文档库 最新最全的文档下载
当前位置:文档库 › 微分方程练习题

微分方程练习题

微分方程练习题
微分方程练习题

第7章 微分方程练习题

习题7.1

1.选择题

(1)( )是微分方程

((A ))dx x dy )14(-=. ((B )) 12+=x y . ((C )) 0232

=+-y y . ((D ))?

=0sin xdx . (2)( )不是微分方程

((A ))03=+'y y . ((B )) x x dx

y

d sin 32

2+=. ((C )) 0232=+-y x y . ((D )) 0)()(2

222=-++dy y x dx y x .

(3)微分方程x xy y sin 43)(2

=+'的阶数为( )

((A )) 2. ((B )) 3. ((C )) 1. ((D )) 0. 2.判断函数是否为所给微分方程的解(填“是”或“否”) (1)25,

2x y y y x =='. ( )

(2) C y x x y x y y x =+--='-22,2)2(. ( )

(3)

C x y y dy

dx

+==+arccos ,0sin . ( )

(4) x

y y x y 1

,2

2

=

+=''. ( ) 习题7.2

1.解微分方程

(1) x dx dy 1=. (2) 2

211x

y dx dy --=.

(3) y

x e y -='2. (4)0)1()1(2

2=++-dx y x dy x y .

(5) 4,2

12

==+'=x y y xy y x .

2.解微分方程

(1) 0)()(=-+'+y x y y x . (2) dx

dy

xy

dx dy x y =+2

2. (3) x

y

x y y tan +='.

3.解微分方程 (1) x

e

y y -=+'. (2) 1sin cos =+'x y x y .

1.选择题 (1)( )是微分方程

((A ))dx x dy )14(-=. ((B )) 12+=x y . ((C )) 0232

=+-y y . ((D ))?

=0sin xdx . (2)( )不是微分方程

((A ))03=+'y y . ((B )) x x dx

y

d sin 32

2+=. ((C )) 0232=+-y x y . ((D )) 0)()(2

222=-++dy y x dx y x .

(3)微分方程x xy y sin 43)(2

=+'的阶数为( )

((A )) 2. ((B )) 3. ((C )) 1. ((D )) 0. 2.判断函数是否为所给微分方程的解(填“是”或“否”) (1)25,

2x y y y x =='. ( )

(2) C y x x y x y y x =+--='-22,2)2(. ( )

(3)

C x y y dy

dx

+==+arccos ,0sin . ( )

(4) x

y y x y 1

,2

2

=

+=''. ( ) 习题7.2

1.解微分方程

(1) x dx dy 1=. (2) 2

211x

y dx dy --=.

(3) y

x e y -='2. (4)0)1()1(2

2=++-dx y x dy x y .

(5) 4,2

12

==+'=x y y xy y x .

2.解微分方程

(1) 0)()(=-+'+y x y y x . (2) dx

dy

xy

dx dy x y =+2

2

. (3) x

y

x y y tan +='.

3.解微分方程 (1) x

e y y -=+'. (2) 1sin cos =+'x y x y .

(3)

3,12=+=+=x y x

x x y dx dy .

(4) 2y x y dx dy +=. (5) y

y x y 2sin cos 1

+='.

习题7.3

1.解下列微分方程

(1) 2

x y =''. (2) 2,1,300='==''==x x y y y y .

(3) x y y ='-''. (4) 0='+''y y x .

(5) 0)(2

='-'-''y y y y . (6) 1,1,00='=''='==x x y y y y y .

2.解下列微分方程

(1)02=-'+''y y y . (2) 09=-''y y .

(3) 044=+'+''y y y . (4) 0,2,03400='-==+'-''==x x y y y y y .

(5) 0,2,04400='==+'+''==x x y y y y y .

3.解下列微分方程

(1) 1332+=-'-''x y y y . (2) x

e y y y 232=-'-''.

(3) 7

33,7

6,910002=

'=

=+'-''==x x x

y y e y y y .

(4) x y y y 2sin 82=-'+''. (5) x y y sin =+''.

(6) 1,1,02sin ='==++''==ππx x y y x y y .

习题7.4

1.一条曲线通过点)1,0(P ,且该曲线上任一点),(y x M 处的切线斜率为2

3x ,求这曲线的方程.

