文档库 最新最全的文档下载
当前位置:文档库 › 椭圆专项练习(提高版)

椭圆专项练习(提高版)

椭圆专项练习(提高版)
椭圆专项练习(提高版)

椭圆专题

编辑:秋耳(南京金石可镂教育培训中心QQ:2832787514)

1、给定椭圆22

22:1(0)x y C a b a b

+=>>,称圆心在原点O ,半径为22a b +的圆是椭圆C的

“准圆”.若椭圆C 的一个焦点为(2,0)F ,其短轴上的一个端点到F的距离为3. (I )求椭圆C的方程和其“准圆”方程;

(II )点P 是椭圆C 的“准圆”上的一个动点,过点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,且12,l l 分别交其“准圆”于点M ,N .

(1)当P 为“准圆”与y 轴正半轴的交点时,求12,l l 的方程; (2)求证:|MN |为定值.

解:(I )因为3,2==a c ,所以1=b 所以椭圆的方程为2

213

x y +=, 准圆的方程为422=+y x .

(II )(1)因为准圆422=+y x 与y 轴正半轴的交点为P (0,2), 设过点P (0,2),且与椭圆有一个公共点的直线为2+=kx y ,

所以22

213

y kx x y =+???+=??,消去y ,得到0912)31(2

2=+++kx x k , 因为椭圆与2+=kx y 只有一个公共点,

所以22

14449(13)0k k ?=-?+= ,解得1±=k .

所以12,l l 方程为2,2+-=+=x y x y .

(2)①当12,l l 中有一条无斜率时,不妨设1l 无斜率, 因为1l 与椭圆只有一个公共点,则其方程为3=x 或3-=x ,

当1l 方程为3=

x 时,此时1l 与准圆交于点)1,3(),1,3(-,

此时经过点)1,3((或)1,3(-)且与椭圆只有一个公共点的直线是

1=y (或1-=y ),即2l 为1=y (或1-=y ),显然直线12,l l 垂直;

同理可证 1l 方程为3-=x 时,直线12,l l 垂直. ② 当12,l l 都有斜率时,设点),(00y x P ,其中42

02

0=+y x ,

设经过点),(00y x P 与椭圆只有一个公共点的直线为00)(y x x t y +-=,

则0022()13

y tx y tx x y =+-???+=??,消去y 得到03))((32002=--++tx y tx x ,

即03)(3)(6)31(2000022=--+-++tx y x tx y t x t ,

0]3)(3)[31(4)](6[2002200=--+?--=?tx y t tx y t ,

经过化简得到:012)3(2

000220=-++-y t y x t x ,

因为42020=+y x ,所以有0)3(2)3(2

000220=-++-x t y x t x ,

设12,l l 的斜率分别为21,t t ,因为12,l l 与椭圆都只有一个公共点,[来源:学科网] 所以21,t t 满足上述方程0)3(2)3(2

000220=-++-x t y x t x , 所以121-=?t t ,即12,l l 垂直.

综合①②知:因为12,l l 经过点),(00y x P ,又分别交其准圆于点M ,N ,且12,l l 垂直, 所以线段MN 为准圆42

2

=+y x 的直径,所以|MN|=4. 2、已知椭圆的中心在原点O ,短轴长为2

2,右准线交x 轴于点A ,右焦点为F ,且

2OF FA =,过点A 的直线l 交椭圆于,P Q 两点

(1)求椭圆的方程 (2)若

0OP OQ ?=,求直线l 的方程

(3)若点Q 关于x 轴的对称点为Q ',证明:直线PQ '过定点

(4)求

OPQ 的最大面积

【解】(1))0,3(,6,2,2A a b c === 椭圆方程为:12

6x 2

2=+y (2)设直线l 的方程为:ky x =-3,且设)()(2211,x ,,y Q y x P ,

联立22

16

23x y x ky ?+=???-=? 消去x ,得:()

22

3630k y ky +++=

121222

63,33k y y y y k k -+==++

从而求得:

2121222

18627,33k x x x x k k -++==++ 由

0OP OQ ?= 得 :12120x x y y += ,求得 5k =±

所以l 的方程为:

530x y ±-=

(3)有已知及(2)知:

()

22,Q x y '-。设直线PQ '与x 轴交于点(),0M m

则有121221

1

212y y x y x y m x m x m y y -+=?=--+

由(2)可知:1

1223

3x ky x ky =+=+

所以 ()121212

1212

2323

ky y y y ky y m y y y y ++==+++

又由(2)知:12121

2y y y y k =-

+ , 所以 132m =-+= ,即

(

)2,0M

故直线PQ '过定点()2,0,即为椭圆的右焦点

(4)由(1)得:

2

3

02k ?>?>

2

2122223

3613612222333

OPQ

k k S

OA y y k k k -

-??=-=-= ?+++??

