文档库 最新最全的文档下载
当前位置:文档库 › 一氧化氮

一氧化氮

一氧化氮
一氧化氮

一氧化氮

一氧化氮

氮氧化合物,化学式NO,分子量30,氮的化合价为+2。无色气体,难溶于水。由于一氧化氮带有自由基,这使它的化学性质非常活泼。当它与氧气反应后,可形成具有腐蚀性的气体——二氧化氮(NO2)

方程式:2NO+O2==2NO2

一氧化氮的作用

一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指令以促进血液流通时,它就会产生一些一氧化氮分子,这些分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞接收信号后舒张,使血管扩张。

一氧化氮也能在神经系统的细胞中发挥作用。它对周围神经末梢所起的作用,正是―伟哥‖功能的基础。大脑通过周围神经发出信息,向会阴部的血管提供相应的一氧化氮,引起血管的扩张,增加血流量,从而增强勃起功能。在一些情况下,勃起无力是由于神经末梢产生的一氧化氮较少所致。―伟哥‖能扩大一氧化氮的效能,从而增强勃起功能。

免疫系统产生的一氧化氮分子,不仅能抗击侵入人体的微生物,而且还能够在一定程度上阻止癌细胞的繁殖,阻止肿瘤细胞扩散。

第一部分:化学品名称

化学品中文名称:一氧化氮

化学品英文名称:nitrogen monoxide

中文名称2:氧化氮

英文名称2:nitric oxide

技术说明书编码:92

CAS No.:10102-43-9

分子式:NO

分子量:30.01

分子键长:115.08pm

键解离能:941.69kJ/mol

磁性:反磁性

第二部分:成分/组成信息

有害物成分CAS No.

一氧化氮10102-43-9

第三部分:危险性概述

危险性类别:

侵入途径:

健康危害:本品不稳定,在空气中很快转变为二氧化氮产生刺激作用。氮氧化物主要损害呼吸道。吸入初期仅有轻微的眼及呼吸道刺激症状,如咽部不适、干

咳等。常经数小时至十几小时或更长时间潜伏期后发生迟发性肺水肿、成人呼吸窘迫综合征,出现胸闷、呼吸窘迫、咳嗽、咯泡沫痰、紫绀等。可并发气胸及纵隔气肿。肺水肿消退后两周左右可出现迟发性阻塞性细支气管炎。一氧化氮浓度高可致高铁血红蛋白血症。慢性影响:主要表现为神经衰弱综合征及慢性呼吸道炎症。个别病例出现肺纤维化。可引起牙齿酸蚀症。

环境危害:对环境有危害,对水体、土壤和大气可造成污染。

燃爆危险:本品助燃,有毒,具刺激性。

第四部分:急救措施

皮肤接触:

眼睛接触:

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

第五部分:消防措施

危险特性:具有强氧化性。与易燃物、有机物接触易着火燃烧。遇到氢气爆炸性化合。接触空气会散发出棕色有氧化性的烟雾。一氧化氮较不活泼,但在空气中易被氧化成二氧化氮,而后者有强烈毒性。

有害燃烧产物:氧化氮。

灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。切断气源。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水。

第六部分:泄漏应急处理

应急处理:迅速撤离泄漏污染区人员至上风处,并立即隔离150m,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。漏气容器要妥善处理,修复、检验后再用。

第七部分:操作处置与储存

操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿透气型防毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。防止气体泄漏到工作场所空气中。避免与卤素接触。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。

储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与易(可)燃物、卤素、食用化学品分开存放,切忌混储。储区应备有泄漏应急处理设备。

第八部分:接触控制/个体防护

职业接触限值

中国MAC(mg/m3):5[NO2]

前苏联MAC(mg/m3): 5

TLVTN:ACGIH 25ppm,31mg/m3

TLVWN:未制定标准

监测方法:盐酸萘乙二胺比色法

工程控制:严加密闭,提供充分的局部排风和全面通风。提供安全淋浴和洗眼设备。

呼吸系统防护:空气中浓度超标时,佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴空气呼吸器。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿透气型防毒服。

手防护:戴防化学品手套。

其他防护:工作现场禁止吸烟、进食和饮水。保持良好的卫生习惯。

第九部分:理化特性

主要成分:纯品

外观与性状:无色气体。

pH:

熔点(℃):-163.6

沸点(℃):-151

相对密度(水=1): 1.27(-151℃)

溶解性:微溶于水。

主要用途:制硝酸、人造丝漂白剂、丙烯及二甲醚的安定剂。

其它理化性质:

第十部分:稳定性和反应活性

稳定性:

禁配物:易燃或可燃物、铝、卤素、空气、氧。

避免接触的条件:受热。

聚合危害:

分解产物:

第十一部分:毒理学资料

急性毒性:LD50:无资料

LC50:1068mg/m3,4小时(大鼠吸入)

亚急性和慢性毒性:

刺激性:

致敏性:

致突变性:

致畸性:

致癌性:

第十二部分:生态学资料

生态毒理毒性:

生物降解性:

非生物降解性:

生物富集或生物积累性:

其它有害作用:该物质对环境有危害,应特别注意对地表水、土壤、大气和饮用水的污染。

第十三部分:废弃处置

废弃处置方法:根据国家和地方有关法规的要求处置。或与厂商或制造商联系,确定处置方法。

第十四部分:运输信息

运输注意事项:铁路运输时须报铁路局进行试运,试运期为两年。试运结束后,写出试运报告,报铁道部正式公布运输条件。采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。严禁与易燃物或可燃物、卤素、食用化学品等混装混运。夏季应早晚运输,防止日光曝晒。公路运输时要按规定路线行驶,禁止在居民区和人口稠密区停留。铁路运输时要禁止溜放。

第十五部分:法规信息

法规信息化学危险物品安全管理条例(1987年2月17日国务院发布),化学危险物品安全管理条例实施细则(化劳发[1992] 677号),工作场所安全使用化学品规定([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志(GB 13690-9 2)将该物质划为第2.3 类有毒气体;剧毒物品分级、分类与品名编号(GA 57-93)中,该物质的液化或压缩品被划为第一类A级无机剧毒品。

一氧化氮与人体生物功能

近来发现一氧化氮(nitric oxide,NO)广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitric oxide synthase , NOS )并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。

1.NO生物活性的发现

医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。

1980年,美国科学家Furchaout 在一项研究中发现了一种小分子物质,具有使血管平滑肌松弛的作用,后来被命名为血管内皮细胞舒张因子(endothelium-de rived relaxing factor, EDRF)是一种不稳定的生物自由基。EDRF被确认为是N O。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上

弄清楚其治疗机理。近年的研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸(L-argi -nine , L-Arg)是血管内皮细胞合成NO的前体,从而确立了哺乳动物体内可以合成NO的概念。

2.NO的生物学作用

(1)在心血管系统中的作用NO在维持血管张力的恒定和调节血压的稳定性中起着重要作用。

在生理状态下,当血管受到血流冲击、灌注压突然升高时,NO作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。

NO在心血管系统中发挥作用的可能机制是通过提高细胞中鸟苷酸环化酶(gu anylate cyclase , GC)的活性,促进磷酸鸟苷环化产生环一磷酸鸟苷(guanosi ne 3′, 5′–cyclic monophosphate cGMP),使细胞内cGMP水平增高,继而激活依赖cGMP的蛋白激酶对心肌肌钙蛋白Ⅰ的磷酸化作用加强,肌钙蛋白c对Ca2+的亲合性下降,肌细胞膜上K+通道活性也下降,从而导致血管舒张。

