文档库 最新最全的文档下载
当前位置:文档库 › 高一数学必修一函数讲义

高一数学必修一函数讲义

数学备课组必修Ⅰ第二章:函数

第二章、函数

第一节、函数

一、函数

1、函数的定义:设集合A是一个非空的数集,对 A 中的任意数x,按照确定的法则 f ,都有唯一确定的数 y 与它对应,这种对应关系叫做集合 A 上的一个函数,记作y f x, x A 。其中,x 叫做自变量,自变量的取值范围叫做函数的定义域。所有函数值构成的集合,即 y y f x , x A 叫做这个函数的值域。

2、检验两个给定的变量之间是否具有函数关系,需检验:

( 1)定义域和对应法则是否给出;

( 2)根据给出的对应法则,自变量 x 在其定义域中的每一个值,是否都能确定唯一的函数值y。例 1、下列图形中,能表示y 是 x 的函数的是()

y y

y y

o x o x

x

o o x

A B C D

例 2、下列等式中,能表示y 是 x 的函数的是()

A. yx

B.y2x 1

C.y1 x2

D.y 1 x2

3、如何判断函数的定义域:

(1)分式的分母不能为零;

(2)开偶次方根的被开方数要不小于零;

(3)多个函数经过四则运算混合得到的函数定义域是多个定义域的交集;

(4)函数x0中x不为零。

例3、求下列函数的定义域

( 1)f ( x)32x ;( 2)f ( x)2x 1 ;

32x

数学备课组必修Ⅰ第二章:函数( 3)f ( x)( x24)0;(4)f ( x)x241

x2

例 4、求下列函数值域

( 1)f ( x) 2x 1, x 1,2,3, 4( 2)

( 3)f ( x)

1

, x ( 1,)

( 4)

x

f ( x) x22x 1, x 0,3

f ( x)2x

1

, x 1,

x1

4、函数的 3 要素:定义域、值域和对应法则。

判断两个函数相同的依据就是函数的三要素完全相同。

注:在函数关系式的表述中,函数的定义域有时可以省略,这时就约定这个函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。

例 5、下列各对函数中,是相同函数的是()

A. f ( x)x2 , g( x) x C. f ( x)x2 , g ( x) x

f (x)

2

x B.x , g ( x)

f ( x)

2

x D.x , g( x)

5、区间:设a,b R,且a<b,

满足 a≤x≤ b 的全体实数 x 的集合,叫做闭区间,记作[a,b] ;

满足 a<x< b 的全体实数 x 的集合,叫做开区间,记作﹙a,b ﹚;

满足 a≤ x< b 或 a< x≤b 的全体实数x 的集合,都叫做半开半闭区间,分别记作 [a,b ﹚或﹙ a,b ] ;

分别满足x≥ a,x > a,x ≤a,x < a 的全体实数的集合分别记作[a, ﹢∞﹚ , ﹙ a, ﹢∞﹚ , ﹙﹣∞ ,a ],﹙﹣∞ ,a ﹚。

6、映射:设A、B是两个非空的集合,如果按某一个确定的对应关系 f ,使对于集合 A 中的任意一

个元素 x,在集合 B 中都有唯一确定的元素y 与之对应,那么就称对应 f :A→ B 为从集合 A 到集合 B 的一个映射.其中x 叫做原象, y 叫做象。

注:映射可以是多对一,不可以一对多。即 A 中元素不可剩余, B 中元素可以剩余。特别的,集合 B 中的任意元素在集合 A 中有且只有一个原象的映射,叫做一一映射。

7、映射个数的确定:若集合A有m个元素,集合 B 中有 n 个元素,则 A 到 B 的映射有n m个。例 6、已知集合 A {1,2,3}, B{ a, b} 。问:

(1) A到B的不同映射f:A B 有多少个?

(2) B到A的不同映射g:B A 有多少个?