()

2

302

k t

t -=>, 则

36

392OPQ

S

t t =

≤+

当且仅当33

2t =±

,即6k =±时,取“=”

所以

OPQ ?的最大面积为3

3、已知椭圆()22

2

210x y a b a b +=>>的两个焦点分别为()1,0F c -,()2,0F c ,在

椭圆上存在一点P ,使得

120PF PF ?=

(1)求椭圆离心率e 的取值范围 (2)当离心率e 取最小值时,12PF F 的面积为16,设,A B 是椭圆上两动点,

若线段AB

的垂直平分线恒过定点(0,3)Q -。①求椭圆的方程;②求直线AB 的斜率k 的取值范

围。

【解】(1)设椭圆短轴的端点为B,由已知及椭圆的性质得:0

121290F BF F PF ∠≥∠=

所以0

245OBF ∠≥,从而

2tan 1OBF ∠≥,即22

1c

c b b ≥?≥,又

222b a c =-,

所以222c a c ≥-,得:2212c a ≥,所以

2,12e ??∈????。 (2)①当e 取得最小值

2

2

时,P 在短轴顶点,

所以

12

16PF F S bc ?==, 又2222,2c a b c a ==+,

故求得:42,4,4a b c ===。 所以椭圆方程为:22

1

3216x y +=

②【法一:点差法】设

()()

1122,,,A x y B x y ,设AB 的中点为

()

00,M x y ,

()()()() 22

11

12121212 22

22

1

32160

3216

1

3216

x y

x x x x y y y y

x y

?

+=

?+-+-

?

?+=?

?+=

??

()

1212

1212

2

y y x x

x x y y

-+

?=-

-+

2

x

k

y

=-

由已知AB 的垂直平分线方程为:

1

3

y x

k

=--

易知点

()

00

,

M x y

在该直线上,所以

00

1

3

y x

k

=--

由①,②可求得:

23

3

x k

y

?=-

?

?

=

??

()

23,3

M k

-

由已知:点

M在椭圆内部,

所以()()

22

2337878

1

321666 k

k

-

+

【法二:联立方程法】设

()() 1122

,,,

A x y

B x y

设直线AB的方程为y kx b

=+

AB 的垂直平分线方程为:

1

3

y x

k

=--

联立

22

1

3216

y kx b

x y

=+

?

?

?

+=

??

y

去得:

()222

1242320

k x kbx b

+++-=

则有

()()

2222

164122320

k b k b

?=-+->

()

22

1612

b k

<+

又有:

122

4

12

kb

x x

k

-

+=

+从而122

2

12

b

y y

k

+=

+

所以AB的中点为22

2

,

1212

kb b

M

k k

-

??

?

++

??。又M在AB的垂直平分线上,

所以

22

12

3

1212

b kb

k k k

-

??

=-?-

?

++

??,即

()2

312

b k

=+

将②代人①求得:

7878

66

k

-<<

椭圆与双曲线综合练习题(培优专题练习)

椭圆与双曲线综合练习题 1.已知椭圆+=1(a >b >0)的离心率是,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为( ) A . B . - C . D . - 2. 若点P 为共焦点的椭圆1C 和双曲线2C 的一个交点,1F 、2F 分别是它们的左右焦点.设椭圆离心率为1e ,双曲线离心率为2e ,若021=?PF PF , ) A.4 B. 3 C. 2 D. 1 4.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A . (0,] B . (0,] C . [,1) D . [,1) 5.已知为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是( ) A. B. C. D. 6.椭圆C :+=1(a >b >0) 的右焦点为F ,椭圆C 与x 轴正半轴交于A 点,与y 轴正半轴交于B (0,2),且·=4+4,则椭圆C 的方程为( )A .+=1 B .+=1 C .+=1 D .+=1 7.过椭圆C :+y 2=1的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于点M ,若 =λ1,=λ2,则λ1+λ2等于( )A . 10 B . 5 C . -5 D . -10 8. 设F 1,F 2分别为双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0 B .3x +5y =0 C .5x ±4y =0 D .4x ±3y =0 9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +(a >0),则点P 的轨迹是( ) A . 椭圆 B . 线段 C . 不存在 D . 椭圆或线段 10.已知F 1,F 2是椭圆+=1(a >b >0)的左,右焦点,点P 是椭圆上的点,I 是△F 1PF 2内切圆的圆心,直线PI 交x 轴于点M ,则|PI |∶|IM |的值为( ) A . B . C . D . 11.已知双曲线-=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个

