文档库 最新最全的文档下载
当前位置:文档库 › 全固态锂电池

全固态锂电池

全固态锂电池
全固态锂电池

以固态电解质取代传统液体有机电解液的固态电池正吸引越来越多的关注。电动车(EV)和定置式蓄电用途的大型电池的应用需求激增,可期待安全与长寿命的固态电池正在成为一个候选产品。在追求高容量化的新一代电池方面,固态电解质扮演角色的重要性也在日益提高。但目前固态电解质仍然存有不少问题。本文追寻着开发全固态电池的企业、大学和研究机构的脚步,探索固态电池通向实用化之路。

“只用固体材料即可实现电池功能的认识终于被人们普遍接受”日本东京工业大学研究生院综合理工学研究科物质电子化学专业教授菅野了次感慨道。

采用固态电解质的的大容量新一代电池,即所谓“全固态电池”近来开始受到瞩目。这是由于其在能量密度提高的同时,还可望确保安全性和实现长寿命化(图1)。

1

电动车和定置式用大型锂离子充电电池而言,保证安全是最重要的。并且,希望长寿命化的呼声也很高,许多电池使用者希望“锂离子充电电池采用固体电解质”。而在便携设备市场上,业者们似在考虑使用固态电解质来开发能量密度超过300Wh/kg的后锂离子充电电池。

采用有机电解液的传统锂离子充电电池,因有过度充电、内部短路等异常时可能导致电解液发热,有自燃或甚至爆炸的危险。而将有机电解液代之以固态电解质的全固态电池,其安全性可大幅提高。并且,因在理想状态下,固态时锂的扩散速度(离子传导率)较液体电解液时高,理论上认为其可实现更高的输出。

并且,固态电池包括其制造方式在内,可能会实现突破现有电池概念的特性。例如,因不必封入液体,则电池外装可以简化,从而能以卷对卷(roll-to-roll)方式制造大面积单元。进一步,还可将数层电极层积,并在单元内串联,制作12V或24V的大电压单元等,使此前不可能的电池得以实现。

实际上,电池相关学会也称,近年来关于固态电池的论文数目在增加。其中最有兴趣的积极参与者是丰田汽车公司。近1、2年,其以将来适用于车载的电池为目标的论文大幅增加。

对固态电池抱有强烈兴趣的,并非只有丰田公司一家。出光兴产(Idemitsu Kosan)在展示会上以2012年实用化为目标,展示了约A6大小的固态电池,日本中央电力研究所(Central Research

Institute of Electric Power Industry,CRIEPI)则在开发以住宅储能为目的的固态电池。并且,电池制造厂商也加入这股热潮:日本三星横滨研究院(Samsung Yokohama Research Institute)与韩国的三星电子已经开发出一种充放电周期寿命和输出特性都接近商业水准的固态电池。从电池的制造方到利用方的许多企业都在致力于固体电池的开发。

固态电池的开发并非始于今日。迄今已有过许多小型固态电池的试制品,并已在心脏起搏器(pacemaker)上实现了商业化。只是此前的开发一直以非常小的薄型电池为中心。然而,近来车载及定置蓄电用途采用固体大型电池的可能性一直在提高。

所有这一切的背景是,电动车和定置式蓄电用大型电池,而非迄今为止的主流——便携设备用的小型电池的需求激增,因此要求电池特性的改变,使得研发方向发生重大改变。

特别是对电池的安全性与使用寿命,有比现有的锂离子充电电池更加严格的要求。其中,安全性自不待言,固态电池有明显优势;而在延长使用寿命方面,“固态电池的周期寿命特性原本就优异”,日本大坂府立大学(Osaka Prefecture University)研究生院工学研究科教授辰巳砂昌弘说道。

除了比目前的锂离子充电电池更安全与使用寿命更长,提高能量密度也是固态电池的一个开发主题。使固态电池具有可增加能量密度特征的理由之一是固体电解质电位窗(potential window*)的宽广度。而传统的有机电解液,当电池电压接近4V时电解液就开始分解,因此很难提高电池的电压上限。

*电位窗(Potential window):由溶剂和盐组成的电解液不出现氧化还原反应的电压范围。取决于溶剂、盐与电极材料。

目前,为提高容量,锂离子充电电池的负极正准备变更为电流容能高的硅等材料(注1)。与负极相应的高容量正极材料虽同样重要,但尚未发现有望支持更高电流容量的正极材料。因此,在正极材料方面,将利用电流容量不变,而以高电压来增加能量密度的所谓“5V”正极材料作为了目标。

注1:日立麦克赛尔(Hitachi Maxell),2010年6月推出智能手机用硅基负极锂离子充电电池。此外,松下公司则表明将在2012年度开始量产这种电池。

但即使采用5V电压型正极材料,传统的有机电解液还是会分解,电池的电压还是不能提高。而使用具有更宽广电位窗的固态电解质,便可令5V正极成为可行的解答(注2)。

注2:因固态电解质是固体,当电极材料与电解质间的界面发生反应时,其进一步反应难以进行,比有机电解液难分解,因而电位窗高。

并且,固态电解质对作为锂聚合物充电电池而受到关注的硫化锂(Li-S)*与锂空气(Li-air)*电池等的下一代电池的实现,似将发挥重要的作用。硫化锂电池使用硫(S)类材料为正极,若使用有机电解液,硫会溶解于其中。如能利用固态电解质,则这个问题就不复存在。

*硫化锂电池(Li-S battery):正极为硫,负极为金属锂的充电电池。因硫的理论容量高达1672mAh/g,即硫化锂电池的理论能量密度可为约2600Wh/kg。

*锂空气电池:因利用大气中的氧气为正极,所以单位质量及体积的能量密度可得到飞跃性提升,所以作为终极电池(ultimate battery)在研究。但有观点指出,其空气极的还原反应极具难度。

被视为“终极电池”的锂空气电池,正极上需要能使空气通过的结构。因此,固态而非液态电解质的采用很可能会促成电极结构的简化。

固态电池用固态电解质的开发可大致分为两类,即离子电导率高、使用寿命长的无机电

解质与生产效率高的高分子电解质(图2)。无机电解质可进一步分成为硫化物和氧化物两类。目前进展最快的是硫化物类固态电解质,不断有离子电导率达10-3S/cm,与电解液性