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

常微分方程期中考试题

常微分方程期中测试试卷(1) 一、填空 1 微分方程 ) (2 2= + - +x y dx dy dx dy n 的阶数是____________ 2 若 ) , (y x M和) , (y x N在矩形区域R内是) , (y x的连续函数,且有连续的一阶偏导数,则 方程 ) , ( ) , (= +dy y x N dx y x M有只与y有关的积分因子的充要条件是 _________________________ 3 _________________________________________ 称为齐次方程. 4 如果 ) , (y x f___________________________________________ ,则 ) , (y x f dx dy = 存在唯 一的解 ) (x y? =,定义于区间h x x≤ - 0上,连续且满足初始条件 ) ( x y? = ,其中 = h_______________________ . 5 对于任意的 ) , ( 1 y x,) , ( 2 y x R ∈ (R为某一矩形区域),若存在常数)0 (> N N使 ______________________ ,则称 ) , (y x f在R上关于y满足利普希兹条件. 6 方程 2 2y x dx dy + = 定义在矩形区域R:2 2 ,2 2≤ ≤ - ≤ ≤ -y x上 ,则经过点)0,0(的解 的存在区间是 ___________________ 7 若 ) ,..... 2,1 )( (n i t x i = 是齐次线性方程的n个解,)(t w为其伏朗斯基行列式,则)(t w满足 一阶线性方程 ___________________________________ 8若 ) ,..... 2,1 )( (n i t x i = 为齐次线性方程的一个基本解组, )(t x为非齐次线性方程的 一个特解,则非齐次线性方程的所有解可表为 _________________________ 9若 ) (x ?为毕卡逼近序列{})(x n?的极限,则有≤ -) ( ) (x x n ? ? __________________ 10 _________________________________________ 称为黎卡提方程,若它有一个特解 ) (x y,则经过变换___________________ ,可化为伯努利方程. 二求下列方程的解 1 3 y x y dx dy + = 2求方程 2 y x dx dy + = 经过 )0,0(的第三次近似解 3讨论方程 2 y dx dy = , 1 )1(= y的解的存在区间 4 求方程 1 ) (2 2= - +y dx dy 的奇解

常微分方程期末考试题大全东北师大

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

北京理工大学数学专业偏微分方程期末试题2014级A卷(MTH17178)

课程编号:MTH17178 北京理工大学2016-2017学年第一学期 2014级偏微分方程期终考试(A ) 1.(10分)利用特征线方法求解一阶波动方程初值问题:()22,,0,0,t x x u u u x t u x e x -+=∈>???=∈?? 。 2.(10分)利用Fourier 变换方法求解:()() (),,,0,0,t x u bu cu f x t x t u x x x ?--=∈>???=∈?? 。 3.(10分)利用行波法求解:()()()()0,,,0,,0 tt xx u u t x u x x x x u x x x x ?ψ?-=>?-=?。 给出适当的相容性条件。如果?在(],0a -上给定,ψ在[)0,b 上给定,给出其决定区域。 4.(15分)求解初边值问题:()()()20,01,00,0,1,0,0,0,01 t xx x x u a u u x t u t u t t u x A x ?-+=<<>?==>??=<?==∈??=+=≥? 推导边界条件齐次化的公式(不需要解方程)。 6.(13分)对于有界区域()(],0,T Q a b T =?上的热方程()2 ,0t xx u a u c x t u -+=,其中(),c x t 下有界,证明如果(),u x t 在抛物边界上非正,则(),u x t 在T Q 上非正。 7.(15分)考虑波动方程初边值问题[]()()()()[]()()()20,0,,0,0,,0,0,0,0,,,0,0 tt xx t x x u a u x L t u x x u x x x L u t u L t u L t t ?ψσ?-=∈>?==∈??=+=≥?,其中 0σ>,令t 时刻的能量()()()22222011,22 L t x E t u a u dx a u L t σ=++?,证明()E t 守恒,并由此证明相应的一般非齐次方程非齐次初边值问题的解的唯一性。 8.(20分)设() ()1,02,1T T u C Q C Q ∈ 且满足初边值问题()()()()[]()()[] ,,,,0,0,0,,0,0,t xx T x u u f x t x t Q u x x x L u t u L t t T ??-=∈?=∈??==∈?,证明:[]()()()()22220000000,sup ,,,L T L L T L x t T u x t dx dt u x t dx M x dx dt f x t dx ?∈??+≤+??????????,其中M 仅依赖于T 。 提示:Gronwall 不等式:设(][]1 0,0,G C T C T ∈ ,()00G =,且对于任意的[]0,t T ∈,有()()()G t CG t F t '≤+,其中C>0,F 非负单调递增,则有 ()()()()()11,Ct Ct G t C e F t G t e F t -'≤-≤。

