文档库 最新最全的文档下载
当前位置:文档库 › 一氧化氮的生物功能

一氧化氮的生物功能

一氧化氮的生物功能
一氧化氮的生物功能

一氧化氮与人体生物功能

近来发现一氧化氮(nitric oxide,NO)广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitric oxide synthase , NOS )并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。

1. NO生物活性的发现

医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。

1980年,美国科学家Furchaout 在一项研究中发现了一种小分子物质,具有使血管平滑肌松驰的作用,后来被命名为血管内皮细胞舒张因子(endothelium-derived relaxing factor, EDRF)是一种不稳定的生物自由基。EDRF被确认为是NO。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上弄清楚其治疗机理。近年的研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP 形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸(L-argi-nine , L-Arg)是血管内皮细胞合成NO的前体,从而确立了哺乳动物体内可以合成NO的概念。

2. NO的生物学作用

(1)在心血管系统中的作用 NO在维持血管张力的恒定和调节血压的稳定性中起着重要作用。

在生理状态下,当血管受到血流冲击、灌注压突然升高时,NO作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。

NO在心血管系统中发挥作用的可能机制是通过提高细胞中鸟苷酸环化酶(guanylate cyclase , GC)的活性,促进磷酸鸟苷环化产生环一磷酸鸟苷(guanosine 3′, 5′–cyclic monophosphate cGMP),使细胞内cGMP水平增高,继而激活依赖cGMP的蛋白激酶对心肌肌钙蛋白Ⅰ的磷酸化作用加强,肌钙

蛋白c对Ca2+的亲合性下降,肌细胞膜上K+通道活性也下降,从而导致血管舒张。

(2)在免疫系统中的作用研究结果表明,NO可以产生于人体内多种细胞。如当体内内毒素或T细胞激活巨噬细胞和多形核白细胞时,能产生大量的诱导型NOS和超氧化物阴离子自由基(),从而合成大量的NO和H2O2,这在杀伤入侵的细菌、真菌等微生物和肿瘤细胞、有机异物及在炎症损伤方面起着十分重要的作用。

目前认为,经激活的巨噬细胞释放的NO可以通过抑制靶细胞线粒体中三羧酸循环、电子传递和细胞DNA合成等途径,发挥杀伤靶细胞的效应。

免疫反应所产生的NO对邻近组织和能够产生NOS 的细胞也有毒性作用。某些与免疫系统有关的局部或系统组织损伤,血管和淋巴管的异常扩张及通透性等,可能都与NO在局部的含量有着密切的关系。

(3)在神经系统中的作用有关L-Arg → NO途径在中枢神经系统(CNS)方面的研究认为,NO通过扩散,作用于相邻的周围神经元如突出前神经末梢和星状胶质细胞,再激活GC从而提高水平cGMP水平而产生生理效应。如NO可诱导与学习、记忆有关的长时程增强效应(Long-term potentiation , LTP),并在其LTP中起逆信使作用。

连续刺激小脑的上行纤维和平行纤维可引起平行纤维细胞的神经传导产生长时程抑制(Long-term depression , LTD),被认为是小脑运动学习体系中的一种机制,NO参与了该机制。

在外周神经系统也存在L-Arg → NO途径。NO被认为是非胆碱能、非肾上腺素能神经的递质或介质,参与痛觉传入与感觉传递过程。

另据报道,NO在胃肠神经介导胃肠平滑肌松驰中起着重要的中介作用,在胃肠间神经丛中,NOS和血管活性肠肽共存并能引起非肾上腺素能非胆碱能(nonadrenergic-non-cholinerrgic , NANC)舒张,但血管活性肠肽的抗体只能部分消除NANC的舒张,其余的舒张反应则能被N-甲基精氨酸消除。

NO作为NANC神经元递质,在泌尿生殖系统中起着重要作用。成为排尿节制等生理功能的调节物质,这为药物治疗泌尿生殖系统疾病提供了理论依据。

现已证明在人体内广泛存在着以NO为递质的神经系统,它与肾上腺素能、胆碱能神经和肽类神经一样重要。若其功能异常就可能引起一系列疾病。3.NO的化学行为

NO在常温下为气体,具有脂溶性是使它在人体内成为信使分子的可能因素之一。它不需要任何中介机制就可快速扩散通过生物膜,将一个细胞产生的信息传递到它周围的细胞中,主要影响因素是它的生物半寿期。具有多种生物功能的特点在于它是自由基,极易参与与传递电子反应,加入机体的氧化还原过程中。

