文档库 最新最全的文档下载
当前位置:文档库 › 等电点

等电点

等电点
等电点

等电点(pI,isoelectric point)

等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。

两性离子所带电荷因溶液的pH值不同而改变,当两性离子正负电荷数值相等时,溶液的pH值即其等电点。

当外界溶液的pH大于两性离子的pl值,两性离子释放质子带负电。

当外界溶液的pH小于两性离子的pl值,两性离子质子化带正电。

氨基酸具有氨基和羧基的典型反应,例如氨基可以羟基化、酰基化,可与亚硝酸作用;羧基以成酯或酰氯或酰胺等。此外,由于分子中同时具有氨基与羧基,还有氨基酸所特有的性质。

氨基酸分子中既含有氨基,又含有羧基,所以氨基酸与强酸强碱都能成盐,氨基酸是两性物质,本身能形成内盐。

氨基酸的高熔点(实际为分解点)、难溶于非极性有机溶剂等性质说明氨基酸在结晶状态是以两性离子存在的。

在水溶液中,氨基酸二偶极离子即可以与一个结合成为正离子,又可以失去一个成为负离子。这三种离子在水溶液中通过得到或失去互相转换同时存在,在pH值达到等电点时溶液处于平衡。

等电点不是中性点,不同氨基酸由于结构不同,等电点也不同。酸性氨基酸水溶液的pH值必然小于7,所以必须加入较多的酸才能使正负离子量相等。反之,碱性氨基酸水溶液中正离子较多,则必须加入碱,才能使负离子量增加。所以碱性氨基酸的等电点必然大于7。

各种氨基酸在其等电点时,溶解度最小,因而用调节等电点的方法,可以分离氨基酸的混合物。

氨基酸形成内盐

氨基酸的晶体是以偶极离子的形式存在。

这种偶极离子是分子内的氨基与羧基成盐的结果,故又叫内盐。

核酸的等电点比较低。如DNA的等电点为4~4.5,RNA的等电点为2~2.5。

等电点

在氨基酸溶液中存在如下平衡,在一定的pH值溶液中,正离子和负离子数量相等且浓度都很低,而偶极浓度最高,此时电解以偶极离子形式存在,氨基酸不移动。这时溶液的pH值便是该氨基酸的等电点。

蛋白质等电点测定

离表面越远,过剩的反离子越少, 直至在溶液内部反离子 蛋白质等电点测定 及性质实验 、目的: 了解等电点的意义及其与蛋白质分子聚沉能力的关系。 初步学会测定蛋白质等电点的基本方法,了解蛋白质的性质。 、原理: 固体颗粒在液体中为什么能够带电? 当固体与液体接触时,固体可以从溶液中选择性吸附某种离子,也可以是固体分子本 身发生电离作用而使离子进入溶液, 以致使固液两相分别带有不同符号的电荷, 由于电中性 的要求,带电表面附近的液体中必有与固体 表面电荷 数量相等但符号相反的多余的反离子。 在界面上 带电表面和反离子 形成了双电层的结构。 在两种不同物质的 界面上,正负电荷分 别排列成的面层。 对于双电层的具体结构,一百多年来不同学者提出了不同的看法。最早于 1879年 Helmholz 提出平板型模型;1910年Gouy 和1913年Chap man 修正了平板型模型, 提出了扩 散双电层模型;后来 Stern 又提出了 Stern 模型。 根据O.斯特恩的观点,一部分反离子由于电性吸引或非电性的特性吸引作用(例如范 德华力)而和表面紧密结合,构成 吸附层(或称紧密层、斯特恩层)。其余的离子则扩散地 分布在溶液中,构成双电层的 扩散层(或称滑移面)。由于带电表面的吸引作用,在 扩散层 中反离子的浓度远大于同号离子。 紧密层(Stern 层〉 +++++^+++ 9 反号离子溶剂分子 扩散层