偏微分方程期末试题A卷

安徽大学20 08 —20 09 学年第 二 学期 《 偏微分方程 》考试试卷(A 卷) (闭卷 时间120分钟) 院/系 年级 专业 姓名 学号 一、填空题(每小题3分,共15分) 1.对常系数方程x y z u au bu cu du f ?++++=作未知函数的变换 可以将所有一阶微商消失. 2.设:R R Φ→是光滑凸函数,(,)u x t 是热传导放程0t u u -?=的解,则()u Φ是热传导方程 的 (下解;上解;解). 3.上半平面的Green 函数G(x,y)为 ,其中12(,)y y y =为上半平面中某固定点. 4.设函数u 在以曲面Γ为边界的区域Ω内调和,在ΩΓ 上有连续的一阶偏导数,则u dS n Γ ????= ,其中n 是Γ的外法方向. 5.热传导方程2()0t xx yy u a u u -+=的特征曲面为 .

二、计算题(每小题10分,共40分) 1.求解初值问题 0,(,)(0,)(,0),,t x u bu cu x t R u x g x R ++=∈?∞??=∈? 其中,,b c R ∈都是常数. 2.试用延拓法求解半有界直线上的热传导方程的边值问题: 200 0,0,0,|(), |0.t xx t x u a u x t u x u ?==?-=>>? =??=?

3.试求解 2 2 008(), |,|.tt xx yy zz t t t u u u u t u xy u z ==?-++=??==?? 4.写出定解问题: 200 (),0,0,|0,|0, |().t xx x x l t u a u f x x l t u u u g x ===?-=<<>? ==??=? 解的一般形式.

最新偏微分方程期末复习笔记

《偏微分方程》期末考试复习 一、波动方程(双曲型方程)U tt -a 2U xx 二f (x,t) (一)初值问题(柯西问题) < 2 U tt —a U xx = f(x,t) 1、一维情形 Ut t^a (x) (1) 解法(传播波法): 由叠加原理,原初值问题的解可表示为下述初值问题的解之 和, * 2 * 2 U tt —a U xx =o U tt —a U xx = f (x,t) (i) J U t^=

②决定区域:区间[x1,X2】的决定区域为:{(x,t)|捲? at込x込X2-at}

偏微分方程期末考试试题(06)

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、(15分)写出三类典型泛定方程并分别说明其名称和特点. 二、(10分)求一维波动方程()()()()()22 222 ,,0,0,,0t u u a x t t x u x x u x x ?ψ???=-∞<<+∞>?????==? 的通解. 三、(15分)写出达朗贝尔公式并利用公式求解 ()()()2,0,,0sin ,0cos tt xx t u a u t x u x x u x x ?=>-∞<<+∞? =?? =? 四、(10分)计算积分()32x J x dx -?. 五、(15分)设1,1≥≥n m ,证明 ()()()dx x p x m dx x p x n m n m n m ??--=++1 111 1 六、(15分)用分离变量法求解 ()()()()()20,0,0,00,,00,0,,0 tt xx t u a u x l t u x u x x u t u l t ?-=<<>? ==?? ==? 七、(10分)解固有值问题()()()''0,''0 y y l x l y l y l λ+=-<

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、解:波动方程:()22 2,u a u f t x t ?=?+? 热传导方程: ()2,u a u f t x t ?=?+? 位势方程:()u f x ?= ……………………….5分 其中()12,,,n x x x x = ,a 为常数,(),f t x 及()f x 为已知函数,在波动方程及 热传导方程中,未知函数u 是时间变量t 和空间坐标变量()12,,,n x x x x = 的函数,在位势方程中,未知函数u 是空间坐标变量()12,,,n x x x x = 的函数,而与时间t 无关,三类典型方程均为二阶线性偏微分方程。……………………….15分 二、解:首先判别方程的类型, 20a ?=> ………………………2分 即此方程在整个全平面上都是双曲型的。 特征方程为:()()2 2 20dx a dt -= () ()2 2 200dx a dt dx adt -=?= 特征曲线为1 2 x at c x at c -=??+=? ………………………6分 做变量替换,令x at x at ξη=-??=+?, 由链式法则得 0u ξη= 通解()()()()u f g f x at g x at ξη=+=-++ ……………………….10分

