大则转速变化越小。水锤压强的变化与转速变化相反,水轮机的开度变化越迅速,水锤压强越大。所以,转速变化和水锤压强两者是矛盾的。加大机组转速的变化不但要增加机组造价而且会影响供电质量;加大水锤压强不但会加大水电站过水系统的投资而且会恶化机组的调节稳定性。因此,对两者都必须加以限制,使之不超过某一允许值。 协调水锤和机组转速变化的计算一般统称为调节保证计算。调节保证计算的主要任务可概括为:?(1)根据水电站过水系统和水轮发电机组特性,合理地选择水轮机开度的调节时间和调节规律,使水锤压强和机组转速变化均在允许范围之内,并尽可能地减小水锤压强以降低工程投资。?(2)根据给定的机组和调节时间,计算转速变化,检验它是否在允许范围之内;或者相反,在给定转速变化和调节时间的情况下,计算必须的值。?(3)根据给定的调节时间和调节规律进行水锤计算,检验水锤压强是否在允许范围之内;或给定水锤压强,验算水电站有压过水系统是否需要设置调压室等平水设施。?调节时间直接影响机组的转速变化和水锤压强。调节规律对水锤压强的影响比对转速变化的影响更显著。合理的调节规律是指在某调节时间内使水锤压强最小而调速系统又能做到的导叶开赓变化规律。 调节保证计算往往要多次反复才能把调节时间和规律、转速变化、水锤压强调整到比较理想的情况。在计算中有时需要适当调整有压引水系统和机组的有关参数。?二、调节保证计算的内容 1.丢弃负荷情况(1)转速的最大升高值;?(2)压力管道和蜗壳内的最大压力升高值;

调保计算

1摘要 通过水轮机调节课程的学习,明确调保计算的任务,就是电站在运行过程中,常会由于各种事故,机组突然与系统解列,从而造成甩负荷。在甩负荷时,由于导叶迅速关闭,水轮机的流量会急剧变化,因此在水轮机过水系统内会产生水击, 调节保证计算就是在初步选定设计阶段计算出上述过程中最大的转速上升 max 及最大的压力上升值ζmaxc。调节保证计算一般应对两个工况进行,即计算额定水头和最大水头下甩全负荷的压力上升和转速上升,并取其大者。最终选定一个合理的 T,作为该电站的导叶关闭时间。 f Through turbine regulating course of study, clear the computing task, is the power station in the process of running, often due to accidents, suddenly and system solution, resulting in load rejection. During load rejection, because the guide vane quickly closed, turbine flow will change sharply, so the turbine will generate water hammer for water system, adjusting guarantee calculation is in preliminary design phase to calculate the above selected maximum speed rises and the maximum stress in the process of appreciation. Regulation guarantee calculation generally deal with the two conditions, namely the full load shedding is calculated under rated head and the maximum water head of pressure rise and speed up, and take its head. Finally selected a reasonable T, as the f guide vane closing time of the hydropower station. 关键词:水轮机调节调节保证计算甩负荷转速上升压力上升