2021高二数学寒假作业同步练习题:椭圆小题专项练习

专题04 椭圆小题专项练习 一、巩固基础知识 1.若方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )。 A 、)10(, B 、)1()10(∞+,, C 、)0(∞+, D 、)1(∞+, 【答案】A 【解析】22 2=+ky x 化为方程12222=+k y x ,焦点在y 轴上则22>k ,解得10<>b a )的右焦点为)03(,F ,过点F 的直线交C 于A 、B 两点,若AB 的中点坐标为)11(-,,则C 的方程为( )。 A 、19 182 2=+y x B 、118 272 2=+y x C 、127 362 2=+y x D 、136 452 2=+y x

【答案】A 【解析】21310122=---==a b k AB ,又9222==-c b a ,则222b a =,解得92=b ,182=a ,故选A 。 4.焦点在x 轴上的椭圆的方程为11 422 2=++a y a x (0>a ),则它的离心率e 的取值范围为( )。 A 、]410(, B 、]2 1 0(, C 、]2 20(, D 、]2 141[, 【答案】C 【解析】142+>a a ,解得3232+<<-a , ]210()1(41141122 ,∈+-=+-=a a a a e ,则]220(,∈e ,故选C 。 5.已知1F 、2F 是椭圆164 1002 2=+y x 上的两个焦点,P 是椭圆上一点,且21PF PF ⊥,则21PF F ?的面积为 。 【答案】64 【解析】642 tan 221=θ?=?b S PF F 。 6.已知椭圆C :122 22=+b y a x (0>>b a )的左右焦点分别1F 、2F ,焦距为c 2,若直线)(3c x y +=与椭圆C 的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆C 的离心率为 。 【答案】13- 【解析】直线)(3c x y +=过点1F ,且3tan 21=∠=F MF k ,∴ 6021=∠F MF , ∴ 3012=∠F MF ,∴ 9012=∠MF F ,∴21MF MF ⊥, 在21F MF Rt ?中,c MF =||1,c MF 3||2=, ∴该椭圆的离心率133222-=+==c c c a c e 。 7.设AB 是椭圆E 的长轴,点C 在椭圆E 上,且4 π= ∠CBA ,若4||=AB ,2||=BC ,则椭圆E 的两个焦点之间的距离为 。

椭圆 专项训练

圆锥曲线 椭圆 专项训练 【例题精选】: 例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; (3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。 例5 过椭圆14 16 2 2 =+ y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线 方程。 小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。 例6 C y x B A 的两个顶点,是椭圆 、125 16 )5,0()0,4(2 2 =+ 是 椭圆在第一象限内部分上的一点,求?ABC 面积的最大值。 小结:已知椭圆的方程求最值或求范围,要用不等式的均值 定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。 【专项训练】: 一、 选择题: 1.椭圆6322 2 =+y x 的焦距是 ( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点) 23,25( -,则椭圆方程是( ) A . 14 8 2 2 =+ x y B . 16 10 2 2 =+ x y C . 18 4 2 2 =+ x y D .16 10 2 2 =+ y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的

圆和椭圆练习题(综合)

一、选择题(本题共12道小题,每小题5分,共60分) 1.方程x 2+ y 2+ ax + 2ay + 2a 2+ a — 1 = 0表示圆,贝V a 的取值范围是( ) 2 B . — — 3 2 D . — 2

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

椭圆练习题大题含详细答案

高中椭圆练习题 一、选择题: 1.下列方程表示椭圆的是() A.22 199x y += B.2228x y --=- C. 22 1259 x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D.不能确定 3.已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为() A.( B.(0, C.(0,3)± D.(3,0)± 4.椭圆2222 222222 222 11()x y x y a b k a b a k b k +=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线 D .有相同的焦点 5.已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是() A.3 B.2 C.3 D.6 6.如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 7.“m>n>0”是“方程2 2 1mx ny +=表示焦点在y 轴上的椭圆的”() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的 3 2 倍,则椭圆的焦距是() B.4 C.6 D.