8、映射与函数的关系:函数是特殊的映射。

9、复合函数:

二、函数的表示方法

1、列表法:通过列出自变量与对应函数值的表格来表示函数关系;

2、图像法:用图像表示函数关系;

3、解析法(公式法):用代数式表示函数关系。

三、分段函数

在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数叫做分段函数。

例 7、已知函数f ( x) 1| x | x

( 2 x 2) 2

(1)用分段函数的形式表示该函数;

(2)画出该函数的图像;

(3)写出该函数的值域。

四、函数的单调性

1、增函数和减函数的定义:设函数y f ( x) 的定义域为 I ,如果对于定义域I 内的某个区间 D 内的任意两个自变量x1 , x2,当 x1 x2时,都有 f ( x1) f (x2 ) ,那么就说 f (x) 在区间 D 上是增函数 . 区间D称为y f ( x) 的单调增区间;如果对于区间 D 上的任意两个自变量的值x1 , x2,当 x1 x2时,都有 f (x1) f ( x2 ) ,那么就说 f ( x) 在这个区间上是减函数.区间 D 称为 y f (x) 的单调减区间。

2、图像特点:

增函数:自左向右图象是上升的减函数:自左向右图象是下降的

3、函数单调性的判定方法

(1)定义法:任取x1, x2D ,且 x1 x2,判断 y f x2 f x1的符号,若y >0, f x 在 D 上单调递增,若y <0, f x 在D上单调递减;

(2)图像法:根据图像直观地判断函数的单调性;

(3)直接法:根据一些特殊函数的性质,直接得出函数的单调性,如一次函数中的k> 0, 直接得出函数为增函数;

(4)结论:①f ( x)与- f ( x)具有相反的单调性;② f ( x) 与 f ( x) c (c为常数)具有相同的单调性;③ a> 0 时,af (x)与f (x)具有相同的单调性,a< 0 时,af ( x)与f ( x)具有相反的单调

性;④若 f (x)0 ,则

1

与 f ( x) 具有相反的单调性;⑤ f ( x) 0 时, f (x) 与 f (x) 具有相同f ( x)

的单调性;⑥若 f ( x) 与 g( x) 具有相同的单调性,则 f (x)g ( x) 与 f ( x) 和 g( x) 都具有相同的单调性。

例 8、讨论下列函数的单调性

( 1)y x3(2)y | x | 1(3)y 1

( x 0)( 4) y x22x 3 x

1

例 9、证明函数 f ( x) x在(0,1)上是减函数。

x

例 10、求函数f (x) x 1

在区间 ( 0,2) 上的最小值。x

4、复合函数单调性判断:同增异减

例 11、判断函数y(x2)24

在( -2, +∞)上的单调性

x24x4

五、函数的奇偶性

1、奇函数、偶函数的定义:一般地,对于函数 f ( x) 的定义域 D 内的任意一个x ,都有x D ,

且 f ( x) f (x) ,那么 f ( x) 就叫做奇函数, f ( x) f ( x) ,那么 f ( x) 就叫做偶函数。

例 12、判断奇偶性

( 1)f ( x)x21(2)f ( x)x3x(3)f (x)x(4)f (x)x1

x22, x0

例 13、判断函数f ( x)0, x 0的奇偶性

x22, x0

2、图像特征:

y 轴对称;

( 1)奇函数的图象关于原点对称,偶函数的图象关于

( 2)奇函数y f ( x) 的定义域为D,若0 D,则 f (0) 0 。

3、函数奇偶性的判定:

(1)根据定义:①首先确定函数的定义域,并判断其是否关于原点对称,如果不关于原点对称,

则函数没有奇偶性;

②若定义域关于原定对称,再确定 f ( x) 与 f ( x) 的关系;

③最后作出相应结论:若 f ( x) f ( x) 或 f ( x) f (x)0 ,则 f ( x) 是奇函数,

若 f ( x) f ( x) 或 f ( x) f (x)0 ,则 f ( x) 是偶函数。

(2)根据图像:若函数的图象关于原点对称,则函数为奇函数;