(2)在免疫系统中的作用研究结果表明,NO可以产生于人体内多种细胞。如当体内内毒素或T细胞激活巨噬细胞和多形核白细胞时,能产生大量的诱导型N OS和超氧化物阴离子自由基(),从而合成大量的NO和H2O2,这在杀伤入侵的细菌、真菌等微生物和肿瘤细胞、有机异物及在炎症损伤方面起着十分重要的作用。

目前认为,经激活的巨噬细胞释放的NO可以通过抑制靶细胞线粒体中三羧酸循环、电子传递和细胞DNA合成等途径,发挥杀伤靶细胞的效应。

免疫反应所产生的NO对邻近组织和能够产生NOS 的细胞也有毒性作用。某些与免疫系统有关的局部或系统组织损伤,血管和淋巴管的异常扩张及通透性等,可能都与NO在局部的含量有着密切的关系。

(3)在神经系统中的作用有关L-Arg → NO途径在中枢神经系统(CNS)方面的研究认为,NO通过扩散,作用于相邻的周围神经元如突出前神经末梢和星状胶质细胞,再激活GC从而提高水平cGMP水平而产生生理效应。如NO可诱导与学习、记忆有关的长时程增强效应(Long-term potentiation , LTP),并在其LT P中起逆信使作用。

连续刺激小脑的上行纤维和平行纤维可引起平行纤维细胞的神经传导产生长

时程抑制(Long-term depression , LTD),被认为是小脑运动学习体系中的一种机制,NO参与了该机制。

在外周神经系统也存在L-Arg → NO途径。NO被认为是非胆碱能、非肾上腺素能神经的递质或介质,参与痛觉传入与感觉传递过程。

另据报道,NO在胃肠神经介导胃肠平滑肌松弛中起着重要的中介作用,在胃肠间神经丛中,NOS和血管活性肠肽共存并能引起非肾上腺素能非胆碱能(nona drenergic-non-cholinerrgic , NANC)舒张,但血管活性肠肽的抗体只能部分消除NANC的舒张,其余的舒张反应则能被N-甲基精氨酸消除。

NO作为NANC神经元递质,在泌尿生殖系统中起着重要作用。成为排尿节制等生理功能的调节物质,这为药物治疗泌尿生殖系统疾病提供了理论依据。

现已证明在人体内广泛存在着以NO为递质的神经系统,它与肾上腺素能、胆碱能神经和肽类神经一样重要。若其功能异常就可能引起一系列疾病。

3.NO的化学行为

NO在常温下为气体,具有脂溶性是使它在人体内成为信使分子的可能因素之一。它不需要任何中介机制就可快速扩散通过生物膜,将一个细胞产生的信息传递到它周围的细胞中,主要影响因素是它的生物半寿期。具有多种生物功能的特点在于它是自由基,极易参与与传递电子反应,加入机体的氧化还原过程中。分子的配位性又使它与血红素铁和非血红素铁具有很高的亲合力,以取代O2和CO2的位置。据研究报道,血红蛋白-NO可以失去它附近的碱基而变成自由的原血红素-NO,这就意味着自由的碱基可以自由地参与催化反应,自由的蛋白质可以自由地改变构象,自由的血红素可以自由地从蛋白中扩散出去,这三种变化中的任何一个或它们的组合,将在鸟苷酸环化酶的活化过程中起重要作用。

NO的生物学作用和其作用机制研究方兴未艾,它的发现提示着无机分子在医学领域中研究的前景。笔者相信还会有更多的无机分子在人体内被发现、被研究、被应用于促进人类健康的研究领域中。

一氧化氮是宇航员晕厥发作的元凶

一氧化氮的过量产生会使血管扩张,这样就可以解释为什么宇航员在太空飞行之后会产生晕厥,以及可以解释许多陆地上发生的类似现象。

这种太空中宇航员经历的微重力现象,很象太空中的宇航员或长期久卧在床的病人马上要起来时的感觉,这时人们会产生过多的血管扩张剂--一氧化氮,从而导致血压降低,流往头部的血液减少,出现晕厥。

在对大鼠的试验中,加州大学的研究人员发现,低重力环境下,大鼠产生一氧化氮的两种酶增多,而且,给予大鼠药物抑制其中一种酶时,它们的血压升高,这给研究人员一个提示:抑制一氧化氮对宇航员和长期卧床患者的晕厥是一种有效的治疗。这份研究报告发表在7月份出版的《实用生理学》杂志上。

在我们正常的直立的生活中,重力使血液流往下肢,因此身体下部的血管收缩以确保有足够的血液流往相反的方向。在低重力环境下,人全身的血压一样,当宇航员返回地球时,他们身体下部过度舒张的血管使头部血压急剧下降,于是在站立时,不可避免地要晕倒。

人们看到宇航员登陆后轻松地大步行走,是因为他们穿着加压的衣服,能保持健康的血压。但是,他们的衣服只能穿这么久,而适应重力需要一段时间。

研究人员说:"长期卧床的患者其情况与宇航员相似,好像不受重力的影响。因此,在试图站立时会晕倒。"

一氧化氮的理化性质

一氧化氮是无色气体,工业制备他是在铂网催化剂上用空气将氨氧化的方法;实验室中则用金属铜与稀硝酸反应。

NO在水中的溶解度较小,而且不与水发生反应。常温下NO很容易氧化为二氧化氮,也能与卤素反应生成卤化亚硝酰(NOX)如2NO+Cl2=2NOCl 根据NO的分子结构可见,他有未成对的电子,两个原子共有11个价电子,也就是个奇分子,大多数奇分子都有颜色,然而NO仅在液态或固态时才呈蓝色。NO分子在固态时会缔合成松弛的双聚分子(NO)2,这也是他具有单电子的必然结果。

人试剂盒说明书人血清一氧化氮NOELISA检测试剂盒

人试剂盒说明书人血清一氧化氮NOELISA检测试剂 盒

人试剂盒说明书,人血清一氧化氮(NO)ELISA检测试剂盒樊克生物专业供应: 使用目的:本试剂盒用于测定人血清、血浆及相关液体样本血清 试验原理: NO试剂盒是固相夹心法酶联免疫吸附实验(ELISA).已知NO浓度的标准品、未知浓度的样品加入微孔酶标板内进行检测。先将NO和生物素标记的抗体同时温育。洗涤后,加入亲和素标记过的HRP。再经过温育和洗涤,去除未结合的酶结合物,然后加入底物A、B,和酶结合物同时作用。产生颜色。颜色的深浅和样品中NO的浓度呈比例关系。 试剂盒内容及其配制

自备材料 1.蒸馏水。 2.加样器:5ul、10ul、50ul、100ul、200ul、500ul、1000ul。3.振荡器及磁力搅拌器等。 安全性 1.避免直接接触终止液和底物A、B。一旦接触到这些液体,请尽快用水冲洗。 2.实验中不要吃喝、抽烟或使用化妆品。 3.不要用嘴吸取试剂盒里的任何成份。 操作注意事项 1.试剂应按标签说明书储存,使用前恢复到室温。稀稀过后的标准品应丢弃,不可保存。 2.实验中不用的板条应立即放回包装袋中,密封保存,以免变质。 3.不用的其它试剂应包装好或盖好。不同批号的试剂不要混用。保质前使用。 4.使用一次性的吸头以免交叉污染,吸取终止液和底物A、B液时,避免使用带金属部分的加样器。 5.使用干净的塑料容器配置洗涤液。使用前充分混匀试剂盒里的各种成份及样品。