能相当的材料开发出来。

2

固态电池的电解质,可大致分为无机物和高分子两类。无机物类以较高的离子导电为特征。高分子类虽更容易制造,但存在有低温特性的问题。

具有代表性的例子为Li2S-P2S5类与硫化结晶锂超离子导体(thio-LISICON)类电解质。Li2S-P2S5类材料方面,已开发出了离子电导率高达3~5×10-3S/cm的材料,使用这种材料的固态电池的试制品也纷纷出笼。而与硫化结晶锂超离子导体结构相似的材料具有较高的离子电导率已是众所周知,其中最适合电池的材料也在探索之中。

硫化物固态电解质的另一个优点,是因为使用了与下一代正极材料相同的硫(S)化物,造成优异的匹配。如果能开发出离子电导率达约10-2S/cm的固态电解质,则“会加速下一代电池的研究”,东京工业大学的菅野表示。

然而,还有需要解决的问题。首先是所有固态电解质共同的问题:电极活性物质和固态电解质间界面的高电阻。且硫化物和水发生反应会产生硫化氢(H2S),这意味着从生产电解质到组装电池的整个制程都需要对湿度的控制措施。

而氧化物类方面,目前已有离子导电率达到低于硫化物的10-3S/cm的氧化物类电解质面世。只是,具备这种特性的氧化物类为结晶构造,存在其晶界电阻(grain boundary resistance)会降低性能的问题(注3)。即使如此,因在制造上氧化物要比硫化物更容易处理,性能与硫化物相当的氧化物类电解质的开发还是受到了关注。

注3:在氧化物类电解质方面,晶体结构的氧化物固态电解质获得了10-3S/cm以上的高离子电导率,但是当作固态电解质使用时其晶界电阻会增大。而硫化物类相同的离子导电性是以非晶构造的

固态电解质实现的。

为了使这些优劣互见的无机固态电解质用于固态电池实现高性能,在电极与电解质间形成良好的界面至关重要。若只将它们堆叠起来,会导致两者之间的多点接触(multi-point contact),使界面电阻增加,导致整个电池无法使用。

因此,使用无机固态电解质的固态电池,以采用将电极材料与电解质混合起来的复合电极材料为主流(图3)。并且,为了防止充放电引起的在电极活性物质与固态电解质之间的界面上生成的化合物导致界面电阻的上升,要事先在电极活性物质的表面上涂布一层氧化薄膜。由此提高充放电周期性能。

3

采用无机物类固态电解质的固态电池,随采取活性物质与固体电解质的开发及应用活性物质的表面被膜等方法,其界面电阻一直在降低。

这些努力在切实结出成果,可称之为代表的,是三星横滨研究院与三星电子开发出的固态电池。他们在2010年3月日本电化学学会会议上发布,该电池已实现了接近实用水准的输出特性及超过现有锂离子充电电池的充放电周期寿命。是对现有锂离子充电电池采用的正极和负极材料使用硫化物固态电解质,从而获得了出色的电池特性(图4)。

4

三星横滨研究院与三星电子采用一个LiNi0.8Co0.15Al0.05O2正极材料的钮扣电池做了一项实验(a),当正极以铝涂覆时,经过300次周期后的能量维持仍高达85%(b)。图依三星横滨研究院的资料制作。

该公司等试制的,是正极为镍类、负极为石墨类材料,固态电解质采用了离子传导率为10-4S/cm 左右的Li2S-P2S5的固态电池。具体为,正极采用LiNi0.8Co0.15Al0.05O2,虽然细节未透露,但在正极上涂布一层铝膜,以减少其与电解质之间的界面电阻。由此,得到了具有实用水平的0.5mA/cm2时的放电容量为105mAh/g的结果。

其充放电周期寿命的特性,据称在300次周期后,还可保持85%的容量,超过了现有锂离子充电电池的性能。“这些成果是在固态电解质厚达400μm、离子导电性低至约10-4S/cm的情况下取得的。这是固态电池迈向商业化的重要成果。”三星横滨研究院大坂分所能源小组的小林直哉对此寄予期待。

开发了离子导电率高达3~5×10-3S/cm的Li2S-P2S5固态电解质等的大坂府立大学的辰巳砂实验室,使正极利用硫类材料的固态电池,达到了电解液电池无法实现的容量和寿命。该实验室的特点之一,是利用行星式球磨机进行机械加工,以制作具高离子导电性的复合正极材料。机械研磨除在室温下反应外,还具有可获得能直接用作固态电解质的精微颗粒玻璃的优点。

例如,由机械研磨的硫化镍(NiS)与Li2S-P2S5类固态电解质组成的复合正极、Li2S-P2S5类固态电解质和使用锂铟合金的负极所制成的固态电池,在相对高的1.3mA/cm2电流密度下展现了良好的容量与周期特性(图5)。

具体来说,50次周期后其充放电效率仍接近100%,容量仍维持在约360mAh/g。而单以硫化镍与固态电解质混合时,容量只有100mAh/g。由此可知,经机械研磨的复合正极材料,其电极活性物质与固态电解质之间的接触面积增大,从而硫化镍电极活性物质的利用率得以提高。(未完待续记者:狩集浩志)

5

大阪府立大学采用了行星式球磨机制作复合正极材料(a)。据称做成活性物质(NiS)与固态电解质之间的良好界面(b)。其结果,放电能量明显高于只混合二者时所获得的能量(c)。图依大阪府立大学提供的数据制成。

辰巳砂实验室还在进行直接将硫用作正极材料的研究。硫本身并不导电,因此,加添了乙炔黑(acetylene black)作为传导促进剂,加以机械研磨,再加添Li2S-P2S5并予研磨制成了复合正极材料。

使用这种正极和锂铟合金负极制成的固态电池,在10个周期后,仍保持了高达(1375mAh/g)的容量。

目前高分子类固态电池的研发以聚醚(polyether)类为主流。将高分子材料涂布在电极上,然后

用电子束(E-beam)或紫外线(UV)辐射加以桥接(cross-bridge)可使之固化,特点是易于形成与电极材料间的良好界面。但常温下其离子电导率约只有10-5S/cm,低温特性较低,0℃以下难以工作。

日本电力中央研究所看准这一特性,并欲将采用聚合物固态电解质的固态电池用于住宅。该研究所正在设想将固态电池与由热泵和储热槽组成的“Eco-Cute”热水器结合使用。与固态电池组合的的热水储存槽可以更加小型化,因而更容易由难以确保设置面积的大规模住宅和公寓采用,而固态电池设想在60℃下操作,因此可避免产生聚合物固态电解质的弱点——低温操作上存在的问题。