若函数的图象关于 y 轴对称,则函数为偶函数。

( 3)根据性质:奇函数+奇函数 =奇函数;偶函数+偶函数=偶函数;

奇函数奇函数偶函数;偶函数偶函数偶函数;

奇函数偶函数奇函数

( 4 )函数的分拆:任何一个函数f ( x) 都可以拆分成一个奇函数和一个偶函数的和,即

f ( x) F ( x) G( x,)

f ( x) f ( x) f ( x) f ( x)

其中 F ( x)(偶函数), G ( x)(奇函数)。

22

4、复合函数y f g (x) 的奇偶性

若函数 f ( x), g (x), f g( x) 的定义域都是关于原点对称的,那么由u g( x), y f (u) 的奇偶性得到 y f g(x) 的奇偶性的规律是:

函数奇偶性

u g( x)奇函数奇函数偶函数偶函数

y f (u)奇函数偶函数奇函数偶函数

y f g( x)奇函数偶函数偶函数偶函数即当且仅当 u g( x) 和 y f (u) 都是奇函数时,复合函数y f g( x) 是奇函数.

5、利用奇偶性求函数解析式:

例 14、若函数f ( x)是定义在R上的偶函数,当x0 时,f ( x)x 22x ,求当x0 时,函数 f (x)的解析式。

6、函数奇偶性与单调性综合应用:

例 15、函数f ( x)是定义在R 上的奇函数,在 (0,) 上是增函数,且 f (1) 0 ,则满足 f ( x)0 成立的 x 的取值范围是。

例 16、定义在[2,2] 上的偶函数g (x) ,当 x 0 时, g ( x) 为减函数,若g(1 m) g(m) 成立,求m的取值范围。

第二节、一次函数和二次函数

一、一次函数的性质与图像

1、一次函数的概念:函数y kx b(k 0) 叫做一次函数,定义域和值域都为R,它的图像是直

线,其中 k 叫做该直线的斜率, b 叫做该直线在y 轴上的截距。

2、一次函数的性质与图像:

一次函数 y kx b(k

0)

图像

性质

单调性

奇偶性

y

b

增函数

奇函数

O

x

k 0

y

y

b

增函数

非奇非偶函数

O x O x

y

b

减函数 奇函数

O

x

k 0

y

y

b

减函数

非奇非偶函数

O

x O x

例 1、已知函数 y (2m

1) x 1 3m, m 为何值时,

( 1)这个函数为正比例函数;

( 2)这个函数为一次函数;

( 3)函数值 y 随 x 的增大而减小;

( 4)这个函数的图像与直线

y x 1的交点在 x 轴上。

例 2、如果一次函数

y kx b(k

0) 的图像经过一、三、四象限,那么( )

A 、 k 0,b 0 B

、 k

0, b 0

C

、 k 0,b

D 、 k 0,b

例 3、直线 y

kx b 过点 ( 2 ,

2

) 和 (0, 2 ) ,求直线 y kx b 与坐标轴围成三角形的面积。

2

2

二、二次函数的性质与图像

1、二次函数的概念:形如y ax2bx c( a 0) 的函数叫做二次函数.其定义域是R。

2、二次函数的解析式:

一般式: f ( x) ax2bx c(a0) ;

顶点式: f ( x) a( x h)2k (a 0) , (h, k) 是二次函数的顶点坐标;

两根式: f ( x) a(x x1 )( x x2 )( a 0) , x1 , x2是二次函数与x 轴的两个交点的横坐标。

3、二次函数的性质与图像

二次函数 y ax2bx c( a0)

a 0 a 0

图像

定义域R

[ 4ac b22值域y,)y(,4ac b]

4a4a

对称轴x

b 2a

顶点坐标b4ac b2

(,)