6.洗涤酶标板时应充分拍干,不要将吸水纸直接放入酶标反应孔中吸水。 7.底物A应挥发,避免长时间打开盖子。底物B对光敏感,避免长时间暴露于光下。避免用手接触,有毒。实验完成后应立即读取OD值。 8.加入试剂的顺序应一致,以保证所有反应板孔温育的时间一样。 9.按照说明书中标明的时间、加液的量及顺序进行温育操作。 样品收集、处理及保存方法 1、血清-----操作过程中避免任何细胞刺激。使用不含热原 和内毒素的试管。收集血液后,1000×g离心10分钟将血清和红细胞迅速小心地分离。 2、血浆-----EDTA、柠檬酸盐、肝素血浆可用于检测。1000 ×g离心30分钟去除颗粒。 3、细胞上清液---1000×g离心10分钟去除颗粒和聚合物。 4、组织匀浆-----将组织加入适量生理盐水捣碎。1000×g 离心10分钟,取上清液 5、保存------如果样品不立即使用,应将其分成小部分- 70 ℃保存,避免重复冷冻。尽可能的不要使用溶血或高血脂 血。如果血清中大量颗粒,检测前先离心或过滤。不要在37℃

一氧化氮吸入治疗新生儿持续肺动脉高压的护理

一氧化氮吸入治疗新生儿持续肺动脉高压的护理 目的探讨吸入一氧化氮治疗新生儿持续肺动脉高压(PPHN)的疗效和护理。方法10例PPHN患儿在机械通气下将NO气源加入呼吸机环路中,NO浓度为(15~20)×10﹣6,疗程为24h~7d.。治疗前后动态观察患儿心率血压,动态血气,氧合指数变化,重点加强一氧化氮使用过程中的观察及气道护理,密切观察不良反应。结果通过有效的护理措施,降低患儿并发症的发生,提高一氧化氮吸入治疗新生儿持续肺动脉高压的疗效。结论机械通气配合一氧化氮治疗持续肺动脉高压有显著疗效。 标签:一氧化氮;持续肺动脉高压;机械通气;新生儿 新生儿持续肺动脉高压(PPHN)可由胎粪吸入综合征,肺透明膜病,肺炎和先天性心脏病等多种疾病所致[1],病死率高达40%,特点是持续肺高压和右向左分流。近来吸入一氧化氮(inhaled nitric oxide INO)治疗各种原因引起的新生儿持续肺动脉高压获得良好效果,使病死率大为下降。现对我科NICU 2012年1月~2013年9月起10例由各种原因引起的PPHN应用机械通气配合使用一氧化氮吸入治疗新生儿的临床资料报道如下。 1 资料与方法 1.1一般资料本组患儿10例(男7例,女3例),胎龄33~40w,出生体重2200~3700g,均为生后1d入院。原发病分别为新生儿胎粪吸入综合症5例,肺炎合并动脉导管未闭3例,新生儿肺透明膜病2例,所有患儿均有不同程度的呼吸困难和青紫,与低氧血症的程度不相平行。入院后经常规治疗,病情无好转或进行性恶化,经心脏超声检查确诊有肺动脉高压,存在动脉导管或卵园孔水平的右向左分流。 1.2方法确诊病例采用机械通气配合NO吸入通气方式为SIMV或HFO模式,PaCO2目标值为30~35cmH2O(IcmH2O=0.098KPa)。NO气源由上海诺芬生物技术有限公司(10PMa)提供。通气质量流量控制仪调节流量,加入呼吸机输出环节路内(湿化器前)并使用NO×BO×PLUS型NO和NO2监测仪(英国)监测NO和NO2浓度患儿呼出的气体经特制管道排出室外。NO的初始浓度为20×10﹣6吸入NO 30min如SPO2升高>10%,PaO2升高>9098mmHg(1.33KPa)判定为有效,否则判定为无效。无效者增加吸入NO浓度(5~10)×10﹣6,若达到40×10﹣6仍无效,则停止NO吸入,有效者可每4h降低NO浓度5×10﹣6,直至6×10﹣6,以此低浓度维持24~72h。 2 护理 2.1清理呼吸道患儿入院后首先予以彻底清理呼吸道,予经口气管插管吸出气管内污染羊水、分泌物,再通过气管插管从气管内注入37℃无菌生理盐水0.5~1ml,加压给氧30s,用吸引器吸出冲洗液,如此反复至冲洗干净。

一氧化氮对人体的重要作用

一氧化氮对人体的重要作用 1.调节血管紧张度,降低血压 早期高血压没有明显症状,可能表现不出来。由于受损的内皮细胞不能产生足量的一氧化氮,一氧化氮缺乏导致了一系列心脑血管病,使血压更高、动脉硬化更严重,进入了恶性循环。与体内其他任何因素相比,一氧化氮能更好地舒张血管平滑肌(降低血管的阻力),随着平滑肌的舒张,血管扩张血流更容易通过,从而降低血压的目的。 2.改善糖尿病及其并发症;一氧化氮能够降低胰岛素抵抗力,提升胰岛素对血糖的敏感度,从而加快体内血糖的代谢;另一方面,一氧化氮能够修复血管内皮细胞,降低因糖质代谢而引发的血管、神经病变,从根本上抑制及改善糖尿病并发症。最后一氧化氮还能够清除体内的自由基,提升胰岛素受体敏感度,更好的起到代谢血糖的作用。 3.清除血管炎症,防止动脉硬化内皮的损伤能减少一氧化氮的生成。为了保持心血管的健康,机体需要产生有益于健康的足量的一氧化氮。事实上,当机体正在生成足量甚至过量的一氧化氮时,不可能形成斑块和动脉粥样硬化,甚至可逆转这些情况。 4.改善睡眠质量;科学家们在研究过程中发现如果一氧化氮配方科学有效的话,还可以改善睡眠质量。帕米诺一氧化氮采用科学的原料配比,在增加血管、神经供血量及营养供应的同时,又能够舒暖血管平滑肌,促进体内松果体素的自然分泌,从根本上改善睡眠质量。 5.防止凝血,清除血栓,预防心脑血管疾病在一氧化氮的诸多作用中,以舒张血管作用最为重要,这有助于调整血流至全身的每一个部位。一氧化氮可舒张和扩张血管以确保心脏的足够供血。一氧化氮也可以阻止血栓形成,血栓可诱发卒中和心脏病发作,同时一氧化氮可调节血压。一氧化氮的另一个重要作用就是减慢动脉硬化斑块在血管壁的沉积。在冠状动脉内,胆固醇和脂肪逐渐增多并形成动脉硬化斑块,结果是动脉变窄、甚至阻塞动脉,从而使心脏血液供应减少,一氧化氮可以消除这种斑块,从根本上改善甚至逆转心脑血管病。一氧化氮是维持冠状动脉舒张反应的重要物质。冠状动脉内一定量的一氧化氮的释放,能够维持较低的冠状动脉阻力,保证心脏充足的供血,特别是慢性心脑血管的人,能大大减少冠状动脉缺血的危害,防止冠心病的发作。 6.清除自由基,抗发炎,消肿胀,防止病毒入侵,抑制癌细胞一氧化氮能使引发心血管病发生的氧化应激降到最低。当大量存在的自由基未被清除之前,它们会抑制机体生成一氧化氮。当机体处于氧化应激时机体比正常产生较少的一氧化氮。抗氧化剂对改善这种状况有很好的帮助,机体的抗氧化剂类似清道夫,在自由基产生损伤前寻早并中和它们。白细胞利用一氧化氮不仅可以杀死一系列细菌、真菌和支原体到呢个病原体,而且对肿瘤也有对抗作用,由于一氧化氮能够诱导细胞的死亡和凋亡过程,故一氧化氮能很好的抑制肿瘤的生长,达到了防癌抗癌的目的。 结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义 精神源学说认为,在外因刺激下,病人出现较长期或反复较明显的精神紧张、焦虑、烦躁等情绪变化时,大脑皮层兴奋抑制平衡失调,导致交感神经末梢释放儿茶酚胺增加(主要是去甲肾上腺素和肾上腺素),从而使小动脉收缩,周围血管阻力上升,血压增高。