分子的配位性又使它与血红素铁和非血红素铁具有很高的亲合力,以取代O2和CO2的位置。据研究报道,血红蛋白-NO可以失去它附近的碱基而变成自由的原血红素-NO,这就意味着自由的碱基可以自由地参与催化反应,自由的蛋白质可以自由地改变构象,自由的血红素可以自由地从蛋白中扩散出去,这三种变化中的任何一个或它们的组合,将在鸟苷酸环化酶的活化过程中起重要作用。

NO的生物学作用和其作用机制研究方兴未艾,它的发现提示着无机分子在医学领域中研究的前景。笔者相信还会有更多的无机分子在人体内被发现、被研究、被应用于促进人类健康的研究领域中。

一氧化氮神奇生物化学作用正在揭示doc

一氧化氮神奇生物化学作用正在揭示中 吴国庆 北京师范大学化学系 95年夏天在北京举行的第27届国际化学奥林匹克有一道以NO的生物化学功能为主题的竞赛试题、反映了试题编制者们力求的先进性、趣味性和新颖性,受到广泛欢迎。下面是有关这个曾被美国某杂志选为明星分子的小小无机分子神奇功能的一些新近报道的综述,读者通过阅读本文也许还可以感受到,化学对生命的研究已经进步到什么地步。本文主要是根据C EN,MAY6、1996:38~42上一长篇报道改写的。 你也许知道有一种叫做硝酸甘油酯的药物,已经用了100多年了,它可以用来治疗突发的心绞痛。其实,这是利用了这种药物在生理条件下释放出的一氧化氮,它或许是一氧化氮作为药物的最老应用,尽管是不自觉的,只是到了近年,人们才认识到一氧化氮对动物有着多种重要作用。例如,已经知道,它是神经脉冲的传递介质,有调节血压的作用,能引发免癌功能等;如果人体不能及时制造出足够的一氧化氮,会导致一系列严重的疾病:高血压、血凝失常、免疫功能损伤、神经化学失衡、性功能障碍以及精神痛苦等等;使用释放NO的新药甚至可能对抑制癌症有重要作用。 对一氧化氮的认识首先要归功于微量分析技术的发展,因为一氧化氮在生命体内的浓度是极低的,仅达微摩尔级甚至更低。而且、一氧化氮在细胞间存留的寿命也很短,因为NO是单电子分子,很活泼,一旦生成,很快被反应掉。因此,测试太难,这就不难理解,这样简单的分子为什么这样晚才被人有所认识。 NO的生成一氧化氮分子在生命体中是在一氮化氮合成酶(下文用缩写NOS)的催化作用下生成的。这种酶有多种存在形式,但其功能都是氧化精氨酸的两个胍基氮之一生成瓜氨酸和一氧化氮。反应所需的电子来自辅酶II[即烟酰胺腺嘌呤二核苷酸磷酸(NADPH)], 后者同时被氧化。分子态氧是一氧化氮的氧源。 NO在生物体里的主要反应在生物体内NO的攻击目标首先是蛋白质辅基里的金属离子,特别是血红蛋白里的铁,它与金属原子形成亚硝酰加合物。第二个去处是NO能与超氧离子(O2-)反应生成过氧亚硝酸根(ONOO-),第三个去处是,跟蛋白质或肽里的硫醇基反应生成S-亚硝酰加合物。 NO对NOS的自抑制作用96年3月在美国的一次全国会议上,有人描述了通过神经原的NOS的作用产生的一氧化氮如何快速地与酶本身的血红素中心的亚铁离子生成络合吻的过程。该络合物生成的速度极快,在酶合成第3个一氧化氮分子之前就使反应达到平衡。据报道,与NO分子快速反应的其他生物分子对该络合反应的速率没有影响,这证明,NO脱离酶的活性中心与其他分子反应前一直是键合着的。一旦生成亚铁-亚硝酰络合物,酶便不再具有活性。研究者使用可见光谱和拉曼光谱证实。甚至NO正在继续合成时,70~90%的酶已经失去活性成为自抑态。研究者很惊奇:为什么酶会如此快地因自己的产