该研究所在充分考虑了无机物类固态电解质的离子导电率和低温特性优异的基础上,还是选择使用了聚合物类固态电解质。其理由是定置式应用对较低成本的要求强烈。使用聚合物类电解质的固态电池,可以使用与现有锂离子充电电池相同的电极材料,不仅容易制造,而且无需隔离膜与电解液注入工序等,容易实现低价格。

电力中央研究所正在构想全部工序都以涂布制造的生产线(图6)。生产方法极为简单:在涂布了电极材料的电极板上涂布聚合物电解质,然后照射紫外线桥接使电解质固化。之后,只需将正极和负极板紧密合在一起即可。其特点是,通过厚厚涂布聚合物固态电解质,可以无需使用隔离膜。

6

CRIEPI正在开发一种采用聚合物固态电解质的固态电池。可采用能实现大尺寸与低成本的卷对卷式量产方式,并在构想量产生产线(a)。其试制品单元内,有三个电池板层积并串联在一起(b)。实际上,1个单元便可以输出约12V(c)。图依CRIEPI 提供的数据制成。

电力中央研究所正在进行正极采用LiNi1/3Mn1/3Co1/3O2,负极为石墨的固态电池研究。固态电解质采用了日本大创株式会社(Daiso)的一种聚醚材料。为防止在正极材料与固态电解质间的界面上形成化合物而导致性能劣化,将在活性物质的表面上涂覆无机物。因正极涂覆可防止固态电解质的氧化,因而对金属锂可与电位超过4V的LiNi1/3Mn1/3Co1/3O2组合使用。

负极材料的选择需要考虑与构成电极的传导促进剂、粘接剂的匹配适用性。就导电促进剂而言,气相碳纤维(Vapor-phase carbon fiber)优于乙炔黑,而粘接剂,则丁二烯苯乙烯橡胶(styrene-butadiene rubber, SBR)比聚偏二氟乙烯(polyvinylidene difluoride, PVDF)效果更佳。

电力中央研究所定于在两、三年后向民间企业提供其固态电池技术授权,希望能于2015年看到量产的试制品。使用寿命为其商业化的主要障碍,一位CRIEPI消息人士解释说:“使用寿命对定置式

安装至关重要,我们希望能将延长使用寿命为目前的两倍左右。”

日本三重县的财团法人三重产业支援中心(Mie Industry and Enterprise Support Center),也在

利用聚合物固态电解质发展固态电池。参与这项开发的还有三重县工业研究所和已经设立了利用卷对卷方式生产线的三重大学新一代电池研发中心(图7)。

7

三重大学设置了一条采用聚合物固态电解质固态电池的试制生产线(a)。聚合物和桥接剂(bridging agent)被用来涂布正极和负极的电极薄板(b)。

据称,该固态电池采用了磷酸铁锂(LiFePO4)正极、聚氧化乙烯(polyethylene oxide, PEO)电解质薄膜与钛酸锂(Li4Ti5O12)石墨和硅复合物负极。制造时,将正极和负极所需的聚合物与桥接材料添加到含有活性物质的材料中,并涂布到电极板上,在制造工序中用电子束照射使电极膜层内聚合物分子间形成桥接。固态电解质中亦加入桥接材料,并在涂布后以同样的方法实施桥接处理。他们认为,由于这些桥接的作用,即使在低温条件下每个膜层上聚合物分子间的距离不易收缩,便于锂离子的转移。据称,这一设计,目前甚至在0℃电池也可工作。作为用途,其将可与太阳能电池、电子纸和柔性电路板结合使用。(全文完记者:狩集浩志)

xxxx年我国新能源汽车锂电池投资项目一览.doc

汽车网讯随着全球新能源电动汽车热潮的兴起,作为新能源汽车“心脏”的动力锂电池也迅猛发展。特别是在我国“十二五”发展规划中对“新能源”、“新材料”产业板块的政策重点扶植下,锂电池行业的热度再次急剧升温,受到了人们的格外重视,其巨大的市场空间被业内普遍看好。以下是盖世汽车网整理的 2010年新能源汽车锂电池投资项目。 中国比克为奇瑞新车型供应高功率车用锂电池 中国比克电池公司日前宣布中国比克为奇瑞汽车股份有限公司(“奇瑞”)在第 25届世界电动车大会暨展览会上发布的奇瑞首款锂电电动车瑞麟M1提供车载高功率锂电池。除了瑞麟M1 的新车上市发布外,奇瑞还将展出其他四款最新开发的电动车车型,包... 青岛 65.7 亿投向新材料将建全球最大锂电池基地 据了解,今年青岛海霸能源有限公司和宏耐新能源两个投资 10亿元以上的大型企业分别在胶南、即墨开建,建设生产能力为10亿安时的动力锂电池,而近日三菱化学一期投资2.6亿元的锂电池负极材料项目落户平度香店街道,建成后将成为全球最大的锂电池材料加工厂 ... 中国规模最大的锂电池生产基地落户江西 国内规模最大的锂电池生产基地日前在江西吉安落成投产。此项目总投资4亿多元,日产锂电池50多万只,产品主要用于电动汽车、储备电源、便携式设备等领域,市场前景广阔。基地的建成将大大推动吉安绿色新能源产业的发展。 航天机电闯关锂电池首条生产线落沪 上海世博会推动中国新能源汽车加速发展。记者 9月 1 3日获悉,上海航天汽车机电股份有限公司已建成上海首条车用动力锂离子电池生产示范线,年供应2000余辆纯电动轿车。此外,随着世博会人流不断增长,对新能源需求增大,上汽集团追加供应了约 100辆电动车。 9月 13 日,在通用汽车... 金龙铜管涉足锂电池