2 F C c D 1 F 9.关于曲线的对称性的论述正确的是() A.方程2 2 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程3 38x y -=的曲线关于原点对称 10.方程 22 22 1x y ka kb +=(a >b >0,k >0且k ≠1)与方程22 221x y a b +=(a >b >0)表示的椭圆( ). A.有相同的离心率;B.有共同的焦点; C.有等长的短轴.长轴; D.有相同的顶点. 第11题 二、填空题:(本大题共4小题,共20分.) 11.(6分)已知椭圆的方程为: 22 164100 x y +=,则a=___,b=____,c=____, 焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦, (如图)则?2F CD 的周长为________. 12.(6分)椭圆2 2 1625400x y +=的长轴长为____,短轴长为____, 焦点坐标为 四个顶点坐标分别为___ , 离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆: (1)①2 2 9436x y += 与 ② 22 11216 x y += ,哪一个更圆 (2)① 22 1610 x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列, 则该椭圆的离心率是

(完整word版)高中椭圆基础知识专题练习题(有答案)

一、选择题: 1.下列方程表示椭圆的是() A. 22199 x y += B.22 28x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定 3.已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为() A.( B.(0, C.(0,3)± D.(3,0)± 4.椭圆2222 222222 222 11()x y x y a b k a b a k b k +=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线 D .有相同的焦点 5.已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是() A.3 B.2 C.3 D.6 6.如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 7.“m>n>0”是“方程2 2 1mx ny +=表示焦点在y 轴上的椭圆的”() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的 3 2 倍,则椭圆的焦距是() B.4 C.6 D.9.关于曲线的对称性的论述正确的是() A.方程2 2 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程33 8x y -=的曲线关于原点对称

椭圆综合练习2(含答案)

椭圆综合练习2 一、选择题 1. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A . 2 3 B .3 C . 2 7 D .4 3. 过椭圆22 221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦 点,若1260F PF ∠=o ,则椭圆的离心率为( ) A . 22 B .33 C .12 D .13 4. 椭圆141622=+y x 有两点P 、Q ,O 为原点,若OP 、OQ 斜率之积为4 1-,则2 2OQ OP + 为( ) A .4 B.64 C.20 D.不确定 5.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2 (222+=+为椭圆的半焦距),有四个不 同的交点,则椭圆的离心率e 的取值范围是( ) A .)53,55( B.)55,52( C.)53,52( D.)5 5,0( 6. 已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2,1( D ]2,1( 二、填空题: 7. 椭圆14 92 2=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠ 为钝角时,点P 横坐标的取值范围是____________________.

(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题 一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆6322 2 =+y x 的焦距是( ) A .2 B .)23(2- C .52 D .)23(2+ 2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)2 3,25(-,则椭圆方程是 ( ) A .14 8 2 2=+x y B .16102 2=+x y C .18 42 2=+x y D .16 102 2=+y x 4.方程22 2 =+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5. 过椭圆1242 2 =+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ?,那么2 ABF ?的周长是( ) A . 22 B . 2 C . 2 D . 1 6.已知椭圆的对称轴是坐标轴,离心率为 3 1 ,长轴长为12,则椭圆方程为( ) A . 112814422=+y x 或114412822=+y x B . 14 62 2=+y x C . 1323622=+y x 或1363222=+y x D . 16422=+y x 或1462 2=+y x 7. 已知k <4,则曲线 14 92 2=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴 8.椭圆 19 252 2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .8 9.椭圆13 122 2=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( ) A .4倍 B .5倍 C .7倍 D .3倍 10.椭圆144942 2 =+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y x C .014494=-+y x D . 014449=-+y x 11.椭圆14 162 2=+y x 上的点到直线022=-+y x 的最大距离是 ( ) A .3 B .11 C .22 D .10 12.过点M (-2,0)的直线M 与椭圆12 22 =+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ) ,直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C . 21 D .-2 1 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.椭圆 2214x y m +=的离心率为1 2 ,则m = . 14.设P 是椭圆2 214 x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -2 1被椭圆x 2+4y 2=4截得的弦长为 . 16.已知圆Q A y x C ),0,1(25)1(:2 2及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程 为 .