导叶开启时间对水电站过渡过程的影响(1)解析

导叶开启时间对水电站过渡过程的影响(1) 摘要:针对国内外规范对导叶开启 时间的不同规定,结合理论推导和数值计算实例,分析了不同的导叶开启时间对水电站过渡过程的影响。实例研究结果表明,大波动过渡过程中的蜗壳动水压力、沿管道轴线的压力分布以及调压室阻抗孔口压差等参数均随导叶开启时间变化而变化。通过研究得到如下结论:国际电工技术委员会标准推荐的增负荷时间30~40s是合理的;在并入小网的水力干扰过渡过程中,需要将运行机组最大初始开度限制在最大临界开度之内,才能保证运行机组转速收敛于额定转速,以满足发电机和电网对调节系统的要求。 关键词:过渡过程导叶开启时间数值计算临界时间 前言 在水电站运行中,从空载增至全负荷的导叶开启时间,国内外规范有不同的规定:文献[1]中对调节系统的要求:导叶开度的全行程动作时间应符合设计规范,一般为10~40s。国际电工技术委员会iec(international electrotechnical commission)标准[2]则规定开启时间为20~80s,推荐值30~40s。上述规程标准给出的取值范围虽有重叠部分,但整体范围并不一致,而导叶开启时间的取值问题一直未进行深入的研究。本文将结合两机一洞常规水电站和抽水蓄能水电站两个代表性实例,探讨不同的导叶开启时间对水电站过渡过程的影响,寻找恰当的开启时间(直线开启规律),以满足发电机和电网对调节系统的要求。 1导叶开启时间对过渡过程的影响 水电站过渡过程涉及到大波动、小波动和水力干扰过渡过程三个方面。而在小波动过渡过程中,调速器将自动跟踪,机组不受导叶开启时间长短的影响。因此本文仅讨论导叶开启时间对大波动和水力干扰过渡过程的影响。 1.1导叶开启时间对大波动过渡过程的影响 在无穷大电网条件下,增负荷,机组转速不变,调速器将不参与调节,所以增负荷时间的长短将只对机组两个调保参数(蜗壳末端动水压力、尾水管进口断面压力)、管道沿程的压力分布、调压室涌浪水位及阻抗孔口压差等产生相应的影响。文献[3]给出了粗略估算水锤压力的计算公式:,式中、分别为压力管道水流惯性加速时间常数和导叶动作时间,、为水轮机在初始和终了时的相对流量值。由上式不难看出,在机组增负荷过程中,导叶开启越快,引起的

XX水电站设计调节保证计算毕业论文

XX水电站设计调节保证计算毕业论文 目录 摘要 (1) Abstract (2) 第1章基本资料 (3) 1.1地理位置 (3) 1.2流域概况 (3) 1.3水文 (3) 1.3.1气象特性 (3) 1.3.2径流 (4) 1.3.3洪水 (4) 1.3.4河流泥沙 (5) 1.4地形地质条件 (5) 1.5电站基本参数 (6) 1.5.1 电站动能参数 (6) 1.5.2 水库特性 (6) 1.5.3 泥沙特性 (7) 第2章水轮发电机组的选择 (8) 2.1机组台数的确定 (8) 2. 2水轮装置方式及水轮机型号的确定 (8) 2.3水轮机主要参数的确定 (9) 2.3.1确定水轮机的转轮直径 (9) 2.3.2效率修正值的计算 (9) 2.3.3确定水轮机的转速 (10) 2.3.4确定水轮机的吸出高 (10) 2.3.5水轮机的检验计算 (11) 2.4蜗壳和尾水管的选择计算 (12) 2.4.1蜗壳的水力计算及外轮廓的确定 (12) 2.4.2尾水管主要参数的选择 (14) 2.5发电机外形尺寸估算 (16) 2.5.1主要尺寸计算 (16) 2.5.2外形尺寸估算 (17) 2.6调速器和油压装置的型式及尺寸的确定 (18) 2.6.1判断调速器的型式 (19) 2.6.2接力器的选择 (19) 2.6.3主配压阀直径的选择 (20)

2.6.4油压装置选择 (20) 第3章电站枢纽布置 (22) 3.1电站厂房 (22) 2.2 开关站 (23) 2.3 引水系统 (23) 第4章引水系统设计 (24) 4.1引水线路初拟 (24)