一氧化氮对人体作用

一氧化氮对人体的七个作用 一氧化氮与血压调节 1、为什么血压会升高 为了理解高血压的机制,可以把它想象为一个末端带有喷嘴的水管。有两种方法可以提高水的压力:可以打开水龙头并通过水管泵出更多的税,也可以拧紧喷嘴以提高水流的阻力。血压的作用原理与这种方式相似,血压取决于心脏泵血的力量、全身的血管容量以及血管的阻力。收缩动脉使血流受阻从而导致血压升高,相反,如果动脉舒张管径变宽,血液就更容易流动,血压则下降。 2、高血压的危险性 高血压的危害主要表现在为靶器官的损伤,如果心脑肾致命损害。长期的高血压弱得不到有效改善,心脏就会因过度劳累而代偿性肥厚扩大,进而出现功能衰退,这就是是高血压性心脏病,心力衰竭;同理,管道内压力过高,脆弱硬化部分的管道就很容易爆裂,发生在脑血管,就是出血行脑卒中;同样,肾脏是极丰富的毛细血管网,这种微细血管网排除身体内读物的功能受损,体内有毒物质贮留与血内,即策划过难为肾功能衰竭、尿毒症。高血压若得不到及时的有效的控制,心、脑、肾三个重要的生命器官就会受到致命打击,从而产生严重的并发症,诸如:心:高血压性心脏病、冠心病、心力衰竭;脑:高血压性脑出血、脑梗塞;肾:肾功能衰竭、尿毒症。 而医学界众所周知,这些问题是可以在发现高血压之初进行预防的,而且是行之有效的,但当这些问题发生后,对以上或病人及家属来讲,不论是从所花费的精力、财力、体力上都将是徒劳而无益的。 如果您和2.7亿人一样已经患有高血压,发生心脑血管病的危险将是正常人的7倍以上。 3、一氧化氮如何降低血压 早期高血压没有明显症状,可能表现不出来。由于受损的内皮细胞不能产生足量的一氧化氮,一氧化氮缺乏导致了一系列心脑血管病,使血压更高、动脉硬化更严重,进入了恶性循环。与体内其他任何因素相比,一氧化氮能更好地舒张血管平滑肌(降低血管的阻力),随着平滑肌的舒张,血管扩张血流更童话已通过,从而降低血压的目的。 二、一氧化氮与糖尿病 1、什么是糖尿病 糖尿病病主要是由于体内胰岛素绝对或相对分泌不足而引发的糖、蛋白质、脂肪、水和电解质等一系列絮乱综合症,临床上以高血糖为主要特点,典型病例可出现多尿、多饮,多食、消瘦等表现,即“三多一少”症状。糖尿病分Ⅰ型和Ⅱ型糖尿病。在糖尿病患者中,Ⅱ型糖尿病所占的比例月为95%。现代医学研究证明Ⅱ型糖尿病人的主要病因是因为胰岛素抵抗(氧化应激),即胰岛素对血糖代谢的敏感度不够,不能正常的代谢血糖 2、糖尿病的危害 糖尿病并不可怕,可怕的是有血糖偏高引起的一系列并发症,如:心血管病变、脑血管病变、肾脏病变、神经病变、视网膜病变、糖尿病足等。糖尿病病人中75%的人患上了心脑血管病变,患病10年以上的人群中,80%最终死于肾脏衰竭,几乎所有人的糖尿病人都与不同程度的视网膜病变及神经病变。糖尿病将是21世纪比癌症还要恐怖的、严重威胁人类健康的慢性病! 3、一氧化氮对糖尿病的重要作用 一氧化氮能够降低胰岛素抵抗力,提升胰岛素对血糖的敏感度,从而加快体内血糖的代谢;另一方面,一氧化氮能够修复血管内皮细胞,降低因糖质代谢而引发的血管、神经病变,从根本上抑制及改善糖尿病并发症。最后一氧化氮还能够清楚体内的自由基,提示胰岛素受受体敏感度,更好的祈祷代谢血糖的作用 三、一氧化氮与性功能 1、性功能障碍的原因 正常的男子的性功能包括性欲、阴茎勃起、性高潮、射精和性满足等环节,如果其中任何渔歌环节发生问题二医学性生活的完善,医学上称之为性功能障碍。而女性的性功能障碍主要表现为性欲冷淡,性高潮缺乏及阴道痉挛,性生活异常疼痛与性生活障碍。 从医学来说肾动脉硬化会引起肾血流量的减少,引起肾功能障碍,影响性功能。从医学的观念来讲,肾藏精,主生殖,肾所藏之元阴和元阳是人身的根本,人体的各种生理活动,特别是性及生殖活动都由肾

一氧化氮的药用价值

一氧化氮:从普通分子到医药明星 2008-12-17 19:00:12 来源: 网易探索(广州) 网友评论 6 条点击查看 以前治疗心血管疾病的药物主要是硝酸甘油,但医学界对这药物的作用机制并不清楚,而伊格纳罗和他的同仁发现其实真正起作用的是一氧化氮。 诺贝尔在一百多年前制造安全炸药时,曾把硝酸甘油作为主要原料之一。当时他患有严重的心绞痛,医生让他服用含“硝酸甘油”的药,却遭到他的激烈反对,在弥留之际,他曾这样说:“医生给我开的药竟是硝酸甘油,这难道不是对我一生巨大的讽刺吗?” 其实这并非讽刺。科学家在后来的研究中发现:硝酸甘油能舒张血管平滑肌,从而扩张血管。他们认为,肯定有一种叫做“内皮细胞舒张因子”的东西,如果找到它,就能打开人体机理奥秘的一片新天地,从而找到更有效的方式治疗心肌梗死等病。 这个因子究竟是什么?