常微分方程期末历年考试(B)

广西师范大学漓江学院试卷 课程名称:常微分方程课程序号:开课院系:理学系 任课教师: 年级、专业:07数学考试时间:120分钟 考核方式:闭卷 ■ 开卷 □试卷类型:A 卷□B 卷■ 一、填空题(本大题共10小题,每小题3分,共30分) (请在每小题地空格中填上正确答案,错填、不填均无分). 1、当_______________时,方程(,)(,)0M x y dx N x y dy +=称为恰当方程. 2、求(,)dy f x y dx =满足00()y x y =地解等价于求积分方程地连续解. 3、函数组t t t e e e 2,,-地朗斯基行列式值为. 4、二阶齐次线性微分方程地两个解)(),(21x y x y 为方程地基本解组充分必要条件是. 5、若矩阵A 具有n 个线性无关地特征向量n v v v ,,,21Λ,它们对应地特征值分别为n λλλΛ,,21,那么常系数线性方程组Ax x ='地一个基解矩阵)(t Φ=. 6、方程tan dy x y dx =地所有常数解是. 7、如果存在常数0L >,使得不等式对于所有12,),(,)x y x y R ∈(都成立,称函数),(y x f 在R 上关于y 满足利普希茨条件,其中L 为利普希茨常数. 8、)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ?-dx x P e )( ,其通解为 _________ . 9、方程22y x dx dy +=定义在矩形域R:-222,2≤≤-≤≤y x 上,则经过点(0,0)地解地存在区间是. 10、若(),()t t Φψ是齐次线性方程组()X A t X '=地基解矩阵,则()t Φ与()t ψ具有关系. 年 级 : 专 业: 装订密封线 考 生 答 题 不 得 出 现 红 色字 迹 , 除 画 图 外 , 不 能 使用 铅笔答 题;答题 留 空 不 足 时 , 可 写到 试卷 背面 ;请 注意 保 持试 卷完 整.

偏微分方程期末考试试题(06)

黑龙江科技学院考试试题 课程名称:偏微分方程数值解法 课程编号:24014110适用专业(班级):数学 命题人:潘晓丽 教研室主任: 、(15分)写出三类典型泛定方程并分别说明其名称和特点 2 2 U 2 U 一、(10分)求一维波动方程 t 2 x 2 ,t 0 的通解 x u x,0 x , u t x,0 三、(15 分) 写出达朗贝尔公式并利用公式求解 u tt a 2 u xx , t 0, x u x,0 sinx U t x,0 cosx 四、(10分)计算积分 x 3 J 2 x dx . 五、(15分)设m 1,n 1,证明 六、(15分)用分离变量法求解 2 u tt a U xx 0, 0 x l,t 0 u x,0 0,u t x,0 x u 0,t 0,u l,t 0 八、(10分)叙述斯图模-刘维尔定理. 黑龙江科技学院考试试题答案 七、(10分)解固有值问题 y'' y 0, y' l y' l 第一套 共1页 第1页 n 1 0x m p n xdx 1 m 1 , m 0 x p n 1 x dx

2 一、解:波动方程:一a2u f t,x t - 热传导方程:汁a2 u f t,x 位势方程:u f x (5) 其中x X j,x2,L ,x n,a为常数,f t,x及f x为已知函数,在波动方程及热传导方程中,未知函数u是时间变量t和空间坐标变量x x1,x2,L ,x n的函数,在位势方程中,未知函数u是空间坐标变量x 为必,L ,人的函数,而与时间t无关,三类典型方程均为二阶线性偏微分方程。 (15) 二、解:首先判别方程的类型, a20 ............. 2 分 即此方程在整个全平面上都是双曲型的。 特征方程为:dx $ a2 dt $ 0 2 2 2 dx a dt 0 dx madt 0 x at 特征曲线为G x at C2 做变量替换,令 x at x at 由链式法则得u 0 通解u f g f x at g x at ....................... .10 ................................ 分

