文档库 最新最全的文档下载
当前位置:文档库 › 电磁场与电磁波课后习题及答案

电磁场与电磁波课后习题及答案

电磁场与电磁波课后习题及答案
电磁场与电磁波课后习题及答案

电磁场与电磁波课后习题解答

1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e

4y z =-+B e e

52x z =-C e e

求:(1)A a ;(2)-A B ;(3)A B g ;

(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1

)23A x y z

+-=

==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e

e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11

(4)由 cos AB θ

===A B A B g ,得 1cos AB θ-

=(135.5=o (5)A 在B 上的分量 B A =A cos AB θ

==A B B g (6)?=A C 1

235

02x y z

-=-e e e 41310x y z ---e e e (7)由于?=B C 04

1502x y

z

-=-e e e 8520x y z ++e e e ?=A B 123041

x

y

z

-=-e e e 1014x y z ---e e e

所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e

(8)()??=A B C 1014502x y z

---=-e e e 2405x y z -+e e e

()??=A B C 1

238

5

20

x

y z -=e e e 554411x y z --e e e

1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123

PP P ?是否为一直角三角形;

(2)求三角形的面积。

解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)

P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e ,

311367x y z =-=---R r r e e e

由此可见

1223(4)(28)0x z x y z =-++=R R e e e e e g g

故123

PP P ?为一直角三角形。 (2)三角形的面积

122312231117.1322S =

?=?==R R R R 1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。

解 34P x y z '=-++r e e e ,223P x y z =-+r e e e ,

则 53P P P P x y z ''=-=--R r r e e e 且P P 'R 与x 、y 、z 轴的夹角分别为

11cos (

)cos 32.31x P P x P P φ--''===e R R o g

11cos (

)cos 120.47y P P

y P P φ'--'===e R R o g

11cos ()cos (99.73z P P z P P φ--''===e R R o g

1.4 给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ,求它们之间的夹角和A 在

B 上的分量。

解 A 与B 之间的夹角为

1

1cos (

)cos 131θ--===AB A B A B o g A 在B 上的分量为

3.532B A ===-B A B g

1.5 给定两矢量234x y z =+-A e e e 和64x y z =--+B e e e ,求?A B 在x y z

=-+C e e e 上的分量。

解 ?=A B 2

3

464

1

x

y z

-=--e e e 132210x y z -++e e e 所以?A B 在C 上的分量为 ()?=

C A

B ()14.43?==-A B

C C g

1.6 证明:如果A B g =A C g

和?=A B ?A C ,则=B C ; 解 由?=A B ?A C ,则有()()??=??A A B A A C ,即

()()()()-=-A B A A A B A C A A A C g g g g

由于A B g =A C g

,于是得到 ()()=A A B A A C g g 故 =B C

1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设A 为一已知矢量,p =A X g 而=?P A X ,p 和P 已知,试求X 。

解 由=?P A X ,有

()()()()p ?=??=-=-A P A A X A X A A A X A A A X g g g 故得 p -?=

A A P X A A g 1.8 在圆柱坐标中,一点的位置由2(4,,3)3

π定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。

解 (1)在直角坐标系中 4cos(23)2x π==-、4sin(23)y π==3z =

故该点的直角坐标为(2,-。

(2)在球坐标系中 5r ==、1tan (43)53.1θ-==o 、2120φπ==o 故该点的球坐标为(5,53.1,120)o o

1.9 用球坐标表示的场2

25r

r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;

(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。 解 (1)在直角坐标中点(3,4,5)--处,2222(3)4(5)50r =-++-=,故

22512

r

r ==E e

1cos

220

x x rx E θ====-

e E E g

(2)在直角坐标中点(3,4,5)--处,345x y z =-+-r e e e ,所以

233452525r r -+-===

e e e r E

故E 与B 构成的夹角为

11cos (

)cos (153.63θ--===EB E B E B o g g 1.10 球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R 。证明1R 和2

R 间夹角的余弦为

121212cos cos cos sin sin cos()γθθθθφφ=+-

解 由 111111111sin cos sin sin cos x y z r r r θφθφθ=++R e e e

222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e

得到 12

12

cos γ=

=R R R R g

1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=

121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++= 121212sin sin cos()cos cos θθφφθθ-+

1.11 一球面S 的半径为5,球心在原点上,计算: (3sin )d r S

θ?e S g ?的值。

(3sin )d (3sin )d r

r

r

S

S

S θθ==

??e S e e

g g 蜒222

d 3sin 5sin d 75ππ

φθθθπ?=?? 1.12 在由5r =、0z =和4z =围成的圆柱形区域,对矢量22r z r z =+A e e 验证散度定

理。

解 在圆柱坐标系中 21()(2)32rr z r r r z

??