1986年,这一百年谜团终于被伊格纳罗博士和其他两位药理学家破译,它不是猜测已久的蛋白质类大分子,而是简简单单的一氧化氮!顿时,一氧化氮摇身变成了明星分子。伊格纳罗(LouisJ.Ignarro)博士和其他两位研究者共同发现的,他们因发现有关一氧化氮在心血管系统中具有独特信号分子作用而于1998年获得诺贝尔医学奖。 伊格纳罗出生于美国,并且他所有的研究工作也是在美国完成的。他在纽约长大并完成了学前教育,在纽约的哥伦比亚大学获得化学和药物学专业的学位,然后在明尼苏达大学医学专业深造。获得了药理学博士学位,随后又考取了心血管病方面的专业资格。 虽然具有医学方面的教育背景,但是伊格纳罗并没有成为一名医生。尽管许多在学校学医的人立志要成为一名医生,治病救人,伊格纳罗却与众不同,选择了做研究工作。这一决定最终使他取得了巨大的事业成就。伊格纳罗的专业是新血管领域,因此他经常在课堂上谈到治疗心血管病的药物。要对学生讲解硝酸甘油,扩张血管、促进血液流动的药物。他说,当病人出现胸痛、心绞痛的时候,就意味着心脏的供氧不足。病人舌下含服硝酸甘油片不超过五分钟,疼痛便会消失。由于这种立竿见影的功效,一个多世纪以来,硝酸甘油被普遍用于治疗胸痛。 “硝酸甘油是一种药,但是它同时也是一种烈性的爆炸物,用于制造炸药。因此在我讲课的时候,也很想在自己的脑海里弄清楚,硝酸甘油这样的爆炸品怎么就能够用来治疗心绞痛的。我去了图书馆,想查看它到底是什么样的作用机理,但是我发现根本就没有人了解。”这位科学家回忆道。 伊格纳罗决定在实验室对硝酸甘油进行研究。经过三年的研究,他发现硝酸甘油本身并不是一种药物,可是当人体摄入之后,它就转变、代谢为一氧化氮。发现这一点之后,伊格纳罗开始研究一氧化氮的其他效用。他发现一氧化氮具有的健康益处远远超出他最初的猜想:它能降低血压,预防中风和心脏病。 然而令人吃惊的是,当时人们并不知道,人体本身居然可以产生一氧化氮,伊格纳罗介绍说,一氧化氮是一种随处可见的化合物,就是在空气中也存在。 在人体中,一氧化氮是一种非常小的分子,类似于氧气,出现在动脉内膜中。换而言之,是动脉内膜的细胞在制造一氧化氮。 “一氧化氮一旦生成之后,就与动脉中的肌肉细胞接触并使之放松,它扩张了动脉。这样就使得血压降低,从而改善血流”。 更重要的是,他接着说,这种化学品还能预防血液在一些危险的部位发生凝结。如果血液在心脏或脑部发生凝结,则病人就会罹患心脏病或中风。只要人体产生足够数量的一氧化氮,那么前面谈到的问题发生的几率就会大大降低。 伊格纳罗的发现还打破了人们认为一氧化氮是有毒物品这种错误观念。

一氧化氮

NO的生物学特性 NO是一种tl由基性质的气体,其在组织中的半减期仅有10—60 s,其反应活性取决于它被去除或破坏的速度。NO具有脂溶性,可快速透过生物膜扩散,到达临近靶细胞发挥作用。由于体内存在氧及其他能与NO反应的化合物如超氧阴离子,血红蛋白等。因而NO在体内极不稳定,合成后3~5 s即被氧化,以硝酸根(N )和亚硝酸根(N )的形式存在于细胞内、外液中。 N O 的生成和作用 在体内。NO的合成需要NOS催化,以L一精氨酸为底物,以还原型辅酶Ⅱ(NADPH)为电子供体,生成NO和L一瓜氨酸。NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关,而NO的合成则与NOS的活性密切相关。哺乳动物体内的许多组织如血管内皮细胞、巨噬细胞、嗜中性白细胞以及脑组织等均能合成NO。 N O 的生成主要有三种来源: 内皮细胞、神经细胞、神经胶质细胞。 内皮细胞源性N O体内、外研究都表明,内皮细胞源性N O 是一种强有力的血管扩张物质。受乙酞胆碱作用时, 内皮细胞释放N O, 刺激平滑肌内的鸟昔酸环化酶使c G M P 增加从而导致脑血管的扩张。除乙酞胆碱外, 5 一经色胺、P 物质和A D P 扩张脑微循环的作用也依赖N O 形成。生理情况下产生的N O 除对脑血管有扩张作用外, 还可通过抑制血小板和白细胞的聚集而保护脑内皮细胞。最近有报道, 生理情况下产生的N O 可以抑制脑微循环的自主性运动, 并对去甲肾上腺素、6 一经色胺等物质导致的脑动脉收缩有抑制作用。 神经元源性N O神经元源性N O 可能是神经元激活时脑血管反应的介质。有人观察到小脑顶核和胆碱能纤维兴奋时所产生的脑血流增加可被N O S 抑制剂所抑制。许多研究提示,谷氨酸受体激活在神经元产生N O 过程中起关键作用。有研究表明, 戊四氮吟和二氢哈尔碱h( ar m al in e) 诱发癫痛过程中可产生兴奋性氨基酸的内源性蓄积也引起脑中依赖于N O 的c G M P 大量增加。培养细胞研究表明, 除谷氨酸外, 乙酞胆碱、血管紧张素、缓激肤、6 一经色胺、神经肤和内皮素等引起的血管反应与神经元源性N O 也有密切关系。然而发现培养的皮层神经细胞和神经胚瘤细胞用脂多糖刺激, 不能象内皮细胞一样产生

一氧化氮神奇生物化学作用正在揭示doc

一氧化氮神奇生物化学作用正在揭示中 吴国庆 北京师范大学化学系 95年夏天在北京举行的第27届国际化学奥林匹克有一道以NO的生物化学功能为主题的竞赛试题、反映了试题编制者们力求的先进性、趣味性和新颖性,受到广泛欢迎。下面是有关这个曾被美国某杂志选为明星分子的小小无机分子神奇功能的一些新近报道的综述,读者通过阅读本文也许还可以感受到,化学对生命的研究已经进步到什么地步。本文主要是根据C EN,MAY6、1996:38~42上一长篇报道改写的。 你也许知道有一种叫做硝酸甘油酯的药物,已经用了100多年了,它可以用来治疗突发的心绞痛。其实,这是利用了这种药物在生理条件下释放出的一氧化氮,它或许是一氧化氮作为药物的最老应用,尽管是不自觉的,只是到了近年,人们才认识到一氧化氮对动物有着多种重要作用。例如,已经知道,它是神经脉冲的传递介质,有调节血压的作用,能引发免癌功能等;如果人体不能及时制造出足够的一氧化氮,会导致一系列严重的疾病:高血压、血凝失常、免疫功能损伤、神经化学失衡、性功能障碍以及精神痛苦等等;使用释放NO的新药甚至可能对抑制癌症有重要作用。 对一氧化氮的认识首先要归功于微量分析技术的发展,因为一氧化氮在生命体内的浓度是极低的,仅达微摩尔级甚至更低。而且、一氧化氮在细胞间存留的寿命也很短,因为NO是单电子分子,很活泼,一旦生成,很快被反应掉。因此,测试太难,这就不难理解,这样简单的分子为什么这样晚才被人有所认识。 NO的生成一氧化氮分子在生命体中是在一氮化氮合成酶(下文用缩写NOS)的催化作用下生成的。这种酶有多种存在形式,但其功能都是氧化精氨酸的两个胍基氮之一生成瓜氨酸和一氧化氮。反应所需的电子来自辅酶II[即烟酰胺腺嘌呤二核苷酸磷酸(NADPH)], 后者同时被氧化。分子态氧是一氧化氮的氧源。 NO在生物体里的主要反应在生物体内NO的攻击目标首先是蛋白质辅基里的金属离子,特别是血红蛋白里的铁,它与金属原子形成亚硝酰加合物。第二个去处是NO能与超氧离子(O2-)反应生成过氧亚硝酸根(ONOO-),第三个去处是,跟蛋白质或肽里的硫醇基反应生成S-亚硝酰加合物。 NO对NOS的自抑制作用96年3月在美国的一次全国会议上,有人描述了通过神经原的NOS的作用产生的一氧化氮如何快速地与酶本身的血红素中心的亚铁离子生成络合吻的过程。该络合物生成的速度极快,在酶合成第3个一氧化氮分子之前就使反应达到平衡。据报道,与NO分子快速反应的其他生物分子对该络合反应的速率没有影响,这证明,NO脱离酶的活性中心与其他分子反应前一直是键合着的。一旦生成亚铁-亚硝酰络合物,酶便不再具有活性。研究者使用可见光谱和拉曼光谱证实。甚至NO正在继续合成时,70~90%的酶已经失去活性成为自抑态。研究者很惊奇:为什么酶会如此快地因自己的产