一氧化氮

NO的生物学特性 NO是一种tl由基性质的气体,其在组织中的半减期仅有10—60 s,其反应活性取决于它被去除或破坏的速度。NO具有脂溶性,可快速透过生物膜扩散,到达临近靶细胞发挥作用。由于体内存在氧及其他能与NO反应的化合物如超氧阴离子,血红蛋白等。因而NO在体内极不稳定,合成后3~5 s即被氧化,以硝酸根(N )和亚硝酸根(N )的形式存在于细胞内、外液中。 N O 的生成和作用 在体内。NO的合成需要NOS催化,以L一精氨酸为底物,以还原型辅酶Ⅱ(NADPH)为电子供体,生成NO和L一瓜氨酸。NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关,而NO的合成则与NOS的活性密切相关。哺乳动物体内的许多组织如血管内皮细胞、巨噬细胞、嗜中性白细胞以及脑组织等均能合成NO。 N O 的生成主要有三种来源: 内皮细胞、神经细胞、神经胶质细胞。 内皮细胞源性N O体内、外研究都表明,内皮细胞源性N O 是一种强有力的血管扩张物质。受乙酞胆碱作用时, 内皮细胞释放N O, 刺激平滑肌内的鸟昔酸环化酶使c G M P 增加从而导致脑血管的扩张。除乙酞胆碱外, 5 一经色胺、P 物质和A D P 扩张脑微循环的作用也依赖N O 形成。生理情况下产生的N O 除对脑血管有扩张作用外, 还可通过抑制血小板和白细胞的聚集而保护脑内皮细胞。最近有报道, 生理情况下产生的N O 可以抑制脑微循环的自主性运动, 并对去甲肾上腺素、6 一经色胺等物质导致的脑动脉收缩有抑制作用。 神经元源性N O神经元源性N O 可能是神经元激活时脑血管反应的介质。有人观察到小脑顶核和胆碱能纤维兴奋时所产生的脑血流增加可被N O S 抑制剂所抑制。许多研究提示,谷氨酸受体激活在神经元产生N O 过程中起关键作用。有研究表明, 戊四氮吟和二氢哈尔碱h( ar m al in e) 诱发癫痛过程中可产生兴奋性氨基酸的内源性蓄积也引起脑中依赖于N O 的c G M P 大量增加。培养细胞研究表明, 除谷氨酸外, 乙酞胆碱、血管紧张素、缓激肤、6 一经色胺、神经肤和内皮素等引起的血管反应与神经元源性N O 也有密切关系。然而发现培养的皮层神经细胞和神经胚瘤细胞用脂多糖刺激, 不能象内皮细胞一样产生

一氧化氮的生物功能

一氧化氮与人体生物功能 近来发现一氧化氮(nitric oxide,NO)广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitric oxide synthase , NOS )并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。 1. NO生物活性的发现 医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。 1980年,美国科学家Furchaout 在一项研究中发现了一种小分子物质,具有使血管平滑肌松驰的作用,后来被命名为血管内皮细胞舒张因子(endothelium-derived relaxing factor, EDRF)是一种不稳定的生物自由基。EDRF被确认为是NO。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上弄清楚其治疗机理。近年的研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP 形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸(L-argi-nine , L-Arg)是血管内皮细胞合成NO的前体,从而确立了哺乳动物体内可以合成NO的概念。 2. NO的生物学作用 (1)在心血管系统中的作用 NO在维持血管张力的恒定和调节血压的稳定性中起着重要作用。 在生理状态下,当血管受到血流冲击、灌注压突然升高时,NO作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。 NO在心血管系统中发挥作用的可能机制是通过提高细胞中鸟苷酸环化酶(guanylate cyclase , GC)的活性,促进磷酸鸟苷环化产生环一磷酸鸟苷(guanosine 3′, 5′–cyclic monophosphate cGMP),使细胞内cGMP水平增高,继而激活依赖cGMP的蛋白激酶对心肌肌钙蛋白Ⅰ的磷酸化作用加强,肌钙