?=

+=+??A g 所以 4

250

d d d (32)d 1200z r r r π

τ

τφπ?=+=????A g 又

2

d (2)(d d d )r

z r r z z S

S

r

z S S S φφ=+++=??A S e e e e e g g 蜒

42522

00

00

5

5d d 24d d 1200z r r π

π

φφπ?+?=????

故有

d 1200τ

τπ?=?A g d S

=?A S g ? 1.13 求(1)矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求?A g 对中心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。

解 (1)222223

2222()()(24)

2272x x y x y z x x y x y z x y z

????=++=++???A g

(2)?A g 对中心在原点的一个单位立方体的积分为

11212

2222121212

1

d (2272)d d d 24

x x y x y z x y z τ

τ---?=

++=

????

A g (3)A 对此立方体表面的积分

1212

112

22

12121212

11d ()d d ()d d 22S y z y z ----=--+?????A S g ? 12121212

2

222121211112()d d 2()d d 22x x z x x z ------+???? 12121212

22322312121212

11124()d d 24()d d 2224x y x y x y x y ------=???? 故有

1d 24τ

τ?=

?A g d S

=?A S

g ? 1.14 计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求?r g 对球体积的积

分。

223

d d d sin d 4r S

S

S aa a π

π

φθθπ=

=

=????r S r e g g 蜒 又在球坐标系中,2

2

1()3r r r r

??=

=?r g ,所以

223

000

d 3sin d d d 4a

r r a ππτ

τθθφπ?==????r g 1.15 求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴相重合。再求??A 对此回路所包围的曲面积分,验证斯托

克斯定理。

2

2

2

2

2

d d d 2

d 0d 8C

x x x x y y =-+-=?????A l g ?

又 2

222x

y z

x z yz x x y z x

x y z

??

?

??=

=+???e e e A e e 所以 22

00

d (22)d d 8x

z

z

S

yz x x y ??=

+=???A S e e e

g g

故有

d 8C

=?A l g ?d S

=???A S g

1.16 求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算??A 对此圆面积的积分。

2

d d d C

C

x x xy

y =+=

??A l g 蜒24

2

422

(cos sin cos sin )d 4

a a

a π

πφφφφφ-+=

?

d ()d y

x z z S S A A S x y ????=-=????A S e e g g 24222

00

d sin d d 4a S a y S r r r π

πφφ==??? 1.17 证明:(1)3?=R g ;(2)??=R 0;(3)()?=A R A g 。其中x y z x y z =++R e e e ,

A 为一常矢量。

解 (1)3x y z x y z

????=

++=???R g (2) x

y z

x y z x

y

y

???

??=

=???e e e R 0 (3)设x x y y z z A A A =++A e e e ,则x y z A x A y A z =++A R g ,故

()()()x

x y z y x y z A x A y A z A x A y A z x y ??

?=++++++??A R e e g ()z x y z A x A y A z z

?

++=?e x x y y z z A A A ++=e e e A 1.18 一径向矢量场()r f r =F e 表示,如果0?=F g ,那么函数()f r 会有什么特点呢?

解 在圆柱坐标系中,由 1d [()]0d rf r r r

?==F g 可得到

()C

f r r

=

C 为任意常数。 在球坐标系中,由 2

2

1d [()]0d r f r r r ?==F g 可得到 2

()C f r r =

1.19 给定矢量函数x y y x =+E e e ,试求从点1(2,1,1)

P -到点2(8,2,1)P -的线积分d ?

E l g :(1)沿抛物线2x y =;(2)沿连接该两点的直线。这个E 是保守场吗? 解 (1) d d d x y C

C

E x E y =+=??

E l g

d d C

y x x y +=?

2

22

1

d(2)2d y y y y +=?

221

6d 14y y =? (2)连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为

28

12

x x y y --=-- 即 640x y -+= 故

2

1

d d d d(64)(64)d x

y C

C

E

x E y y y y y =+=-+-=???E l g 2

1

(124)d 14y y -=?