一氧化氮与运动训练

E-mail:ttxb@https://www.wendangku.net/doc/cf18989532.html, 7.00 ?综述与进展? 一氧化氮与运动训练 NITRIC OXIDE AND EXERCISE T RAINING 侯 丽* HOU Li 摘要 一氧化碳(N O)对人体有广泛的生物学效应,在多个系统的病理生理过程发挥作用。本文 阐述了运动训练中NO的变化及其机制,N O对骨骼肌血流和氧代谢的调节,N O对运动训练中冠 脉血管的作用,与N O有关的体育锻炼对血管栓塞性疾病的影响及运动训练对血小板功能的影 响。 关键词 一氧化氮 运动训练 一氧化氮合酶 Abstract T he present study demo nstr ates changes of nit ric o x ide(N O)and it s m echanism,co n- tr ibutio n o f NO to ox yg en m etabolism,co ro nar y and skeletal muscles bloo d flow dur ing ex er cise. T he a rticle also discusses effects of ex ercise tr aining r elat ed to N O on cardio vascular diseases and pla telet functio n. Key Words N O ex er cise training N O sy nthase 中图分类号:G804.23 文献标识码:A 文章编号:1005-0000(1999)03-0013-04 1 运动训练中NO水平的变化、发生机制及对骨骼肌血管的效应 由于生物体中NO的量很少且极不稳定,以人体为测试对象由于受到采集血管、肌肉样本和使用抑制NO合成药物的限制,测试也有一定困难。生物体中NO释放后很快转变为亚硝酸根和硝酸根(NO-2和NO-3)后两者性质稳定,可通过测定NO-2/ NO-3来间接反映NO的生成量[1]。一次运动引起NO合成急性增多,国外学者报导,两名受试者连续8天低硝酸盐饮食,连续跑步和骑车6h后,尿硝酸盐水平显著提高。马拉松运动员血浆的硝酸盐水平在跑完马拉松后是安静对照组的两倍,运动训练中提高的血、尿硝酸盐水平在恢复过程中降低接近正常水平[2]。侯丽对青少年游泳运动员的测试结果表明,游泳运动后即刻血清NO水平显著高于安静时,在第二天早晨还未能完全恢复[3]。长期运动训练增加内皮和骨骼肌产生NO的能力,青少年足球、游泳运动员安静时血清NO-2/NO-3的含量高于普通中学生[3];运动员安静时血浆硝酸盐水平和尿硝酸盐排出量高于普通健康者,两个小时运动后,运动员和非运动员血浆硝酸盐与运动前比较分别提高18% * 女,助研,广州市体育科学研究所,510620 Correspondence to:HOU Li,Guangzhou Research Ins titute of Sports Science,Guangzhou510620,Chin a 收稿:1999-04-30 修回:1999-05-25和16%[4],安静时,有训练者血浆硝酸盐水平高于无训练者,并有显著差异,运动后,这种情况仍然存在[15]。值得一提的是,有学者发现一种善跑的赛犬,其冠状微血管产生亚硝酸盐的能力高于普通犬,这种较高NO生成能力不是由于运动训练所致,而是由某种先天素质决定的。如果把这一结果外推至人,那么世界级水平运动员其NO生成能力可能均较高[1,6]。 业已证明,搏动性血流和血管切应力是刺激NO释放的主要生理因素[7]。运动过程中心输出量,骨骼肌、冠脉血管血流量增大,血管切应力增加,强烈刺激血管内皮细胞产生N O。血管切应力的刺激可能是运动中NO增加的主要原因。NO的药理学研究表明:去甲肾上腺素(NE)、Ach、缓激肽(BK)与位于内皮细胞膜上的 2肾上腺素能受体、胆硷能受体和BK受体结合诱导NO释放[8]。刺激NO释放的其它因素还有A TP、ADP、白细胞介素1(IL-1)等[7]。由于运动应激的影响,运动时交感-肾上腺素系统功能亢进,NE分泌增加[9],IL-1在运动中的分泌也增强[10],AT P为运动中能量的直接来源,在运动中AT P、ADP的含量发生改变,这些生化物质的变化也可能是提高运动中NO水平的原因。近年研究表明,低氧可调节cNOS的表达,可能也是运动中产生NO增多的原因[11]。 正常生理状态下释放的NO的主要作用是维持 天津体育学院学报J ournal of Tianjin Ins titute of Ph ysical Education 第14卷第3期 1999年9月 Vol.14 No.3 Sept,199913~16

一氧化氮说明

一氧化氮产品说明 一氧化氮性质 化学品中文名称:一氧化氮 化学品英文名称:nitrogen monoxide 中文名称2:氧化氮 英文名称2:nitric oxide 纯度:99.9% 规格:40L CAS No.:10102-43-9 EINECS号:233-271-0 分子式:NO 分子量:30.01 分子键长:115.08pm 键解离能:941.69kJ/mol 磁性:顺磁性 一氧化氮用途 一、化学工业 一氧化氮也可用于硝化生产工艺,它可与烯烃加成,生成二亚硝基化合物,后者可 被氧化为硝基化合物。 聚氯乙烯行业的聚合反应中止剂。 二、电子工业 一氧化氮主要用于电子工业中的硅氧化膜形成、氧化、化学气相沉积。 三、航天工业 一氧化氮可用于航天火箭和卫星的推进剂。 四、计量标准气、校正气 标准气、校正气、大气检测混合气。 环保检测。 五、生命科学和医疗 一氧化氮在疾病治疗中的应用包括两个方面: 一是直接输入气体一氧化氮(如吸入一氧化氮缓解肺动脉高压与呼吸窘迫),或利 用一氧化氮供体产生一氧化氮作用于靶器官或组织(如冠心病、心肌缺血、内毒素 性休克、肺动脉高压及阳痿等),从而起到缓解或治疗作用。 二是加入相关药物调节机体一氧化氮的生成速度,如L-精氨是合成一氧化氮的前体,对许多疾病(心血管疾病如高血压、高胆固醇血症、充血性心力衰竭等,肾脏疾病如急性肾衰、阻塞性肾病、慢性肾病及胃黏膜溃疡等)具有有益的治疗作用。 一氧化氮使用注意事项

操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿透气型防毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。防止气体泄漏到工作场所空气中。避免与卤素接触。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与易(可)燃物、卤素、食用化学品分开存放,切忌混储。储区应备有泄漏应急处理设备。 以上资料由谱源气体收集整理,欢迎广大客户学习借鉴