一氧化氮

一氧化氮 一氧化氮 氮氧化合物,化学式NO,分子量30,氮的化合价为+2。无色气体,难溶于水。由于一氧化氮带有自由基,这使它的化学性质非常活泼。当它与氧气反应后,可形成具有腐蚀性的气体——二氧化氮(NO2) 方程式:2NO+O2==2NO2 一氧化氮的作用 一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指令以促进血液流通时,它就会产生一些一氧化氮分子,这些分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞接收信号后舒张,使血管扩张。 一氧化氮也能在神经系统的细胞中发挥作用。它对周围神经末梢所起的作用,正是―伟哥‖功能的基础。大脑通过周围神经发出信息,向会阴部的血管提供相应的一氧化氮,引起血管的扩张,增加血流量,从而增强勃起功能。在一些情况下,勃起无力是由于神经末梢产生的一氧化氮较少所致。―伟哥‖能扩大一氧化氮的效能,从而增强勃起功能。 免疫系统产生的一氧化氮分子,不仅能抗击侵入人体的微生物,而且还能够在一定程度上阻止癌细胞的繁殖,阻止肿瘤细胞扩散。 第一部分:化学品名称 化学品中文名称:一氧化氮 化学品英文名称:nitrogen monoxide 中文名称2:氧化氮 英文名称2:nitric oxide 技术说明书编码:92 CAS No.:10102-43-9 分子式:NO 分子量:30.01 分子键长:115.08pm 键解离能:941.69kJ/mol 磁性:反磁性 第二部分:成分/组成信息 有害物成分CAS No. 一氧化氮10102-43-9 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:本品不稳定,在空气中很快转变为二氧化氮产生刺激作用。氮氧化物主要损害呼吸道。吸入初期仅有轻微的眼及呼吸道刺激症状,如咽部不适、干

细胞一氧化氮检测

NO Assay (BioAssay Systems--QuantiChrom TM Nitric Oxide Assay Kit ) 原理: NO能被氧化成亚硝酸盐和硝酸盐,从而通过测定亚硝酸根离子NO2-/硝酸根离子NO3-的总量来确定NO水平。 样品制备: 1.用1mL枪头吸弃每孔上层细胞培养基1mL,先横刮3次再竖刮3次,刮起剩下1mL细胞培养液,然后用1mL枪头冲吹细胞3次,显微镜下计数细胞数,收集1×106细胞于1.5mL离心管中,置于冰上。 2.于40C,5000rpm离心3min,吸弃上清液,收集细胞沉淀。 3.向细胞沉淀中加入1mL冰上预冷的1×PBS液,用200uL枪头混匀后于40C,5000rpm离心3min。吸弃上清液,收集细胞沉淀,置于冰上。 4.向细胞沉淀中加入150uL细胞裂解液,用200uL枪头混匀后于冰上裂解30min。 5.于40C,12000rpm离心10min。 6.向150uL细胞裂解液中加入8uL ZnSO4,vortex上混匀,然后加入8uLNaOH,vortex上混匀,于40C,14000rpm离心10min。取上清液,按50uL/管分装,作为NO检测样品。 标准曲线制作: 稀释标准品:取25uL 1.0mM 标准品,加入225uL ddH2O,用200uL枪头混匀,将标准品稀释成100uM Premix。 按下表制作标准曲线: No. Premix+ddH2O Nitrite(uM) 1 0uL+100uL 0 2 20uL+80uL 20 3 40uL+60uL 40 4 60uL+40uL 60 5 80uL+20uL 80 样品NO水平测定: 1.WR工作液配制:将25uL Reagent A,25uL Reagent B和50uL Reagent C于1.5mL 离心管中充分混匀。 2.样品及标准品反应:将50uL样品和标准品与100uL WR工作液于1.5mL离心管中混匀,于600C孵育10min。 3.测定:将反应好的样品与标准品加到96孔板中,于500-570nm(峰值540nm)测定OD值。 4.NO浓度计算:(按如下公式计算) 【NO】=(OD sample-OD blank)/slope (uM), 注:OD blank为空白对照吸光值,slope为标准曲线斜率。其中1uM Nitrite=30pg/mL NO

相关文档