由此可见积分与路径无关,故是保守场。

1.20 求标量函数2x yz ψ=的梯度及ψ

在一个指定方向的方向导数,此方向由单位矢量

x

y z

+e e e 定出;求(2,3,1)点的方向导数值。 解 222()()()x y z x yz x yz x yz x y z

ψ???

?=++=???e e e

222x y z xyz x z x y ++e e e

故沿方向l x

y z

=+e e e e 的方向导数为

22

l l ψψ?=?=++?e g 点(2,3,1)处沿l e 的方向导数值为

l ψ?=++=

? 1.21

试坐标中

y x z

A A A x y z ????=

++

???A g 相似的方法推导圆柱坐标下的公式 1()z r A A rA r r r z

φφ???

?=++???A g 。

解 在圆柱坐标中,取小体积元如题1.21图所示。矢量场A 沿r e 方向穿出该六面体的表面

的通量为

题1.21图

()d d d d z z z z

r r

r r

r r z

z

A r r r A r r φφφφφ

φ

ψφφ+?+?+?+?+?=

+?-

≈????

[()(,,)(,,)]r r r r A r r z rA r z z φφφ+?+?-??≈

()()

1r r rA rA r z r r r

φτ?????=??? 同理

d d d d r r z z

r r z z

r

z

r

z

A r z A r z φφ

φφ

φφψ+?+?+?+?+?=

-

≈??

??

[(,,)(,,)]A r z A r z r z φφφφφ+?-??≈

A A r z r φφφτφ

φ

?????=

???

d d d d r r r r z z

z z

z z r

r

A r r A r r φφ

φφ

φ

φ

ψφφ+?+?+?+?+?=

-

≈????

[(,,)(,,)]z z A r z z A r z r r z φφφ+?-???≈

z z A A

r r z z z

φτ?????=??? 因此,矢量场A 穿出该六面体的表面的通量为

()1[]r z

r z A rA A ΨΨΨΨr r r z

φφτφ???=++≈++????

故得到圆柱坐标下的散度表达式 0()1lim

r z

A rA A r r r z

φτψτφ?→?????==++????A 1.22 方程222

222x y z u a b c

=++给出一椭球族。求椭球表面上任意点的单位法向矢量。 解 由于 222

222x y z

x y z u a b c ?=++e e e

u ?=

故椭球表面上任意点的单位法向矢量为

222(x y z u x y z a b c u

?=

=++?n e e e 1.23 现有三个矢量A 、B 、C 为

sin cos cos cos sin r θφθφθφφ=+-A e e e

22sin cos 2sin r z z z rz φφφφ=++B e e e 22(32)2x y z y x x z =-++C e e e

(1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?

(2)求出这些矢量的源分布。 解(1)在球坐标系中

22

111()(sin )sin sin r A r A A r r r r φ

θθθθθφ????=

++=???A g

22

111(sin cos )(sin cos cos )(sin )sin sin r r r r r θφθθφφθθθφ

???

++-=???

2cos 2sin cos cos sin cos 0sin sin r r r r φθφφθφθθ

+--= 2sin 1sin sin r r r r r r A rA r A θφ

θφ

θθθφ

θ???

??==???e e e A

2sin 10sin sin cos cos cos sin sin r

r r r r r r θφ

θθ

θφθφ

θφ

θφ

???

=???-e e e

故矢量A 既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;

在圆柱坐标系中

11()z r B B rB r r r z φφ????++=

???B =g

2211(sin )(cos )(2sin )rz z rz r r r z

φφφφ???

++=???

22sin sin 2sin 2sin z z r r r r φφ

φφ-+= 22110sin cos 2sin r z r z

r z r r r r z r r z B rB B z rz rz θθ

θφφφ

φ

φ

?????

?

??=

=

=??????e e e e e e B 故矢量B 可以由一个标量函数的梯度表示;

直角在坐标系中

y x z C C C x y z ????++=???C =

g

22(32)()(2)0y x x z x y z

???

-++=???

22

(26)322x

y z

z x y x y z y x

x z

??

?