4.2进水口设计 (25) 4.2.1进水口型式的选择 (25) 4.2.2有压进水口位置、高程的确定 (25) 4.2.3进水口尺寸的拟定 (26) 4.2.4进口设备 (27) 4.3引水隧洞设计 (28) 4.3.1有压引水隧洞断面形式及断面尺寸 (28) 4.3.2隧洞衬砌的主要类型选择 (29) 4.4压力管道的布置 (30) 4.4.1压力管道类型的选择 (30) 4.4.2压力管道引进及供水方式 (30) 4.4.3压力管道直径、管壁厚度及抗外压稳定的计算 (31) 4.4.4压力管道抗外压稳定校核 (32) 第5章水电站厂房设计 (33) 5.1主厂房主要尺寸的确定 (33) 5.1.1主厂房的长度计算 (33) 5.1.2主厂房的宽度计算 (35) 5.1.3主厂房的各层高程计算 (37) 5.2 副厂房布置 (41) 第6章调压室设计 (43) 6.1是否设置调压室判断 (43) 6.2调压室位置的选择 (43) 6.3调压室的布置方式与型式的选择 (44) 6.4调压室的水利计算 (44) 6.4.1调压室断面面积的计算 (44) 6.4.2调压室最高涌波水位计算 (46) 6.4.3计算调压室最低涌波水位计算 (46) 第7章调节保证计算 (48) 7.1调保计算目的 (48) 7.2调节保证计算的容 (48) 7.3调节保证计算的标准 (48) 7.3.1转速变化率容许值 (48) 7.3.2水击压力容许值 (49) 7.4已知计算参数 (49) 7.5调节保证计算的过程 (50) 7.5.1在设计水头下甩全负荷的调节保证计算 (50) 7.5.2在最大水头下甩全负荷的调节保证计算 (55) 谢辞 (59) 参考资料 (60) 外文文献 (62) 附录 (71)

水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算 本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。 第一节概述 一、水电站的不稳定工况 由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 丢弃负荷:剩余能量→机组转动部分动能→机组转速升高 增加负荷:与丢弃负荷相反。 (2) 在有压引水管道中发生“水锤”现象 管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。 导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。 导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。 二、调节保证计算的任务 (一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动; (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算 水锤和机组转速变化的计算,一般称为调节保证计算。 1.调节保证计算的任务: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据; (2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。 (3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。 (4) 研究减小水锤压强及机组转速变化的措施。

武都水库工程水轮机过渡过程计算

武都水库工程水电站水轮机过渡过程计算成果 1.概述 根据技术协议的要求,完成所要求计算的过渡过程计算工况,并提出相应的初步计算成果。 2.计算条件 (1)上游水库 校核洪水位659.43m 设计洪水位656.96m 正常蓄水位658.00m 死水位624.00m (2) 下游尾水位 校核洪水位581.368m 设计洪水位580.126m 正常尾水位572.5m (3) 水轮机净水头 最大水头85.12m 加权平均水头68.09m 额定水头64.00m 最小水头49.35m (4) 流量 多年平均流量142m3/s 电站引用流量259.2m3/s 2.3 布置型式 武都水库水电站位于四川省江油市武都镇境内,电站厂房距江油市约20 km。该电站是涪江上游干流最后一级电站,具有不完全年调节性能,承担部分调峰的中型电站工程。该工程总库容5.72亿m3,额定水头64m,装机容量3×50MW。电站引水发电系统布置情况详见招标文件第8章引水系统布置图。 (5) 水轮发电机组基本参数 水轮机型号HLD267-LJ-320

转轮名义直径 3.2m 水轮机额定出力51.5MW 额定转速214.3r/min 飞逸转速465r/min 发电机GD23750t.m2 水轮机安装高程568.956m 水轮机导叶个数24 3.计算要求 机组最大转速升高率小于55%,蜗壳最大压力升高率小于50%。若两个参数不能同时满足,应推荐合适的参数值。尾水管内的最大真空度不宜大于8m水柱。 4.计算工况 根据武都水库工程电站引水系统的布置方式,水库和发电机组的运行调度情况,以下几种工况可以求出蜗壳最高压力、机组速率最高上升率和尾水管真空值,所选工况: A)额定水头64m条件下,3台机同时甩全负荷3×51.54MW。 B)最大水头85.12.m条件下,3台机甩全负荷3×51.54MW。 C)机组运行水头68.09.m条件下,1台机组带最大负荷56.7MW。 5.计算结果 所述工况的调节保证计算结果,汇总列于表5-1。 表5-1 调节保证计算结果 6.结论 1)武都水库工程电站采用的引水系统,当机组GD2不小于3750t.m2,导叶关闭规律采用图(一)的关闭规律,机组速率上升小于55.0%;蜗壳最高压力升高率小于50.0%,尾水管真空度不大于8.0m。