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

全固态锂电池的技术研究进展

全固态锂电池的技术研究进展 根据近期流传的技术趋势预测,全固态锂电池,可能在2030年之前实现固态电解质技术突破,单体能量密度超过500Wh/kg的目标,并且达到量产能力。今天关注一下全固态电解质锂电池。 1锂电池的种类 锂电池的分类方法比较多,可以按照正极材料类型划分,负极材料类型划分,电解液类型划分等等,我们常说的三元材料还是磷酸铁锂或者锰酸锂,就是按照正极材料划分的结果。在锂电池当前发展阶段上,锂电池性能上的差异主要表现在正极材料的差异上,因此人们习惯于用正极材料的名称给一个技术路线命名。 今后两年,高镍三元将成为量产可能性最高的一种技术路线,而含镍量的不同,又成了技术路线的名字,622、811,这是镍钴锰在三元正极材料中的占比关系。这仍然是一种针对正极材料差异的提法。 欧阳明高院士最近给出的技术路线预测中,高镍以后,能量密度达到400Wh/kg的希望,很大程度上寄托在全固态电池的身上。固态电池,相对于传统锂电池的液态电解液而言的,电解质为导电率很高的纯固态物质,这是一种针对电解液形态的命名方式。 与固态电池平行的另外两种技术路线应该可以叫做液态电解液锂电池和半固态电解液锂电池。液态电解液锂电池,传统称呼中三元、磷酸铁锂、锰酸锂都属于液态电解液锂电池范围。半固态电解液,电解质是介于固态和液态之间的状态,现在常见的材料是聚合物电解质,在常温下为凝胶态。 2全固态锂电池的优缺点 优点 1)安全性好,电解质无腐蚀,不可燃,也不存在漏液问题; 2)高温稳定性好,可以在60℃-120℃之间工作; 3)有望获得更高的能量密度。固态电解液,力学性能好,有效抑制锂单质直径生长造成

LiPON固态电解质与全固态薄膜锂离子电池制备及特性研究

LiPON固态电解质与全固态薄膜锂离子电池制备及特性研究 薄膜技术使全固态薄膜锂(锂离子)电池的制造由设想变为现实。微芯片、微机电系统以及微型存储器等微小器件在低能领域的供电需求,使全固态薄膜锂(锂离子)电池成为未来电池微小型化技术与产业发展的重要方向。基于此应用需求,本论文比较全面地开展了全固态薄膜锂离子电池中LiPON固态电解质薄膜、LiMn2O4阴极薄膜、ZnO和Si两种阳极薄膜的制备与特性研究;在此基础上,制备并研究了四种膜系结构的全固态薄膜锂离子电池,电池阴极为退火或未退火的LiMn2O4薄膜,阳极材料根据电 化学可逆反应机理分为ZnO(过渡金属氧化物型)与Si(锂合金型)两种。根据基底不同,制备的电池又分为刚性石英玻璃基底(厚度为1 mm)和柔性聚酰亚胺(PI)基底(厚度为125μm)两类。 本论文取得的主要结论与创新如下。以Li3PO4为 靶材、采用射频磁控溅射法在氮气下反应溅射LiPON固态电解质薄膜与Al/Li PON/Al三明治结构,研究固态电解质电化学特性。通过优化关键制备参数,包括 靶基距、溅射功率、工作压强以及氮氩流量比,研究并确定了LiPON固态电解质薄膜的最佳特性与制备参数。在纯氮气、低压强条件下,通过射频磁控溅射法可得到致密、无缺陷的高品质LiPON薄膜。 通过溅射手段制备Al/LiPON/Al三明治结构中不同粗糙度的底层Al电极, 进而得到不同的电解质与电极界面粗糙度,研究不同界面粗糙度时电解质的体电容、体电阻、有效面积以及激活能的变化,发现界面粗糙度的增大对离子电导率的提升有较大帮助。在不改变LiPON靶材组分与溅射工艺参数的情况下,通过增大电解质界面粗糙度使其离子电导率由1.09μS/cm增加到2.70μS/cm,达到文 献报道的较高水平。研究了退火对LiPON薄膜本征结构和电化学特性的影响规律。退火会改变LiPON薄膜中氮三配位键N与氮双配位键N的比例关系,在经历300℃1小时退火处理后,LiPON薄膜的离子电导率显著提升,从1.10μS/cm提高到 3.28μS/cm。 首次发现,LiPON薄膜可承受400℃-500℃的高温热处理,400℃退火1小时后LiPON薄膜具有1.55μS/cm的离子电导率,500℃退火1小时后仍具有0.13μ S/cm的离子电导率。证明LiPON固态电解质薄膜具有极佳的热稳定性,这对拓展

动力锂电池项目投资计划书

动力锂电池项目 投资计划书 规划设计 / 投资分析

动力锂电池项目投资计划书说明 在中国、欧洲、日韩、美国等主要国家大力发展全球新能源汽车的背 景下,全球动力锂电池市场近年来出货量保持高速增长的趋势。据统计,2019年全球动力锂电池出货量达163.2GWh,同比增长52.5%。 未来几年,随着中国新能源汽车双积分制度的实施、欧盟国家和英国 加速汽车电动化,动力锂电池在新能源汽车终端的驱动下将保持高增长的 趋势,预计到2025年,全球动力锂电池出货量将达669GWh,未来五年复合年均增长率达15.8%。 除电动汽车市场外,锂电池也成为了各大应用市场领先的电池技术, 包括移动设备、电网储能等。国际市场研究机构AdroitMarketResearch发 布的报告称,全球锂离子电池市场将在2018-2025年的预测期内以14.3%的复合年增长率增长,预计到2025年,全球锂离子电池市场规模估计将超过1000亿美元。易于获得、高能量密度、低放电率和长寿命周期是使锂离子 电池优于同类产品的一些关键特性,并有望促进全球市场收入。 中国(青海)锂产业与动力电池国际高峰论坛发布的《锂电池产业发展 报告(2018)》显示,中国、日本和韩国已基本主导了全球锂动力电池市场。报告显示,在锂动力电池产业发展方面,中日韩三方均有优势:日本技术 实力雄厚,产业自动化程度好,产品质量高;韩国技术水平略低于日本,但

凭借其特有的大财团优势,可集中资源重点发展;中国借新能源汽车产业的 先发优势,动力电池产业进入了快速成长阶段,已经成为全球最大锂动力 电池生产国,全球十大动力电池企业有七家在中国。 报告同时指出,与中日韩三国相比,欧美虽然还没有动力电池巨头企业,但汽车工业和化工工业发达,创新研发能力强,尤其是近些年汽车企 业向电动化转型的趋势已经非常明显,这将对欧美发展动力电池产业有很 强的吸引力和带动作用。 未来几年,随着传统燃油车企业加大对新能源汽车领域的布局,全球 动力锂电池市场需求量将保持高速增长的态势。同时,受新能源补贴政策 影响,动力锂电池企业的成本压力逐渐提高,国内外主流的动力锂电池企 业纷纷宣布大幅扩产,以提高公司产销规模,扩大规模化效应,降低单位 产品的生产成本,以应对新能源产业的快速发展。 从技术发展的角度来看,车用动力电池技术是制约电动汽车产业化进 程的瓶颈技术,随着电动汽车产业化进程逐步深入,各国及重点企业均加 大力度发展动力电池产业,基于新材料和结构的高比能动力电池技术已经 成为各国竞争焦点,大力提升目前车用动力电池安全性、寿命、低温特性,降低成本是产业技术发展的方向。 在美国、日本、欧盟、德国、韩国等国家科技规划以及重点企业战略 规划中多次提及新体系结构车用动力电池技术,重点关注高性能电池材料、高性能锂离子动力电池(致力于寿命、能量密度和安全性提升)、高性能电