(推荐)呼气一氧化氮测定意义、适应症和优势

呼气一氧化氮测定意义,适应症和优势 呼气一氧化氮作为一项生物标记物,FeNO水平可以反映气道的炎症及高反应性,具有很高的敏感性和特异性,且具有无创、简便、迅速、安全等优势,正常的情况下2分钟就可以拿到报告。 在慢性气道炎症的规范化治疗和管理中,尤其是在指导激素的使用和监测病情变化方面,FeNO具有重要意义。2015年发表的中国无创气道炎症专家共识推荐FeNO: 1、辅助哮喘诊断与鉴别诊断; 2、区别气道炎症类型和评估气道炎症水平; 3、判断吸入性糖皮质激素(ICS)治疗的反应性; 4、判断ICS治疗的依从性; 5、评估哮喘控制水平和预测哮喘急性发作; 6、指导哮喘治疗方案调整。 临床医生通过随访呼出气一氧化氮检测,可以方便快速的对气道嗜酸性炎症做出诊断,及时调制药物治疗。 具体的在临床上具有以下指征的患者推荐进行FeNO检测: 1、反复发作的喘息、气促、胸闷和咳嗽等症状,多在夜间或凌晨生刺激性干咳(这部分患者如果FeNO值高,预示激素治疗效明显); 2、胸闷为唯一症状的患者(胸闷变异性哮喘CTVA排查); 3、需评估病情或提供临床诊断依据(FeNO可以提供哮喘诊断的性证据); 4、评估疗效或依从性(炎症改善的患者FeNO会降低,依从性好患者FeNO也会出现持续性的降低); 5、在存在变应性鼻炎的患者(这部分患者往往有60%以上会发展为哮喘,通过FeNO检测可以提早介入治疗,并且可以提高患者对鼻用激素的依从性); 6、无法配合完成肺功能等其它检查的咳喘患者(FeNO无创,结果易得); 呼出气一氧化氮测定的优点: (1)呼出气一氧化氮检测检测极为安全便捷,只需轻呼一口气。结果易得,安全无创。 (2)呼出气一氧化氮检测检测敏感度灵敏度高,可重复检测,结果稳定。(3)呼出气一氧化氮检测与X线胸片、CT、肺功能等检查相比,其分析结果可以早期预测哮喘等病情发作,提示及早用药,防止病情反复发作和进一步恶化。(4)根据呼出气一氧化氮检测结果可以监测药物治疗效果(用药是否正确,有效)。减少误诊误治,防止抗生素与激素药物滥用,降低患者医疗负担。

一氧化氮的功能及其作用机制_性质与功能

生物物理学报2012年3月第28卷第3期: ACTA BIOPHYSICA SINICA Vol.28No.3Mar.2012:173-184 173-184 —— —性质与功能 黄波,陈畅 中国科学院生物物理研究所,北京100101 收稿日期:2012-01-16;接受日期:2012-02-08 基金项目:“973”计划项目(2012CB911000) 通讯作者:陈畅,电话:(010)64888406,E-mail:changchen@https://www.wendangku.net/doc/cf18989532.html, 摘要:一氧化氮(nitric oxide,NO)是第一个被发现的参与细胞信号转导的气体信号分子。NO参 与的生命活动非常广泛,在神经、免疫、呼吸等系统中发挥着重要作用。很久以来,一氧化氮 合酶(nitric oxide synthase,NOS)被认为是人体内合成NO的主要途径,其活性受到严格的调 控。直到最近,人们才发现亚硝酸盐(nitrite,NO2-)也可以参与体内NO的合成。本综述总结 NO的相关性质与功能,并简介亚硝酸盐的研究进展。 关键词:一氧化氮;一氧化氮合酶;亚硝酸盐;巯基修饰 中图分类号:Q58 DOI:10.3724/SP.J.1260.2012.20007 引言 一氧化氮(nitric oxide,nitrogen oxide,NO)是由氮和氧两个原子构成的非常简单的 小分子。在自然界中,NO产生于闪电、核爆炸等高能反应,也可通过汽车尾气排放。1985 年,人们第一次发现南极高空臭氧层存在空洞时,除了氯溴化物之外,NO也是破坏臭氧层 的元凶之一。过去,人们一直认为NO是一种大气污染物,其实,血管内皮细胞也产生 NO,并具有与内皮细胞松弛因子EDRF(endothelium-derived relaxing factor)相同的生物活 性[1]。NO是第一个被发现的参与体内信号转导的气体信号分子,在神经系统、免疫系统、 心血管系统等方面都发挥着重要作用。1998年的诺贝尔生理学和医学奖就授予了三位研究 NO生物学作用的先驱科学家。 NO的基本性质 了解NO的物理化学性质对理解NO的生物学功能非常重要。纯净的NO在常温常压 下是一种无色的气体,熔点-163.7℃,沸点-151.8℃,在空气中可很快与氧反应生成棕色的 NO2。NO不带电,微溶于水(1.9mmol/L·atm,298K),具有脂溶性(在疏水性溶剂中的溶 解度是在水溶液中的70多倍),是一种两性分子。 173

一氧化氮的生物功能

一氧化氮与人体生物功能 近来发现一氧化氮(nitric oxide,NO)广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitric oxide synthase , NOS )并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。 1. NO生物活性的发现 医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。 1980年,美国科学家Furchaout 在一项研究中发现了一种小分子物质,具有使血管平滑肌松驰的作用,后来被命名为血管内皮细胞舒张因子(endothelium-derived relaxing factor, EDRF)是一种不稳定的生物自由基。EDRF被确认为是NO。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上弄清楚其治疗机理。近年的研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP 形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸(L-argi-nine , L-Arg)是血管内皮细胞合成NO的前体,从而确立了哺乳动物体内可以合成NO的概念。 2. NO的生物学作用 (1)在心血管系统中的作用 NO在维持血管张力的恒定和调节血压的稳定性中起着重要作用。 在生理状态下,当血管受到血流冲击、灌注压突然升高时,NO作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。 NO在心血管系统中发挥作用的可能机制是通过提高细胞中鸟苷酸环化酶(guanylate cyclase , GC)的活性,促进磷酸鸟苷环化产生环一磷酸鸟苷(guanosine 3′, 5′–cyclic monophosphate cGMP),使细胞内cGMP水平增高,继而激活依赖cGMP的蛋白激酶对心肌肌钙蛋白Ⅰ的磷酸化作用加强,肌钙

从食物中获取一氧化氮

在食物中获得一氧化氮 富含一氧化氮的主要营养食品:谷类及制品、薯类及制品、干豆类及制品、蔬菜类及其制品、菌藻类、水果类及制品、坚果种子类、畜肉类及制品、蛋类及制品、鱼虾蟹贝类 人体每天所需能量、营养物质,最主要的来源是食物。同样是吃饭,但是人与人之间差别却是很大的,有的人说“病从口入”,但是聪明的人却能通过科学合理的饮食,来维持身体能量与营养物质的平衡,保持身体的健康。合理的饮食,同样也是我们获取一氧化氮的重要途径。富含一氧化氮的主要营养食品:谷类及制品、薯类及制品、干豆类及制品、蔬菜类及其制品、菌藻类、水果类及制品、坚果种子类、畜肉类及制品、蛋类及制品、鱼虾蟹贝类、猪蹄筋、骆驼掌、丁香鱼(干)鱼片干、虾米(海米、虾仁)、蛏干、扇贝(干)、墨鱼(干)、油炸豆瓣、芝麻酱等。 1.黑木耳:黑木耳有防止血小板聚集和抗凝血作用,能减少血液凝集、防止血栓形成、延缓动脉硬化的发生和发展。黑木耳中的木耳多糖还能调节血脂。 2.香菇:包括平菇、草菇等,都是高蛋白、低脂肪、富含维生素的健康食品。特别是香菇还有降血压作用,它含有核酸类物质,可抑