水电站调节保证计算资料

第五章 水电站调节保证计算 5.1调节保证计算的目的、任务 (1)调保计算目的、任务 在水电站运行中,负荷与机组出力达到平衡使机组转速稳定。但由于各种突发事故,造成机组突然与系统解列,机组甩掉部分,或者全部负荷。在甩负荷时,由于导叶迅速的关闭,水轮机的流量急剧变化,因此在水轮机过水系统内产生水击。调保计算就是在电站初步设计阶段计算出上述过程中的最大转速上升及最大压力上升值。另外,调保计算 的目的是使压力升高和转速升高不超过允许值,确保电站水机系统安全稳定运行。 调节保证计算一般应对两个工况进行,即计算设计水头和最大水头甩全负荷的压力上升和速率上升,并取其较大者。一般在前者发生最大速率升高,在后者发生最大压力升高。 (2)灯泡贯流式机组过渡过程的特点 灯泡水轮发电机组的调节过渡过程与常规机组相比有一些不同,一般轴流机组惯性力矩主要取决于发电机的飞轮力矩,对于灯泡机组来说,由于受灯泡比的限制,发电机直径约为立式机组的3/5,其惯性力矩仅相当于立式机组的1/10左右,因而,水轮机惯性和水体附加惯性力矩所占的比重应大大增加,而水体附加惯性力矩则随叶片安放角的增加而增加,所以对灯泡机组的过渡过程分析必须考虑其影响。 (3)调保计算标准 根据/51862004DL T -《水力发电厂机电设计规范》,水轮机在机组甩负荷时 的最大转速升高率max β宜小于60%;导水叶前最大压力上升率宜为70%100%~。根据有关已建电站试验证明,采用导叶分段关闭规律, 8m 尾水管的真空度不大于水柱。 (4)已知计算参数 装机容量:418.5?MW

水头参数:max 6.8H =m , 5.82Hav =m , 5.3r H =m ,5.1min =H m 水轮机参数:水轮机型号:()1102730GZ WP --,68.2/min r n r =, 3398.6/r Q m s =, 尾水管参数:尾水管进口直径3==7.1D d (m) 尾水管直锥段长度:211=2.0=2.07.3=14.6L D ?(m) 尾水管直锥段直径:41=1.428=1.4287.3=10.42D D ?(m) 尾水管混合过渡段长度:221=2.7=2.77.3=19.71L D ?(m) 尾水管混合过渡段高度:1h=1.453=1.4537.3=10.61D ?(m) 尾水管混合过渡段宽度:1B=2.04=2.047.3=14.892D ?(m) 机组转动部分飞轮力矩()3t m ?: 查《灯泡贯流式水电站》155P :22 22GD GD D D G G =++水体附加发电机水轮机 发电机飞轮力矩23i t KD l GD =发电机 式中:K -经验系数, 查《灯泡贯流式水电站》126P ,表6-10: 68.2/min r n r =,=4.7~5.1K ,取=5K 。 即: 332=57.14 1.02=1856.4i t K D D G l =??发电机()3t m ? 取: 2=850GD 水轮机()3t m ? 02441= sin 8 B GD D L π γα水体-d () (水轮机转轮区水体) 式中:γ-水体比重; 0L -叶片弦片长; B d -轮毂直径,之前取轮毂比为0.33,即1=/0.33B D d ,故 =0.337.3=2.41B d ?m : αθ?=+,θo 为桨叶角为时0的叶片安放角;?为桨叶角度;