锂离子动力电池材料项目运营总结报告

锂离子动力电池材料项目运营总结报告 一、锂离子动力电池材料宏观环境分析(产业发展分析) 二、2018年度经营情况总结 三、存在的问题及改进措施 四、2019主要经营目标 五、重点工作安排 六、总结及展望

尊敬的xxx公司领导: 行业的快速增长也带来锂离子电池产能的快速扩张。2014年之前,我国锂离子电池企业的产能利用率一直保持在30%以下,产能过剩极为严重。而从2014年下半年开始,受益于新能源汽车产销量的爆发,锂 离子动力电池的需求快速增加,产能利用率开始上升,达到60.22%, 随即为了满足下游新能源汽车持续高增长带来的强劲需求,锂离子电 池企业开始纷纷投资建设锂离子动力电池生产线,扩大生产产能,根 据高工锂电的统计,2016年中国锂离子动力电池新增产能达42GWh, 相比2015年增长了180.00%。但未来,新能源汽车的产量仍将保持高 速增长,根据《节能与新能源汽车产业发展规划(2012-2020年)》,2020年我国新能源汽车产量将达到200万辆,可对新增产能形成有效 的支撑。 新能源汽车行业经历了连年的高速增长后,在2019年受补贴退坡 的影响,产销增速出现放缓,2019年新能源汽车分别实现产销124.2 万辆和120.6万辆,同比分别下降2.3%和4.0%,预示着市场的阶段性 调整已经开启。核心市场发展过度依赖政策驱动,退坡引发的市场冲 击导致消费者需求趋于理性,产品自身的实力成为影响消费者决策的 关键。在此背景下,北汽新能源EU系列销量领先,2019年销量突破十

万辆。受全球各国对新能源汽车扶持政策加码的影响,国内扶持政策 维持或加大力度的预期增强。2019年12月3日,工信部发布《新能源汽车产业发展规划(2021-2035年)》征求意见搞:主要目标为:2025 年新能源汽车销量占比25%。 未来,工艺出色或与整车厂关系密切的企业将在行业中脱颖而出。在锂离子动力电池产能快速扩张的背景下,锂离子电池生产厂商之间 需要比拼的是技术与成本。技术方面,一般难以在短期内出现革命性 的突破,锂离子电池生产厂商均在为生产更大容量、轻量化电池组做 技术研发的储备;成本方面,行业领先企业拥有明显规模效应,以及 优于行业平均水平的良品率,出色的成本控制能力使得该等企业会在 销售价格上具有较大的主动权。此外,基于下游整车厂不会轻易更换 锂离子电池厂商的特性,锂离子电池厂商与下游整车厂会形成较为长 期稳定的供应关系,客户粘性较强,使得锂离子电池厂商具有明显的 客户优势,在市场竞争中脱颖而出。 在新时期和新的历史条件下,全公司坚定信心、求真务实、开拓 进取、砥砺前行,加快形成引领经济发展新常态的体制机制和发展方式,统筹推进企业可持续发展。一年来,面对经济下行的严峻形势, 公司致力于止下滑、保运行、蓄势能,着力夯实核心业务发展基础。

体型无机全固态锂离子电池研究进展

第45卷第6期2017年6月 硅酸盐学报Vol. 45,No. 6 June,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/6b7868243.html, DOI:10.14062/j.issn.0454-5648.2017.06.06 体型无机全固态锂离子电池研究进展 陈凯1,程丽乾2 (1. 中国商用飞机有限责任公司北京民用飞机技术研究中心,北京 102211; 2. 中国矿业大学(北京)材料科学与工程系,北京 100083) 摘要:体型无机全固态锂离子电池具有无安全隐患、使用温度范围广、能量密度高以及循环寿命长等优势,是未来锂离子电池的发展趋势,然而高性能全固态电池的制备仍然是研究中的难点和热点。围绕不同的制备方法,对体型无机全固态锂离子电池的结构设计、界面问题、容量性能、能量密度和循环性能的研究进展进行综述,并着重讨论了提高固态电解质综合性能、改善电极层与固态电解质层间界面问题以及合理设计电池结构的原则和方法。 关键词:全固态;锂离子电池;固态电解质;无机;体型 中图分类号:TQ174.75 文献标志码:A 文章编号:0454–5648(2017)06–0785–08 网络出版时间:2017–05–02 14:40:49 网络出版地址:https://www.wendangku.net/doc/6b7868243.html,/kcms/detail/11.2310.TQ.20170502.1440.006.html Development on Bulk-type Inorganic All-solid-state Lithium Ion Batteries CHEN Kai1, CHENG Liqian2 (1. Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China; 2. Department of Materials Science and Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China) Abstract: The bulk-type inorganic all-solid-state lithium ion batteries possess some advantages like no safety concern, wide operation temperature range, high energy density and long cycling life. However, the fabrication of high-performance all-solid-state lithium ion batteries is still a challenge. Recent development on the structure design, interface problem, capacity performance, energy density and cycling property of the bulk-type inorganic all-solid-state lithium ion batteries fabricated by different methods was reviewed. In addition, the principles and methods to improve the combination properties of solid electrolyte, modify interfaces between electrode layer and solid electrolyte layer, and design battery structures were also discussed. Keywords: all-solid-state; lithium ion battery; solid electrolyte; inorganic; bulk-type 锂离子电池能量密度高、稳定性强、无记忆效应、循环寿命长,作为一种商业化的高效储能器件得到了广泛应用。尽管发展历史较短,锂离子电池在便携式电子设备等领域成功取代了原有的镍氢电池和镍镉电池。在电动汽车、储能电站、新能源利用等领域,锂离子电池也扮演着极其重要的角色[1]。波音公司最新型的B787飞机首次在民航客机中使用锂离子电池,实现了飞机减重和简化维修等目的,表明了锂离子电池在民用航空领域也有潜在的应用前景。 然而,由于商用锂离子电池中使用易燃的有机电解液,当电池处于高温、短路、过充或者物理损伤等状态时,极易引发火灾甚至爆炸[2]。商用锂离子电池在封装时会采用适当的保护机制,但是仍然存在较大的安全隐患[3] 。近年来由于锂离子电池火灾引发的智能手机、电动汽车、民航飞机等安全事故时有发生,极大地限制和影响了锂离子电池的实际应用。 无机全固态锂离子电池使用不可燃或不易燃的无机固态电解质代替商用锂离子电池中的有机电解液,可以从根本上解决锂离子电池的安全问题[4–6]。同时,无机全固态锂离子电池相比传统商用锂离子 收稿日期:2016–12–04。修订日期:2016–02–05。 基金项目:国家自然科学基金(51602345);新型陶瓷与精细工艺国家重点实验室(清华大学)(KF201512)。 第一作者:陈凯(1987—),男,博士,工程师。Received date:2016–12–04. Revised date: 2016–02–05. First author: CHEN Kai(1987—), male, Ph.D., Engineer. E-mail: chenkai4@https://www.wendangku.net/doc/6b7868243.html,