椭圆练习题(经典归纳)

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点1 3, 22?? ? ??? ,,M N 为平面上关于原点对称的两点,已知N 的坐标为30,3? ? - ? ??? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材P .37 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x -=-; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论;

(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t =+。【反斜截式,1 m k = 】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x (1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点)(3,1且与圆C 相切,求直线方程. (3)若直线过点) (0,4且与圆C 相切,求直线方程. 附加:4)4(3:22=-+-y x C )(. 若直线过点)(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程. 椭 圆 1、椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离c 2叫椭圆的焦距。若M 为椭圆上任意一点,则有 21||||2MF MF a +=. 注意:212F F a >表示椭圆;212F F a =表示线段21F F ;212F F a <没有轨迹; 2、椭圆标准方程 椭圆方程为12 2 222=-+c a y a x ,设2 2c a b -=,则化为()012222>>=+b a b y a x 这就是焦点在x 轴上的椭圆的标准方程,这里焦点分别是1F ()0,c -,2F ()0,c ,且22c a b -=. 类比:写出焦点在y 轴上,中心在原点的椭圆的 标准方程()22 2210y x a b a b +=>>. 椭圆标准方程:22 221x y a b +=(0a b >>)(焦点在x 轴上) 或122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:(1)以上方程中,a b 的大小0a b >>,其中222b a c =-; (2)要分清焦点的位置,只要看2x 和2y 的分母的大小,“谁大焦点在谁上”

椭圆综合测试题(含答案)

椭圆测试题 一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为 32 ,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22 159x y += (C ) 2213620x y += (D )2213620x y +=或22 12036 x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( ) A.椭圆 B.线段12F F C.直线12F F D .不能确定 3、已知椭圆的标准方程2 2 110 y x +=,则椭圆的焦点坐标为( ) A.( B.(0, C.(0,3)± D.(3,0)± 4、已知椭圆22 159 x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( ) A.3 B.2 C.3 D.6 5、如果22 212 x y a a + =+表示焦点在x 轴上的椭圆,则实数a 的取值范围为( ) A.(2,)-+∞ B.()()2,12,--?+∞ C.(,1)(2,)-∞-?+∞ D.任意实数R 6、关于曲线的对称性的论述正确的是( ) A.方程2 2 0x xy y ++=的曲线关于X 轴对称 B.方程3 3 0x y +=的曲线关于Y 轴对称 C.方程2 2 10x xy y -+=的曲线关于原点对称 D.方程3 3 8x y -=的曲线关于原点对称 7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22 221x y a b +=(a >b >0)表示的椭圆( ). A.有相同的离心率 B.有共同的焦点 C.有等长的短轴.长轴 D.有相同的顶点. 8、已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于 A B 、两点.若3AF FB =u u u r u u u r ,则k =( ) (A )1 (B (C (D )2 9、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A. 54 B.53 C. 52 D. 5 1 10、若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u r g 的最大值为( ) A .2 B .3 C .6 D .8 11、椭圆()22 2210x y a a b +=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段

椭圆基础训练题(含答案提示)

椭圆基础训练题 1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( ) (A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9 x 2+25y 2 =1 2.椭圆5x 2 +4 y 2=1的两条准线间的距离是( ) (A )52 (B )10 (C )15 (D )3 50 3.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( ) (A )21(B )22(C )23(D )3 3 4.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是4 9 ,那么P 点到左准线的距离 是( )。 (A )5 9 (B ) 516 (C )441 (D )5 41 5.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( ) (A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率 6.椭圆mx 2+y 2=1的离心率是2 3 ,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )2 1或1 7.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( ) (A )3-1 (B )3-3 (C )3 (D )1 8.若椭圆m y 12m 3x 22 -+=1的准线平行于y 轴,则m 的取值范围是 。 9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。 10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为3 5 4,求此椭圆的方程。

椭圆综合专题

椭圆专题总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程; (提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?12120x x y y +>>0; ③“等角、角平分、角互补问题” ?斜率关系(120K K +=或12K K =); ④“共线问题” (如:AQ QB λ= ?数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题” ?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明, 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性, 关键是积累“转化”的经验; 椭圆中的定值、定点问题 一、常见基本题型: 在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。 (1)直线恒过定点问题 1、已知点00(,)P x y 是椭圆2 2:12 x E y +=上任意一点,直线l 的方程为 0012 x x y y +=,直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