YMS水电站水力过渡过程计算与分析

4第39卷第6期 2016年06月 水电姑机电技术 Mechanical & Electrical Technique of Hydropower Station Vol.39 No.6 Jun.2016 YM S水电站水力过渡过程计算与分析 刘峰,安刚 (新疆水利水电勘测设计研究院,新疆乌鲁木齐830000) 摘要:通过对YM S水电站水力过渡过程计算分析,介绍了各个系统的设计思路和布置方式,希望对国内外同类型水电站设计提供一定的借鉴参考。 关键词:水电站;调节保证计算;调压阀;气垫式调压室 中图分类号:TV136 文献标识码:A文章编号=1672-5387(2016)06-0004-03 D0I:10.13599/https://www.wendangku.net/doc/654233145.html,ki.11-5130.2016.06.002 1概述 YMS水电站工程位于新疆维吾尔自治区阿克 苏地区,工程为引水式电站,由进水闸、引水渠道、压 力前池、压力钢管、厂房及尾水渠等主要建筑物组 成。电站最大水头210.3 m,加权平均水头201.3 m,额定水头199.6 m,最小水头199.6 m,设计弓丨用流量 140 m3/s,厂房内安装3台70 MW和1台34 MW的 立轴混流式水轮发电机组,总容量为244 MW。 2无调保措施下的计算 2.1引水系统布置 该电站是一座长压力引水系统电站,压力管道 总长S L为2332.43 m。发电弓|7乂系统由2条压力 输水管路组成,其中1号输水主管(04 600 mm)经 岔管分为2条支管分别接入2台70 MW机组,2号 输水主管(CM 100 mm)经岔管分为2条支管分另!j接 入1台70 MW机组和1台34 MW机组。 2.2调节保证计算控制标准 本电站水头范围为199.6 ~ 210.3 m,在电网中 承担基荷运行。结合地区电网容量及特点,按照《水 力发电厂机电设计规范》的要求,机组甩负荷时的最 大转速升高率保证值宜小于60 %,蜗壳最大压力升 高率保证倌宜为25 %~30 %.尾水管进口断面的最 大真空保证值不应大于0.08 MPa0 考虑到最大转速升高率与最大压力升高率计算 值存在误差,计算值中没包括甩负荷时蜗壳中压力 脉动,因此其保证值应按计算值并留有适当的裕度 来确定,本电站调节保证计算的设计标准如下: 机组最大转速升高率矣50 %; 蜗壳最大压力升高率矣25 %(263 m); 尾水管进口最大真空彡6_3 m。 2.3无调保措施下的过渡过程数值计算 由于电站尾水道很短,尾水管进口最小压力容 易满足,而引水道相对较长,故主要针对蜗壳末端压 力和转速控制值选取控制工况。计算中的机组关闭 规律初步选用一段直线关闭,70 MW机组GD2暂取 3 600 t.m2,34 M W机组 GD2暂取 780 t.m2,计算结 果见下页表1。 由表1可知,在不设置调保措施的前提下,2个 7jC力单元机组关闭规律在11~15 S选取时,蜗壳末 端最大压力及机组最大转速上升率均大于相应的控 制标准,不能满足调保控制要求。因此,在现有的引 水系统下,单纯采用调整关闭规律的方法是不能够 解决水锤压力与机组转速上升之间的矛盾,应在引 水发电系统上设置调保措施。 3设置调压阀措施下的调保计算 为保证电站安全运行,需采用设置调压井或调 压阀等措施来解决引水系统水锤压力和转速上升之 间的矛盾。该电站属于中型电站,设置调压井需要较 大投资和较长工期,且电站由于自身的地形、地质条 件的限制,难于建造常规调压井。故从技术经济层面 考虑,推荐采用调压阀方案。 理论上调压阀必须与导叶联动,但一旦联动装收稿日期:2016-02-26 作者简介:刘峰(1981-),男,工程师,长期从事水电站水力机械设计工作。

停泵水锤的计算方法详解

停泵水锤计算及其防护措施 停泵水锤是水锤现象中的一种,是指水泵机组因突然断电或其他原因而造成的开阀状态下突然停车时,在水泵及管路系统中,因流速突然变化而引起的一系列急剧的压力交替升降的水力冲击现象。一般情况下停泵水锤最为严重,其对泵房和管路的安全有极大的威胁,国内有几座水泵房曾发生停泵水锤而导致泵房淹没或管路破裂的重大事故。 停泵水锤值的大小与泵房中水泵和输水管路的具体情况有关。在泵房和输水管路设计时应考虑可能发生的水锤情况,并采取相应的防范措施避免水锤的发生,或将水锤的影响控制在允许范围内。我院在综合国内外关于水锤的最新科研成果并结合多年工程实践的经验,以特征线法为基础开发了水锤计算程序。这一程序可较好地模拟各种工况条件下水泵及输水管路系统的水锤状况,为高扬程长距离输水工程提供设计依据。 1 停泵水锤的计算原理 停泵水锤的计算有多种方法:图解法、数解法和电算法。其基本原理是按照弹性水柱理论,建立水锤过程的运动方程和连续方程,这两个方程是双曲线族偏微分方程。 运动方程式为:

连续方程式为: 式中H ——管中某点的水头 V——管内流速 a——水锤波传播速度 x——管路中某点坐标 g——重力加速度 t——时间 f——管路摩阻系数 D——管径 通过简化求解得到水锤分析计算的最重要的基础方程: H-H0=F(t-x/a)+F(t+x/a) (3) V-V0=g/a×F(t-x/a)-g/a×F(t+x/a) (4) 式中F(t-x/a)——直接波 F(t+x/a)——反射波 在波动学中,直接波和反射波的传播在坐标轴(H,V)中的表现形式为射线,即特征线。它表示管路中某两点处在水锤过程中各自相应时刻的水头H与流速V之间的相互关系。为了方便计算机的计算,将上述方程组变

水力-机械过渡过程计算分析总结

大波动过渡过程计算分析总结水电站输水系统和机组过渡过程的计算分析具有重要的意义,该计算分析对于机组参数GD2的选择、导叶关闭规律的确定、调压室参数的选择和管道线路的布置等方面都有重要的指导作用。 水电站过渡过程计算分析由大波动过渡过程计算分析和小波动过渡过程计算分析两部分组成。以下对大波动过渡过程计算分析进行总结说明。 大波动过渡过程计算分析主要包含以下几个部分:①该类系统数学计算模型的建立和求解;②仿真计算程序的编制;③具体输水系统有关原始数据的准备(包含实际系统概化问题);④各种大波动控制工况的计算分析;⑤《水力过渡过程计算分析报告》的撰写。一.数学计算模型的建立 水电站输水系统数学模型由输水道数学模型和边界数学模型两部分构成。 1.输水道数学模型 目前,输水道数学模型是根据一元总流流体的运动方程和连续方程,建立有压管道水力瞬变的弹性水锤基本方程组,然后利用特征线法对方程组进行简化、求解(这里暂不讨论无压输水道); 由于在建立和求解模型的过程中,存在一些简化和假定条件,因此存在以下几个值得研究的问题: ①现模型采用一元流假定,该假定在某些情况下不适用,应该改

用“二元流”或“三元流”原理构造数模。 ②该模型要求“同一段管道为单特性管”,因此须对非单特性管进行合理概化。 ③该模型中管道阻力系数采用的是阀门关闭前稳态流动的值,实际应该采用动态的阻力系数。 ④计算时间步长和波速调整的优化。 ⑤含气水锤模型的建立。 2.边界数学模型 不同边界具有不同的数学模型,目前基本边界的数学模型已较成熟,满足仿真计算精度要求。 3.数模的求解方法 有压输水道数学模型采用特征线法求解;简单边界数学模型(如一元非线性代数方程)采用改进的不动点迭代法求解;复杂边界数学模型(如二元非线性代数方程组)采用牛顿-莱甫生法求解。二.仿真计算程序的编制 利用FORTRAN语言将已建立的数学模型和所选的求解方法编制成仿真计算程序。同时,须注意以下几个问题: ①水轮机特性曲线的变换(目前采用改进的Suter法)。 ②水轮机特性曲线数据的插值方法。 ③计算过程中小开度工况的处理(目前采用数学模型处理)。 ④管网系统初始恒定流参数的确定。 三.原始数据的准备

水电站的水击及调节保证计算

第四章水电站的水击及调节保证 计算 本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。 第一节概述 一、水电站的不稳定工况 由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 丢弃负荷:剩余能量→机组转动部分动能→机组转速升高 增加负荷:与丢弃负荷相反。 (2) 在有压引水管道中发生“水击”现象 管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。 导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。 导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。 二、调节保证计算的任务 (一) 水击的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动; (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算 水击和机组转速变化的计算,一般称为调节保证计算。 1.调节保证计算的任务: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力