2a4a

奇偶性b0y ax2bx c(a0)是偶函数

x(,b) 是减函数,x(,b) 是增函数,单调性2a2a

b b

x(,) 是增函数x(,) 是减函数

2a2a

x b

时, y min

4ac b2

x

b4ac b2

最值

2a4a2a 时, y max

4a

例 4、设 abc> 0,二次函数 f( x)= ax2+ bx+ c 的图象可能是()

4、与二次函数有关的不等式恒成立问题:

( 1) ax2+ bx+ c>0 恒成立的充要条件是a>0

<0

(2) ax2+bx+c<0 恒成立的充要条件是a<0

; <0

例 5、设f (x)x22ax 2 ,当 x [ 1, ) 时, f ( x) a 恒成立,求 a 的取值范围。

三、待定系数法

一般的,在求一个函数时,如果知道这个函数的一般式,可先把所求函数写为一般形式,其中

系数待定,然后再根据题设条件求出这些待定的系数,这种通过求待定系数来确定变量之间关系式

的方法叫做待定系数法。

例 6、已知一次函数的图像经过(5, 2) 和 (3,4) ,求这个函数的解析式。

例 7、已知二次函数y f ( x) 的图像过A(0,5), B(5,0) 两点,它的对称轴为直线x 2 ,求这个二次函数的解析式。

第三节、函数与方程

一、函数的零点

1 、函数零点的概念:对于函数y f ( x)( x D ) ,把使 f ( x) 0 成立的实数x 叫做函数y f ( x)( x D ) 的零点。即函数 f ( x) 的图像与x轴交点的横坐标叫这个函数的零点。

例 1、下列函数中没有零点的是()

A. f ( x) x2

B. f (x)x

C. f ( x)1

D. f ( x) x 2x x

2、零点存在定理:如果函数y f (x) 在区间 [ a, b] 上的图象是连续不断的一条曲线,并且有

f ( a) f (b) 0 ,那么函数y f ( x) 在区间 (a,b) 内至少有一个零点。既存在x0( a, b) ,使得f x00 ,这个 x0就是方程的根。

例 2、若方程2ax2x 1 0 在 (0,1) 内恰有一解,则 a 的取值范围是()

A. a1

B. a 1

C. 1 a 1

D.0 a1

3、函数零点的性质:

(1)对于二次函数,图像是连续的,那么当它通过零点(不是二重零点)时,函数值变号,

这种零点叫变号零点;当函数通过二重零点时,函数值的符号不改变,这种零点叫不变号零点;

(2)如果函数的图像是连续的,那么在相邻的两个零点之间的所有函数值保持同号。

4、二次函数零点个数:

(1)△>0,方程ax2bx c 0 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;

(2)△=0,方程ax 2bx c 0 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;

(3)△<0,方程 ax2bx c 0 无实根,二次函数的图象与x 轴无交点,二次函数无零点。

二、二分法

1、二分法的定义:每次取区间的中点,将区间一分为二再经比较,按需要留下其中一个小区间

的方法叫做二分法。

注:二分法只能判断变号零点,不能判断不变号零点。

例 3、函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是()

A B

C D

2、给定精确度,用二分法求方程的近似解的基本步骤如下:

( 1)精确区间a,b D ,使 f (a) f (b)0 ;

( 2)取区间a,b的中点 x01

(a b) ,计算 f ( x0 ), f (a), f (b) ,2

①如果 f ( x0 )0 ,则 x0就是 f (x) 的零点,计算终止,

②如果 f (a) f ( x0 )0 ,则零点位于区间a, x0,

③如果

f (x0 ) f (b)0, 则零点位于区间x0 , b;

······

( 3)判断是否达到精确度, 即如果a b, 则得到零点近似值 a 或 b;否则重复上述步骤。

例 4、设f (x) 3 x 3 x8,用二分法求方程3x3x 80, 在 x1,2 内近似解的过程中,计算得f (1) 0, f (1.5)0, f (1.25) 0,则方程的根落在区间()

A.1,1.25 B. 1.25,1.5 C . 1.5,2 D.不确定

相关文档
相关文档 最新文档