椭圆综合专题整理(供参考)

椭 圆专题总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程; (提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?12120x x y y +>>0; ③“等角、角平分、角互补问题” ?斜率关系(120K K +=或12K K =); ④“共线问题” (如:AQ QB λ= ?数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题” ?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明, 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性, 关键是积累“转化”的经验; 椭圆中的定值、定点问题 一、常见基本题型: 在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。 (1)直线恒过定点问题 1、已知点00(,)P x y 是椭圆2 2:12 x E y +=上任意一点,直线l 的方程为0012 x x y y +=,直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

圆锥曲线椭圆专项训练含答案

圆锥曲线 椭圆 专项训练 【例题精选】: 例1 求下列椭圆的标准方程: (1)与椭圆x y 22416+=有相同焦点,过点P (,)56; ?(2)一个焦点为(0,1)长轴与短轴的长度之比为t ; (3)两焦点与短轴一个端点为正三角形的顶点,焦点到椭圆的最短距离为3。 ?(4)e c ==08216.,. 例2 已知椭圆的焦点为2),1,0()1,0(21=-a F F ,。 ?(1)求椭圆的标准方程; ?(2)设点P 在这个椭圆上,且||||PF PF 121-=,求:tg F PF ∠12的值。 例3 已知椭圆上横坐标等于焦点横坐标的点,其纵坐标的长等于短半轴长的 23 。 求:椭圆的离心率。 ? ?小结:离心率就是椭圆中的一个重要内容,要给予重视。 例4 已知椭圆x y 2291+=,过左焦点F 1倾斜角为π6 的直线交椭圆于A B 、两点。

?求:弦A B的长,左焦点F 1到AB 中点M的长。 ? 小结:由此可以瞧到,椭圆求弦长,可用弦长公式,要用到一元二次方程中有关根的性质。 例5 过椭圆14162 2=+y x 内一点M(2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。 ? 小结:有关中点弦问题多采用“点差法”即设点做差的方法,也叫“设而不求”。 例6 已知C y x B A 的两个顶点,是椭圆、125 16)5,0()0,4(2 2=+就是椭圆在第一象限内部分上的一点,求?ABC 面积的最大值。 ? 小结:已知椭圆的方程求最值或求范围,要用不等式的均值定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。 【专项训练】: 一、 选择题:

椭圆基础练习题(包含答案)

椭圆基础练习题 一、选择题 2.椭圆x 2m +y 2 4=1的焦距是2,则m 的值是( ) A .5 B .3或8 C .3或5 D .20 3.椭圆 ax 2+by 2+ab =0(a b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2. 若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ) A.14 B .55 C.1 2 D .5-2 8.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .m <2 B .1

椭圆专题训练卷(含解析)

椭圆专题训练卷 一、单选题 1.(2019·宁波市第四中学高二期中)设p 是椭圆22 12516 x y + =上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5 C .8 D .10 2.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“2 16 x + 29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.(2019·浙江省春晖中学高二月考)已知椭圆22 1102 x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于 ( ) A .4 B .5 C .7 D .8 4.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()22 2210x y a b a b +=>>的左顶点为A ,上顶点 为B ,且OA (O 为坐标原点),则该椭圆的离心率为( ) A B C D 5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心 率为 1 2 ,则C 的方程是( ) A .22 143x y += B .22 186 x y + C .22 142 x y += D .22 184 x y += 6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22 221(0)x y a b a b +=>>的左焦点,A ,

B 分别为 C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13 B . 12 C . 23 D . 34 7.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()22 2210x y a b a b +=>>,焦距为2c ,直线 :4 l y x = 与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A . 2 B . 34 C . 12 D . 14 8.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆22 1168 x y +=的左、右焦点,M 是椭 圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( ) A .4 B .2 C D 9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22 143 x y +=的左、右焦点,点P 是 椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则 12QF QF ?=( ) A . B .4 C .3 D .1 10.(2019·宁波市第四中学高二期中)设椭圆22 221 x y a b +=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2a N c 在椭圆的外部,点M 是椭圆上的动点,满足11232 MF MN F F +<恒成 立,则椭圆离心率e 的取值范围是( ) A .(0 B .1) C .5)6 , D .5(,1)6 二、多选题

相关文档
相关文档 最新文档