管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据; (2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。 (3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。 (4) 研究减小水击压强及机组转速变化的措施。 2.调节保证计算的目的 正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。 第二节水击现象及其传播速度 1、一、水击现象 1.定义 在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。 2.水击特性 (1) 水击压力实际上是由于水流速度变化而产生的惯性力。当突然启闭阀门时,由于启闭时间短、流量变化快,因而水击压力往往较大,而且整个变化过程是较快的。 (2) 由于管壁具有弹性和水体的压缩性,水击压力将以弹性波的形式沿管道传播。 注:水击波在管中传播一个来回的时间t r=2L/a,称之为“相”,两个相为一个周期2t r=T (3) 水击波同其它弹性波一样,在波的传播过程中,在外部条件发生变化处(即边界处)均要发生波的反射。其反射特性(指反射波的数值及方向)决定于边界处的物理特性。 二、水击波的传播速度

水锤计算例题9-2

天津大学,水电站249页水锤压力例题9-2 某水电站压力管道长L=400m ,直接自水库引水,上下游水头差120m ,水击波速度a=1000m/s 。阀门全部开启(τ0=1)时,管道流速Vmax=4.5m/s 。(1)设阀门在0.5s 中全部关闭,求阀门断面最大水击压力。(2)设阀门按线性规律关闭,有效关闭时间Ts=4.8s 。①若阀门由全开到全关,求阀门断面最大水击压力。②若阀门由部分开启(τ0)到全关,求阀门断面最大水击压力。 解: 1判断水击类型 计算相长, s a L t r 8.01000 40022=?== (1)阀门在0.5s 中全部关闭, a L t 2<,发生直接水锤,)(4595.48 .910000m v g a H =?==? (2)阀门按线性规律关闭 ①有效关闭时间Ts=4.8s ,阀门由全开到全关,a L t 2> =0.8s ,发生间接水锤。 ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ),a L t 2>=0.8s ,发生间接水锤。 2计算管道特性常数ρ、σ 91.1120 8.925.4100020max =???==gH av ρ 32.08.48.95.44000max =??== s T gH Lv σ 3判断何种间接水锤、计算水锤压力值 ①有效关闭时间Ts=4.8s ,阀门由全开到全关,ρτ0=1.91×1=1.91>1,为极限水锤。 采用表9-1中简化公式 38.032 .0232.0222=-?=-=σσξA m ; )(6.4512038.00m H H A m =?==?ξ ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ) ρτ0=1.91×0.5=0.96<1,按照第一相水锤近似公式 32.05.091.1132.021201-?+?=-+=σ ρτσ ξA =0.39 )(8.4612039.001m H H A =?==?ξ

导叶开启时间对水电站过渡过程-影响解析

导叶开启时间对水电站过渡过程-影响 摘要:针对国内外规范对导叶开启时间的不同规定,结合理论推导和数值计算实例,分析了不同的导叶开启时间对水电站过渡过程的影响。实例研究结果表明,大波动过渡过程中的蜗壳动水压力、沿管道轴线的压力分布以及调压室阻抗孔口压差等参数均随导叶开启时间变化而变化。通过研究得到如下结论:国际电工技术委员会标准推荐的增负荷时间30~40s是合理的;在并入小网的水力干扰过渡过程中,需要将运行机组最大初始开度限制在最大临界开度之内,才能保证运行机组转速收敛于额定转速,以满足发电机和电网对调节系统的要求。 关键词:过渡过程导叶开启时间数值计算临界时间 前言 在水电站运行中,从空载增至全负荷的导叶开启时间,国内外规范有不同的规定:文献[1]中对调节系统的要求:导叶开度的全行程动作时间应符合设计规范,一般为10~40s。国际电工技术委员会IEC(International Electrotechnical Commission)标准[2]则规定开启时间为20~80s,推荐值30~40s。上述规程标准给出的取值范围虽有重叠部分,但整体范围并不一致,而导叶开启时间的取值问题一直未进行深入的研究。本文将结合两机一洞常规水电站和抽水蓄能水电站两个代表性实例,探讨不同的导叶开启时间对水电站过渡过程的影响,寻找恰当的开启时间(直线开启规律),以满足发电机和电网对调节系统的要求。 1导叶开启时间对过渡过程的影响 水电站过渡过程涉及到大波动、小波动和水力干扰过渡过程三个方面。而在小波动过渡过程中,调速器将自动跟踪,机组不受导叶开启时间长短的影响。因此本文仅讨论导叶开启时间对大波动和水力干扰过渡过程的影响。 1.1导叶开启时间对大波动过渡过程的影响 在无穷大电网条件下,增负荷,机组转速不变,调速器将不参与调节,所以增负荷时间的长短将只对机组两个调保参数(蜗壳末端动水压力、尾水管进口断面压力)、管道沿程的压力分布、调压室涌浪水位及阻抗孔口压差等产生