Q2057W锂电池充电器原理(适用)

摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器BQ2057 1 引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。 元件型号 BQ2057 BQ2057C BQ2057T BQ2057W 8.4V BQ2057的引脚功能描述如下: ?VCC (引脚1):工作电源输入; ?TS (引脚2):温度感测输入,用于检测电池组的温度; ?STAT(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; ?VSS (引脚4):工作电源地输入; ?CC (引脚5):充电控制输出; ?COMP(引脚6):充电速率补偿输入; ?SNS (引脚7):充电电流感测输入; ?BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。

全固态3D薄膜锂离子电池的研究进展

全固态3D薄膜锂离子电池的研究进展 作者:邓亚锋钱怡崔艳华刘效疆来源:本站浏览数:289 发布时间:2013-8-8 16:28:16 0 引言 全固态薄膜锂离子电池主要由正/负极薄膜、电解质和集流器薄膜组成.整个电池厚约10 μm,可设计成任意形状和大小集成在IC电路中,是便携式电子设备、微电子机械系统(MEMS)以及微型国防技术装备(如微型智能武器)的理想能源。全固态平面薄膜电池(图1)受限于几何结构,能量和功率密度难以满足快速发展的MEMS、微型医疗器械、无线通信、传感器等领域对微电源的要求。全固态三维薄膜锂离子电池(简称3D锂电池)通过独特的构架设计(图2),增大单位立足面积内电极活性物质负载量,并缩短锂离子扩散半径,提高了电池的容量和充放电速率。是解决未来微电子器件能量需求的一种有效方式,引起了人们的极大关注。 1 不同构架的全固态3D薄膜锂电池 1.1 叉指碳柱3D电池 叉指碳柱3D电池由加利福尼亚大学Wang小组于2004年首次提出(图3),在Si/SiO2衬底上涂覆感光胶,光刻得到图形,再经过高温热解及后处理,即制得正/负极叉指状碳柱3D电池。叉指碳柱既可以直接作为电极,又可以作为集流器,在其表面沉积各种电化学活性物质。2008年,Min等研究了在叉指碳柱上电镀十二烷基苯磺酸盐掺杂聚吡咯(PPYDBS)导电聚合物薄膜的方法。结果表明,覆盖约10 μm厚PPYDBS的叉指阴极(C-PPYDBS),电极电位从碳电极的3.2 V提高到了3.7 V(相对于Li/Li+),但自放电较为严重,电池的放电容量远小于充电电容。 为改善叉指碳柱电极性能,Teixidor等制备出包覆中间相碳微球的叉指碳柱(C-MCMB),有效提高了电极不可逆容量,但可逆容量仍较低。Chen等在叉指碳柱上包覆碳纳米管(CNT/C-MEMS)使单位立足面积电容达到8.3 F/cm2,充放电循环性能得到显著提高。 叉指碳柱电极成本低、热力学和化学稳定性好、易制成各种形貌、能包覆不同的活性材料(图4),光刻-热解工艺较为成熟,适合工业化生产。但是,叉指结构放电不均匀、漏电流较大、碳柱在锂离子嵌入和脱出过程中易变形破损,这些问题需进一步研究解决。 1.2 微通道衬底3D电池 1998年,以色列特拉维夫大学的Peled小组首次报道了微通道衬底3D 电池(3D-MCP);在Si片或玻璃上蚀刻出均匀分布、直径为15~50 μm的微通

锂离子电池项目合作方案

锂离子电池项目 合作方案 规划设计/投资分析/实施方案

锂离子电池项目合作方案 锂电池主要应运在动力锂电池及3C数码类电子产品等领域,鉴于3C 数码类电子产品逐渐趋于饱和,增长动力不足,目前动力电池是锂电池需 求增长的主要驱动力。根据中汽协数据,2018年1-12月,国内新能源汽车累计产销量分别为127.0万辆、125.6万辆,同比分别增长59.9%、61.7%,国内新能源汽车全年产销量继续实现高增长,预计到2020年,国内纯电动 汽车和插电式混合动力汽车生产能力将达200万辆、累计产销量将超过500万辆。国际方面,根据EVTank数据,基于对汽车动力锂电池发展前景的持 续看好,2020年全球锂离子电池出货量有望达到265GWh,其中汽车动力锂 电池出货量占比将近60%。新能源汽车的高速发展对锂电池产生了巨大的需求,同时促进市场对动力型锂电池正极材料的需求。 该锂离子电池项目计划总投资8558.62万元,其中:固定资产投资7258.37万元,占项目总投资的84.81%;流动资金1300.25万元,占项目 总投资的15.19%。 达产年营业收入11683.00万元,总成本费用9079.98万元,税金及附 加145.54万元,利润总额2603.02万元,利税总额3107.60万元,税后净 利润1952.26万元,达产年纳税总额1155.33万元;达产年投资利润率

30.41%,投资利税率36.31%,投资回报率22.81%,全部投资回收期5.88年,提供就业职位241个。 报告根据项目工程量及投资估算指标,按照国家和xx省及当地的有关规定,对拟建工程投资进行初步估算,编制项目总投资表,按工程建设费用、工程建设其他费用、预备费、建设期固定资产借款利息等列出投资总额的构成情况,并提出各单项工程投资估算值以及与之相关的测算值。 ......