常微分方程末考试试卷

常微分方程期末考试试卷 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (30分) 1.)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ? -dx x P e )( ,其通解为 _________ 。 2.函数),(y x f 称为在矩形域R 上关于y 满足利普希兹条件,如果 _______ 。 3. 若)(x ?为毕卡逼近序列{})(x n ?的极限,则有)()(x x n ??-≤ ______ 。 4.方程22y x dx dy +=定义在矩形域22,22:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 _______ 。 5.函数组t t t e e e 2,,-的伏朗斯基行列式为 _______ 。 6.若),,2,1)((n i t x i K =为齐线性方程的一个基本解组,)(t x - 为非齐线性方 程的一个特解,则非齐线性方程的所有解可表为 ________ 。 7.若)(t Φ是x t A x )('=的基解矩阵,则向量函数)(t ?= _______是 )()('t f x t A x +=的满足初始条件0)(0=t ?的解;向量函数)(t ?= _____ 是)()('t f x t A x +=的满足初始条件η?=)(0t 的解。 8.若矩阵A 具有n 个线性无关的特征向量n v v v ,,,21Λ,它们对应的特征值分别为n λλλΛ,,21,那么矩阵)(t Φ= ______ 是常系数线性方程组 Ax x ='的一个基解矩阵。 9.满足 _______ 的点),(**y x ,称为驻定方程组。 二. 计算题 (60分) 10.求方程0)1(24322=-+dy y x dx y x 的通解。

金融工程期末复习题

一、简述题(30分) 1.金融工程包括哪些主要内容? 答:产品与解决方案设计,准确定价与风险管理是金融工程的主要内容P3 2.金融工程的工具都有哪些? 答:基础证券(主要包括股票和债券)和金融衍生产品(远期,期货,互换和期权)P4 3.无套利定价方法有哪些主要特征? 答:a.套利活动在无风险的状态下进行 b.无套利的关键技术是“复制”技术 c.无风险的套利活动从初始现金流看是零投资组合,即开始时套利者不需要任何资金的 投入,在投资期间也不需要任何的维持成本。P16 4.衍生证券定价的基本假设为何? 答:(1)市场不存在摩擦 (2)市场参与者不承担对手风险 (3)市场是完全竞争的 (4)市场参与者厌恶风险,且希望财富越多越好 (5)市场不存在无风险套利机会P20 5.请解释远期与期货的基本区别。 答:a.交易场所不同 b.标准化程度不同 c.违约风险不同 d.合约双方关系不同 e.价格确定方式不同 f.结算方式不同 g.结清方式不同P44 6.金融互换的主要有哪些种类? 答:利率互换与货币互换和其它互换(交叉货币利率互换、基点互换、零息互换、后期确定互换、差额互换、远期互换、股票互换等等)P104 7.二叉树定价方法的基本原理是什么? 答:二叉树图方法用离散的模型模拟资产价格的连续运动,利用均值和方差匹配来确定相关参数,然后从二叉树图的末端开始倒推可以计算出期权价格。P214 8.简要说明股票期权与权证的差别。 答:股本权证与备兑权证的差别主要在于: (1)有无发行环节; (2)有无数量限制; (3)是否影响总股本。 股票期权与股本权证的区别主要在于: (1)有无发行环节 (2)有无数量限制。P162 9.影响期权价格的因素主要有哪些?它们对欧式看涨期权有何影响? 答: 1)标的资产的市场价格(+) 2)期权的协议价格(—) 3)期权的有效期(?) 4)标的资产价格的波动率(+) 5)无风险利率(+) 6)标的资产收益(—) “+”表示对欧式看涨期权正向的影响,“—”表示反向的影响,“?”表示不确定P175 10.蒙特卡罗模拟法的主要优缺点。 答:优点:A.在大多数情况下,人们可以很直接地应用蒙特卡罗模拟法,而无需对期权定价模型有深刻的理解,所用的数学知识也很基本 B.为了获得更精确的答案,只需要进行更多的模拟 C.无需太多工作就可以转换模型。 缺点:A.难以处理提前执行的情形,因此难以为美式期权定价 B.为了达到一定的精确度,一般需要大量的模拟运算P226 11.用蒙特卡罗法确定期权价格的基本过程是什么? 答:由于大部分期权价值等于期权到期回报的期望值的贴现,因此先模拟风险中性世界中标的

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

(完整版)常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

相关文档
相关文档 最新文档