水电站复习重点

机密等级:★★ 06 级水利水电工程专业《水电站》复习重点 名词解释 1.设计保证率:水电站的设计保证率是指水电站正常发电的保证程度。一般用正常发电总时段与计 算期总时段壁纸的百分数表示。 2.★保证出力:指水电站相应于设计保证率的枯水时段发电的平均出力。 3.★多点平均发电量:水电站隔年发电量的平均值。 4.★最优工况:即效率最高工矿,水轮机达到运行效率最高时的工况。在水轮机模型综合特性曲线 上最内图等效率曲线中面积的集合中心效率最高。该店相应的工况即为最优工况。 5.限制工况:用于限制水轮机在增大流量是,由于效率过低反而会发生出力下降的情况,或是限制 影响最大出力的因素所规定的相应工况。 6.吸出高:水轮机的吸出高Hs。从理论上讲应是转轮中压力最低位置到下游面得垂直高度,但在 不同工况时次压力最低位置亦有所不同。 7.★单位参数:通常采用将模型试验的成果都化为D1m=1m,H1m=1m标准情况下的参数,次参数称 为单位参数。分别用表示。 8.比转速:水轮机在工作水头H=1m,出力N=1kw是所具有的转速称为水轮机的比转速。 9.自动调节渠道:渠道的流量和水位随着水电站负荷的变化而自动变化。 10.非自动调节渠道:为了有效的控制渠道末端的水位,在渠道末端的压力前池处设置了溢流堰,这 样的渠道称为非自动调节渠道。 11.★水击:在水电站中,由于负荷的突然变化,因此而骤然启闭水轮机导叶和阀门,将导致管内水 流流速的变化,与此同时水流动量也将发生相应的变化,从而使内水压力急剧升高或降低,这种现象叫水击。 12.★调节保证计算:水轮发电机组负荷在较大范围内突然变化的情况下,考虑到调速器的影响以进

水锤计算

第九章水电站的水锤与调节保证计算 第一节概述 一、水电站的不稳定工况 机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。 在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。反之增加负荷时机组转速降低。 (2) 在有压引水管道中发生“水锤”现象 当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。无压引水系统中产生的水位波动计算在第八章已介绍。 二、调节保证计算的任务 水锤压力和机组转速变化的计算,一般称为调节保证计算。调节保证计算的任务及目的是: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水锤计算方法

第一节概述 一、水电站的不稳定工况 机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。 在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。其主要表现为: (1) 引起机组转速的较大变化 由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。反之增加负荷时机组转速降低。 (2) 在有压引水管道中发生“水锤”现象 当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。 (3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。无压引水系统中产生的水位波动计算在第八章已介绍。 二、调节保证计算的任务 水锤压力和机组转速变化的计算,一般称为调节保证计算。调节保证计算的任务及目的是: (1) 计算有压引水系统的最大和最小内水压力。最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。 (2) 计算丢弃负荷和增加负荷时的机组转速变化率,并检验其是否在允许范围内。 (3) 选择水轮机调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

相关文档
相关文档 最新文档