锂电池保护电路

锂电池保护电路 锂电池过充电,过放电,过流及短路保护电路 下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个 MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能. 锂电池保护工作原理: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

2022年进入终端市场全面解读全固态锂电池

2022年进入终端市场!全面解读全固态锂电池 全固态锂电池从20 世纪50 年代就开始研究,已历时半个多世纪。近年来,面向电动汽车应用的全固态锂电池终于开始从实验室走向产业化小批量制造。目前,在新型化学电源领域的各类公开场合“全固态锂电池”的出现频率越来越高,业内也基本形成了共识:全固态锂电池有望作为下一代动力电源进入市场,但究竟什么是全固态锂电池?相信也有很多人存在着困惑,为此,我们特写此文以求为全固态锂电池“正名”,以供大家参考。 1全固态锂电池的概述 全固态锂电池,是一种使用固体电极材料和固体电解质材料,不含有任何液体的锂电池,主要包括全固态锂离子电池和全固态金属锂电池,差别在于前者负极不含金属锂,后者负极为金属锂。 图一:传统液态锂离子电池与全固态锂离子电池示意图 从出现的时间节点来看,全固态金属锂电池要早于液态锂离子电池,只不过在早期,全固态金属锂电池的电化学性能、安全性、工程化制造方面一直无法满足应用要求。液态锂离子电池通过不断改进,综合技术指标逐渐满足消费电子类市场应用需求,后来被更多的市场所接受。从技术发展趋势来看,相比液态锂离子电池,全固态金属锂电池有可能具有安

全性能好、能量密度高和循环寿命长等优点。近年来,固体电解质材料,特别是硫化物电解质材料在离子电导率方面取得了重大突破,因此全固态锂电池技术渐渐开始引起世界范围内的研发机构和大型企业的重视。 2全固态锂电池的分类 伴随着全固态锂电池热的兴起,各种“全固态”或“固态”概念的锂电池相继出现,存在着混淆概念的现状。特将已出现的七类跟固态锂电池相关的概念进行了梳理,并进行了初步的总结。 液态锂电池:电芯在制造过程中不含有固体电解质,只含有液体电解质的锂电池,包括液态锂离子电池和液态金属锂电池。 凝胶电解质锂电池:电芯中液态电解质以凝胶电解质形式存在,电芯中不含固体电解质,这实际属于液态锂离子电池范畴。 半固态锂电池:电芯电解质相中,质量或体积的一半是固体电解质,另一半是液体电解质;或者电芯中一端电极是全固态,另一端电极中含有液体。 准固态锂电池:电芯的电解质中含有一定的固体电解质和液体电解质,液体电解质的质量或体积小于固体电解质的比例。固态锂电池:电芯中含有较高质量或体积比的固体电解质,同时含有少量液体电解质的电池,被一些研究人员称之为“固

全固态薄膜锂离子二次电池的研究进展

论 著8 全固态薄膜锂离子二次电池的研究进展 耿利群任岳*朱仁江陈涛 (重庆师范大学物理与电子工程学院,重庆 400047) 摘 要:本文综述了全固态薄膜锂离子二次电池的研究进展,主要阐述了薄膜锂电池的结构设计以及正极、负极和固体电解质材料研究现状,并对其今后的发展趋势及研发热点进行了展望。 关键词:全固态薄膜锂离子二次电池;固体电解质;电池结构 DOI:10.3969/j.issn.1671-6396.2013.01.004 1 引言 随着电子信息工业和微型加工技术快速发展,对其所需的微型能源则提出了特殊微型化的要求。其中全固态薄膜锂离子二次电池因其高的能量密度、强的安全性、长的循环寿命、宽的工作电压和重量轻等优点,成为微电池系统需求的最佳选择[1]。本文主要介绍了全固态薄膜锂离子二次电池的关键性薄膜材料及电池结构的研究现状,并对其的开发应用及研究前景作了分析。 2 全固态薄膜锂离子二次电池结构的研究 薄膜电池结构的设计,对整个电池性能将产生直接的影响;同样对提高电池的能量密度、循环寿命和锂离子的传输速率也起到至关重要的作用。所以优化薄膜电池结构的设计,则是对构造高性能薄膜锂离子电池做到了强有力的支撑。 1993年美国橡树岭国家实验室(ORNL)Bates等[2]研制出了一种经典的薄膜锂离子电池叠层结构(见图1)。在衬底上先沉积两层阴阳极电流收集极薄膜,而后依次沉积阴极、固体电解质和阳极薄膜,最后在薄膜电池外表面上涂一层保护层,以此来防止阳极上金属锂和空气中的一些物质发生化学反应。 图1 薄膜锂离子电池结构剖面示意图 Baba等[3]研发出另一种典型的薄膜锂离子电池结构(见图2)。其较图1薄膜锂电池结构设计更为简单,制作更为容易。在不锈钢衬底上依次沉积各层薄膜电池材料,而在图示中有两个引线端子则是为了便于薄膜电池的连接使用。这种结构设计很好地提高了整个电池的有效面积,进而也极大地改善了薄膜电池的性能。 Nakazawa等[4]利用直流溅射和射频溅射的方法,研制出一种“直立型”全固态薄膜锂离子电池结构(见图3)。该研究小组利用该薄膜电池结构设计,成功制备出有效面积更大的全固态薄膜锂离子电池,这样也使得薄膜电池的能量密度和循环寿命等电化学性能得到大幅度提升。 图2 全固态薄膜锂离子电池结构剖面示意图 图3 “直立型”全固态薄膜锂离子电池剖面示意图 Hart等[5]设计了柱状电极交替排列的微型锂电池结构(见图4)。并对几种不同的正极、负极排列方式进行了相关的研究计算,得出了此薄膜电池的结构能够大大提升薄膜电池本身的能量密度。然而Eftekhari[6]则研制出了一种3-D微型锂电池结构的LiMn2O4电极,与以往微型锂电池结构的LiMn2O4电极在电池容量方面得到了提升。 图4 3-D微电池柱状结构示意图 [正极(灰色) 、负极(白色)交替排列分布]