制胆固醇的产生,防止脂质在动脉壁沉积,防止动脉硬化和血管变脆,使血管变得年轻。 3.蜂蜜:含有丰富的维生素C、维生素K、维生素B2、维生素B6、胡萝卜素,能改善冠状血管的血液循环,防止血管硬化。 4.大枣:含有相当丰富的维生素P,维生素P能增强毛细血管弹性,防止出血性疾病。 5.茄子:含有维生素P,其中以紫茄子含量最高。维生素P能增强毛细血管的弹性。茄子还含有丰富的维生素A、维生素C、蛋白质和钙,能使人体血管变软。它还能散淤血,降低心血管中血栓形成的概率。因此,茄子对防治高血压、动脉粥样硬化及脑卒中有较好作用。 6.番茄:含有维生素P,可保护血管,防治高血压。番茄内的番茄红素和纤维素,具有结合体胆固醇代谢生物碱的作用,从而阻止人体动脉硬化和防止冠心病的发生。 7.白薯:含有多糖与蛋白质的混合物,多吃可降低胆固醇的含量,对防治血管硬化很有利。 8.玉米:富含蛋白质,不饱和脂肪酸含量达85%以上,主要为亚油酸和油酸,并含有大量的卵磷脂,丰富的钙、磷、硒等微量元素和

一氧化氮与阿兹海默氏症的治疗

Aging Research 老龄化研究, 2017, 4(4), 55-61 Published Online December 2017 in Hans. https://www.wendangku.net/doc/cf18989532.html,/journal/ar https://https://www.wendangku.net/doc/cf18989532.html,/10.12677/ar.2017.44008 Roles of Nitric Oxide in Treatment of Alzheimer’s Disease Jiahui Wang1, Yalan Shao1, Jing Shi1, Yaofei Jiang1, Xiaoming Xie1, Ting Fang1, Han Wan2, Fenfang Hong3, Shulong Yang1* 1Department of Physiology of Basic Medical College, Nanchang Jiangxi 2Department of Surgery of Nanchang Heath School, Nanchang Jiangxi 3Parasites Laboratory in Department of Experimental Teaching Center, Nanchang Jiangxi Received: Dec. 5th, 2017; accepted: Dec. 18th, 2017; published: Dec. 25th, 2017 Abstract Alzheimer’s disease (AD) is a primary neurodegenerative disorder with cognitive impairment and autonomic nervous system dysfunction. Nitric oxide (NO) is a major signaling molecule in neurons which influences the formation of Aβ. In addition, NO reduces neurogenic inflammation, oxidation and nitridation and NF-κB passway to restrain inducible nitric oxide synthetase (iNOS). This paper reviewed NO effects on the development and therapy of AD. Keywords Nitric Oxide, Alzheimer’s Disease, Treatment 一氧化氮与阿兹海默氏症的治疗 王家卉1,邵亚兰1,石静1,江耀飞1,谢小明1,方婷1,万函2,洪芬芳3,杨树龙1* 1南昌大学基础医学院生理教研室,江西南昌 2南昌市卫生学校外科教研室,江西南昌 3南昌大学医学实验教学中心寄生虫实验室,江西南昌 收稿日期:2017年12月5日;录用日期:2017年12月18日;发布日期:2017年12月25日 摘要 阿尔茨海默症(Alzheimer’s Disease, AD)是一种原发性神经退行性病变,常伴有认知障碍和神经功能障*通讯作者。

呼气一氧化氮测定意义适应症和优势

呼气一氧化氮测定意义,适应症和优势呼气一氧化氮作为一项生物标记物,FeNO水平可以反映气道的炎症及高反应性,具有很高的敏感性和特异性,且具有无创、简便、迅速、安全等优势,正常的情况下2分钟就可以拿到报告。 在慢性气道炎症的规范化治疗和管理中,尤其是在指导激素的使用和监测病情变化方面,FeNO具有重要意义。2015年发表的中国无创气道炎症专家共识推荐FeNO: 1、辅助哮喘诊断与鉴别诊断; 2、区别气道炎症类型和评估气道炎症水平; 3、判断吸入性糖皮质激素(ICS)治疗的反应性; 4、判断ICS治疗的依从性; 5、评估哮喘控制水平和预测哮喘急性发作; 6、指导哮喘治疗方案调整。 临床医生通过随访呼出气一氧化氮检测,可以方便快速的对气道嗜酸性炎症做出诊断,及时调制药物治疗。 具体的在临床上具有以下指征的患者推荐进行FeNO检测: 1、反复发作的喘息、气促、胸闷和咳嗽等症状,多在夜间或凌晨生刺激性干咳(这部分患者如果FeNO值高,预示激素治疗效明显); 2、胸闷为唯一症状的患者(胸闷变异性哮喘CTVA排查); 3、需评估病情或提供临床诊断依据(FeNO可以提供哮喘诊断的性证据); 4、评估疗效或依从性(炎症改善的患者FeNO会降低,依从性好患者FeNO也会出现持续性的降低); 5、在存在变应性鼻炎的患者(这部分患者往往有60%以上会发展为哮喘,通过FeNO检测可以提早介入治疗,并且可以提高患者对鼻用激素的依从性); 6、无法配合完成肺功能等其它检查的咳喘患者(FeNO无创,结 果易得); 呼出气一氧化氮测定的优点: (1)呼出气一氧化氮检测检测极为安全便捷,只需轻呼一口气。结果易得,安全无创。 (2)呼出气一氧化氮检测检测敏感度灵敏度高,可重复检测,结果稳定。(3)呼出气一氧化氮检测与X线胸片、CT、肺功能等检查相比,其分析结果可以早期预测哮喘等病情发作,提示及早用药,防止病情反复发作和进一步恶化。(4)根据呼出气一氧化氮检测结果可以监测药物治疗效果(用药是否正确,有效)。减少误诊误治,防止抗生素与激素药物滥用,降低患者医疗负担。

一氧化氮相关知识

1、什么是一氧化氮? 一氧化氮是一种气体,它由一个氮原子(N)和一个氧原子(O)组成。在人体内扮演着传递重要讯息和调节细胞功能的角色。它可以穿透任何细胞到达任何组织,使信息从身体某一部分传至其他部分,行使着传输信号的功能,可以让细胞相互之间得以沟通,充分得到营养、修复受伤的细胞、激活濒死的细胞、防止细胞发生功能障碍,使血管扩张,帮助控制血液流向人体的各个部位,防止心脑血管病及其他疾病的发生 2、一氧化氮来源于哪里? 机体自身是一氧化氮最佳来源,主要由内皮生成。体内的L一精氨酸在内皮一氧 化氮合成酶( NOS)的帮助下,内皮细胞就像制造和生产一氧化氮的工厂,源源不 断地生成一氧化氮,以满足人体健康的需要,另外,神经细胞、免疫细胞也可生成 一氧化氮。 3、一氧化氮在细胞内作用的重要靶位点是什么? 一氧化氮在细胞内作用的重要靶位点是鸟普酸环化酶( SGC ),一氧化氮通过 与SGC基团上的Fe2+结合,激活SGC,升高细胞内环磷酸鸟普( cGMP)水平,直 接影响离子通道,这是一氧化氮参与多种生物效应(血管扩张、神经传递、抑制血 小板凝聚、激素分泌、巨噬细胞和中性粒细胞杀伤病原体等)的重要信号传导机 制。 4、一氧化氮在细胞内作用的其他靶位点是什么? 一氧化氮在细胞内作用的其他靶位点包括过氧化氢酶、细胞色素C、血红蛋 白、过氧化物酶、环氧化酶、核糖核普酸还原酶、一些线粒体酶??一氧化氮可通 过反馈调节影响一氧化氮合酶( NOS)自身活性。 5、在人体内怎样产生一氧化氮? 人体可以自然产生一氧化氮,主要通过一氧化氮合酶 NOS)催化进行合成,NOS以L一精氨酸(L-Arg)和分子氧为底物,催化L-Arg的氮原子生成L一瓜氨酸并释放一氧化氮。

相关文档