??=

=-???-e e e C e 故矢量C 可以由一个矢量函数的旋度表示。 (2)这些矢量的源分布为

0?=A g ,0??=A ;

2sin r φ?B =g ,0??=B ;

0?=C g ,(26)z x y ??=-C e

1.24 利用直角坐标,证明

()f f f ?=?+?A A A g g g

解 在直角坐标中

(

)()y x z x y z A A A f f f

f f f A A A x y z x y z

???????+?=+++++=??????A A g g ()()()y x z x y z A A A f f f

f A f A f A x x y y z z ??????+++++=??????

()()()()x y z fA fA fA f x y z

???

++=????A g 1.25 证明

()??=??-??A H H A A H g g g

解 根据?算子的微分运算性质,有

()()()A H ??=??+??A H A H A H g g g

式中A ?表示只对矢量A 作微分运算,H ?表示只对矢量H 作微分运算。

由()()?=?a b c c a b g g ,可得

()()()A A ??=??=??A H H A H A g g g

同理 ()()()H H ??=-??=-??A H A H A H g g g 故有 ()??=??-??A H H A A H g g g

1.26 利用直角坐标,证明

()f f f ??=??+??G G G

解 在直角坐标中

[(

)()()]y

y x x z z x y z G G G G G G f f y z z x x y ????????=-+-+-??????G e e e f ??=G [()()()]x z

y y x z z y x f f f f f f G G G G G G y z z x x y ??????-+-+-??????e e e 所以

f f ??+??=G G [()()]y z x z

y G G f f

G f G f y y z z

????+-++????e [()()]x z y x z G G f f

G f G f z z x x

????+-++????e

[()()]y x z y x G G f f

G f G f x x y y ????+-+=????e

()()[]y z x fG fG y z ??-+??e ()()[]x z y fG fG z x ??-+

??e ()()[]y x z fG fG x y

??-=??e ()f ??G

1.27 利用散度定理及斯托克斯定理可以在更普遍的意义下证明()0u ???=及

()0???=A g ,试证明之。

解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有

()d d d d 0S

C

C

C

u

u u l u l ????=?===????

?S l g g 蜒? 由于曲面S 是任意的,故有

()0u ???=

(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有

1

2

()d ()d ()d ()d S

S S τ

τ???=??=??+??????A A S A S A S g g g g ?

其中1S 和2S 如题1.27图所示。由斯托克斯定理,有

1

1

()d d S C ??=??A S A l g g ?, 2

2

()d d S C ??=??A S A l g g ?

由题1.27图可知1C 和2C 是方向相反的同一回路,则有 1

2

d d C C =-??A l A l g g 蜒

所以得到

1

2

2

2

()d d d d d 0C C C C τ

τ???=+=-+=?????A A l A l A l A l g g g g g 蜒蜒 由于体积τ是任意的,故有 ()0???=A g

1

题1.27图

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

最新电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任 意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度在直角坐标系的表达式 z A y A x A z y x A A ??????++ = ??=ρ ρdiv ; 散度在圆柱坐标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右 手螺旋法则。当S 点P 时,存在极限环量密度。二者的关系 n dS dC e A ρρ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该 点最 大环量密度的方向。 4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。梯度的大小为该点 标量函数 ?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的 方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与 梯度的关系是梯度的大小为该点标量函数 ?的最大变化率,即该点最 大方向导数; 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数 的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e r 的表达 式 ;

7、直角坐标系下方向导数 u ?的数学表达式是 ,梯度的表达式 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。 9、麦克斯韦方程组的积分形式分别为 ()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+????????r r r r r r r r g r r r r r g ???? 其物理描述分别为 10、麦克斯韦方程组的微分形式分别为 2 0E /E /t B 0 B //t B c J E ρεε??=??=-????=??=+??r r r r r r r 其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的 场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。 12、坡印廷矢量的数学表达式 2 0S c E B E H ε=?=?r r r r r ,其物理意义表示了单 位面积的瞬时功率流或功率密度。功率流的方向与电场和磁场的方向垂直。表达式 ()s E H dS ??r r r g ?的物理意义穿过包围体积v 的封闭面S 的功率。 13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波例题详解

电磁场与电磁波例题详解

————————————————————————————————作者:————————————————————————————————日期:

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??=?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????= ==??由此说明了矢量场的散度与坐标的选择无关。