全固态锂电池

以固态电解质取代传统液体有机电解液的固态电池正吸引越来越多的关注。电动车(EV)和定置式蓄电用途的大型电池的应用需求激增,可期待安全与长寿命的固态电池正在成为一个候选产品。在追求高容量化的新一代电池方面,固态电解质扮演角色的重要性也在日益提高。但目前固态电解质仍然存有不少问题。本文追寻着开发全固态电池的企业、大学和研究机构的脚步,探索固态电池通向实用化之路。 “只用固体材料即可实现电池功能的认识终于被人们普遍接受”日本东京工业大学研究生院综合理工学研究科物质电子化学专业教授菅野了次感慨道。 采用固态电解质的的大容量新一代电池,即所谓“全固态电池”近来开始受到瞩目。这是由于其在能量密度提高的同时,还可望确保安全性和实现长寿命化(图1)。 1 电动车和定置式用大型锂离子充电电池而言,保证安全是最重要的。并且,希望长寿命化的呼声也很高,许多电池使用者希望“锂离子充电电池采用固体电解质”。而在便携设备市场上,业者们似在考虑使用固态电解质来开发能量密度超过300Wh/kg的后锂离子充电电池。 采用有机电解液的传统锂离子充电电池,因有过度充电、内部短路等异常时可能导致电解液发热,有自燃或甚至爆炸的危险。而将有机电解液代之以固态电解质的全固态电池,其安全性可大幅提高。并且,因在理想状态下,固态时锂的扩散速度(离子传导率)较液体电解液时高,理论上认为其可实现更高的输出。 并且,固态电池包括其制造方式在内,可能会实现突破现有电池概念的特性。例如,因不必封入液体,则电池外装可以简化,从而能以卷对卷(roll-to-roll)方式制造大面积单元。进一步,还可将数层电极层积,并在单元内串联,制作12V或24V的大电压单元等,使此前不可能的电池得以实现。 实际上,电池相关学会也称,近年来关于固态电池的论文数目在增加。其中最有兴趣的积极参与者是丰田汽车公司。近1、2年,其以将来适用于车载的电池为目标的论文大幅增加。 对固态电池抱有强烈兴趣的,并非只有丰田公司一家。出光兴产(Idemitsu Kosan)在展示会上以2012年实用化为目标,展示了约A6大小的固态电池,日本中央电力研究所(Central Research

全固态薄膜锂电池及其阴极薄膜材料制备技术

- -43 2010年第12期(总第147期) NO.12.2010 (CumulativetyNO.147) China Hi-Tech Enterprises 摘要:电子产品小型化、微型化、集成化成为当今技术发展的大趋势,从而需要电池的微型化。微电池在未来便携式 电子设备、国防装备及微电子机械系统 (MEMS )等方面有着广泛的应用前景, 受到人们的重视。文章介绍了全固态薄膜锂电池的原理和结构,以及阴极薄膜的制备技术,展望了全固态薄膜锂电池的应用前景。关键词:微电池;全固态薄膜锂电池;阴极薄膜;溅射法;脉冲激光沉积法;电子束蒸发法中图分类号:TM911 文献标识码:A 文章编号:1009-2374 (2010)12-0043-03全固态薄膜锂电池及其阴极薄膜材料制备技术 梁 科 (中国民航飞行学院航空工程学院电子教研室,四川 广汉 618307) 电子产品小型化、微型化、集成化成为当今技术发展的大趋势,从而需要电池的微型化。微电池在未来便携式电子设备、国防装备及微电子机械系统 (MEMS) 等方面有着广泛的应用前景, 受到人们的重视。目前,国内外积极开展研究的微电池系列有:锂电池、锌镍电池、太阳能电池、燃料电池等。其中全固态薄膜锂电池由于具有重量轻、体积小、循环寿命长、能量密度高、使用温度范围宽和安全性能好等优点已成为目前研究的热点。 全固态薄膜锂电池主要由阴极膜、阳极膜和电解质膜构成,其电池性能的主要决定于阴极材料的性能,所以薄膜锂电池的性能也取决于阴极薄膜的性能。近年来,如何成功获得性能优良的阴极材料成为热门前沿课题之一,美国、日本、韩国、英国、欧共体等一些大公司和研究机构纷纷致力于阴极膜研究和开发。本文旨在介绍全固态薄膜锂电池结构和原理,并总结阴极薄膜的制备技术,以期为全固态薄膜锂电池的研究提供参考。 一、全固态薄膜锂电池的结构和原理 电池的结构也极大地影响着电池的性能,它密切关系到电池的容量和Li + 离子的传输速率。最优化的构件方式是组成高性能薄膜锂电池的重要条件。图1给出了典型的薄膜锂电池的结构型,主要部分是阴极模、固体电解质膜和阳极膜。可以通过某种基底(如单晶硅片)上依次沉积阴极电流收集极、阴极膜、固体电解质膜、阳极膜、阳极电流收集极构成简单的薄膜锂电池。除了电流收集端(通常用导电金属附着在基片表面制备)以外,全固态薄膜锂电池的阴极、阳极、电解质 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。(4)杂散输出与噪声。 在发射系统中,射频末级功率放大器输出功率的范围可小至毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。为了要实现大功率输出,末级功率放大器的前置放大电路必须要有足够高的激励功率电平。根据工作频率和输出功率等要求,可以采用FET、射频功率集成电路等作为射频功率放大器。本系统采用了日立公司的功率放大芯片PF01411A 来实现完成该任务,如图6所示。PF01411A 具有线性失真小,输入功率要求低 (0dBm 即可),增益控制范围可达90dB,效率可达 45%,最大输出功率可达5W。MCU 可通过电压控制端Vapc 来对输出增益进行控制,以实现对射频输 出功率的控制。 图6 输出功率可控的射频功率放大电路 三、结语 本文研制改进了零中频解调技术、载波电路、信号调制电路及射频功率放大电路,特别是对读卡器的重要组成部分——射频信号处理单元作了深入的研究,实验表明,研制电路的简单、实用、可靠。参考文献 [1] ISO/IEC FDIS 18000一6:2003(E ),Information tech-nology automatic identification and data capture techniques 一Radio frequency identification for item management air inter-face 一Part 6: Parameters for air interface commnnications at 860-960MHZ[S]. [2]段研.RFID 国际标准18000系列使用中的问题[J].2008,(6). [3]郎为民,陶少国,杨宗凯.RFID 标准化体系研究[J].电子器件应用,2006,(8).作者简介:赖树明 (1981-),男,广东茂名人,东莞理工学院电子工程学院助教,研究方向:多功能电子测量仪。

相关文档
相关文档 最新文档