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

《电磁场与电磁波》经典例题

一、选择题 1、以下关于时变电磁场的叙述中,正确的是( ) A 、电场是无旋场 B 、电场和磁场相互激发 C 、电场与磁场无关 2、区域V 全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是( ) A 、能量流出了区域 B 、能量在区域中被消耗 C 、电磁场做了功 D 、同时选择A 、C 3、两个载流线圈之间存在互感,对互感没有影响的的是( ) A 、线圈的尺寸 B 、两个线圈的相对位置 C 、线圈上的电流 D 、空间介质 4、导电介质中的恒定电场E 满足( ) A 、0??=E B 、0??=E C 、??=E J 5、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( ) A 、镜像电荷是否对称 B 、电位方程和边界条件不改变 C 、同时选择A 和B 6、在静电场中,电场强度表达式为3(32)()y x z cy ε=+--+x y z E e e e ,试确定常数 ε的值是( ) A 、ε=2 B 、ε=3 C 、ε=4 7、若矢量A 为磁感应强度B 的磁矢位,则下列表达式正确的是( ) A 、=?B A B 、=??B A C 、=??B A D 、2=?B A 8、空气(介电常数10εε=)与电介质(介电常数204εε=)的分界面是0z =平面, 若已知空气中的电场强度124= +x z E e e 。则电介质中的电场强度应为( ) A 、1216=+x z E e e B 、184=+x z E e e C 、12=+x z E e e 9、理想介质中的均匀平面波解是( ) A 、TM 波 B 、TEM 波 C 、TE 波 10、以下关于导电媒质中传播的电磁波的叙述中,正确的是( ) A 、不再是平面波 B 、电场和磁场不同相 C 、振幅不变 D 、以T E 波的形式传播 二、填空 1、一个半径为α的导体球作为电极深埋地下,土壤的电导率为 σ,略去地面的影响,则电极的接地电阻R = 2、 内外半径分别为a 、b 的无限长空心圆柱中均匀的分布着轴向电流I ,设空间离轴距离为()r r a <的某点处,B= 3、 自由空间中,某移动天线发射的电磁波的磁场强度

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场与电磁波试题集

《电磁场与电磁波》试题1 填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ ,则磁感应强度B 和磁场H 满足的方程 为: 。 2.设线性各向同性的均匀媒质中, 02=?φ称为 方程。 3.时变电磁场中,数学表达式H E S ?=称为 。 4.在理想导体的表面, 的切向分量等于零。 5.矢量场 )(r A 穿过闭合曲面S 的通量的表达式为: 。 6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表 示。 二、简述题 (每小题5分,共20分) 11.已知麦克斯韦第二方程为 t B E ??-=?? ,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题 (每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数y x e xz e y B ??2+-= 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。 16.矢量z y x e e e A ?3??2-+= ,z y x e e e B ??3?5--= ,求 (1)B A + (2)B A ? 17.在无源的自由空间中,电场强度复矢量的表达式为 (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题 (每小题10分,共30分) 18.均匀带电导体球,半径为a ,带电量为Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波习题集

电磁场与电磁波 补充习题 1 若z y x a a a A -+=23,z y x a a a B 32+-=,求: 1 B A +;2 B A ?;3 B A ?;4 A 和B 所构成平面的单位法线;5 A 和B 之间较 小的夹角;6 B 在A 上的标投影和矢投影 2 证明矢量场z y x a xy a xz a yz E ++=是无散的,也是无旋的。 3 若z y x f 23=,求f ?,求在)5,3,2(P 的f 2?。 5 假设0x 的区域为电介质,介电常数为03ε,如果空气中的电场强度z y x a a a E 5431++=(V/m ),求电介质中的电场强度。 7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。 10 在一个无源电介质中的电场强度x a z t C E )cos(βω-=V/m ,其中C 为场的幅度,ω为 角频率,β为常数。在什么条件下此场能够存在?其它的场量是什么? 11 已知无源电介质中的电场强度x a kz t E E )cos(-=ωV/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。 12 自由空间的电场表示式为x a z t E )cos(10βω+=V/m ,若时间周期为100ns ,求常数k , 磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。 13 已知无源区的电场强度为y a kz t x C E )cos(sin -=ωαV/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。 14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100β+= A/m , 求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。 16 决定下面波的极化类型 m a y t a y t E m a e e a e e E m a e a e E z x y z j j x z j j z x j y x j /V )5.0s i n (4)5.0c o s (3/V 916/V 10010010041004300300 ---=-=+=-----ππ 17 电场强度为y x a z t a z t )sin(5)cos(12βωβω--- V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相

相关文档
相关文档 最新文档