紧密层:溶液中反离子及溶剂分子受到足够大的静电力,范德华力或特性吸附力,而紧 密吸附在固体表面上。其余反离子则构成扩散层。 滑动面:指固液两相发生相对移动的界面,是凹凸不平的曲面。滑动面至溶液本体间的 电势差称为Z电势。 固体颗粒带电量的大小及测量方式? Z电势只有在固液两相发生相对移动时才能呈现出来。Z电势的大小由Zeta电位表示, 其数值的大小反映了胶粒带电的程度,其数值越高表明胶粒带电越多,扩散层越厚。一般来说,以pH值为横坐标,Zeta电位为纵坐标作图,Zeta电位为零对应的pH值即为等电点。 对于蛋白质分子来说: 蛋白质分子的大小在胶粒范围内,约1?100微米。大部分蛋白质分子的表面都有很多 亲水集团,这些集团以氢键形式与水分子进行水合作用,使水分子吸附在蛋白质分子表面而 形成一层水合膜,具有亲水性;又由于蛋白质分子表面的亲水集团都带有电荷,会与极性水分子中的异性电荷吸引形成双电层。而水合膜和双电层的存在,使蛋白质的分子与分子之间 不会相互凝聚,成为比较稳定的胶体溶液。如果消除水合膜或双电层其中一个因素,蛋白质溶液就会变得不稳定,两种因素都消除时,蛋白质分子就会互相凝聚成较大的分子而产生沉淀。在生活实践中,常利用蛋白质的胶体性质沉淀或分离蛋白质。如做豆腐、肉皮冻就是利 用蛋白质的胶凝作用。 蛋白质分子所带的电荷与溶液的pH值有很大关系,蛋白质是两性电解质,在酸性溶液 在碱性溶液中羧基形成-C00-而带负电 中的氨基酸分子氨基形成-NH3+而带正 电, COO-COO J p\+ 0H- NH2 兼性痒孑 pH>pI pK = pl pl 电殛申:拓向配覆不暮动 蛋白质分子所带净电荷为零时的pH值称为蛋白质的等电点(PI)。其定义为:在某一 pH的溶液中,蛋白质解离成阳离子和阴离子的趋势或程度相等时,呈电中性,此时溶液的pH称为该蛋白质的等电点。 等电点的应用:主要用于蛋白质等两性电解质的分离、提纯和电泳。 蛋白质等电点的测量方式:溶解度最低时的溶液pH。

氨基酸等电点

1、氨基酸等电点:氨基酸处于净电荷为零时的PH. 2、超二级结构:是指在多肽链内顺序上相互邻近的二级结构常常在空间折叠中靠近,彼此相互作用,形 成规则的二级结构聚集体。 3、结构域:是蛋白质构象中二级结构与三级结构之间的一个层次。 4、蛋白质一、二、三、四级结构:蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了 它的功能。一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。二级结构:蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。三级结构:蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。四级结构:多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。 5、蛋白质变性:是指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性 质的改变和生物活性的丧失,这种现象称为蛋白质变性 6、蛋白质复性:如果除去变性因素,在适当条件下变性蛋白质可恢复其天然构象和生物活性,这种现象 称为蛋白质的复性。 7、一碳单位:指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、 甲炔基、甲酚基及亚氨甲基等。 8、转氨基作用:非氨基酸物质通过物质转换成为非必须氨基酸(必须氨基酸不能转换获得) 如果氨基酸要变为其它物质则要通过脱氨基作用,就是脱去含N的不分(形成尿素) 9、联合脱氨基作用:即转氨基作用与L-谷氨酸氧化脱氨基作用联合起来进行的脱氨方式.。 氧化脱氨基作用:氨基酸在酶的催化下生成酮酸。 11、密码子:在一个MRNA上的三个核苷酸(不是脱氧核苷酸),按一定顺序排列,这样的m10、RNA叫密码子。 12、反密码子:RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。 13、多核糖体:在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体。 14、增色效应; 由于DNA变性引起的光吸收增加称增色效应,也就是变性后DNA 溶液的紫外吸收作用增强的效应。 15、减色效应:若变性DNA复性形成双螺旋结构后,其紫外吸收会降低,这种现象叫减色效应。 16、Tm:Tm值就是DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度。 17、DNA复性:DNA复性指变性的DNA在适当条件下,可使分开的两条双链重新缔合为双螺旋结构。 18、DNA变性:指核酸双螺旋氢键断裂,变成单链,并不涉及共价键的断裂。 19、半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制。 20、半不连续复制:指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。 21、前导链: 在DNA复制过程中,两条链均按5'到3'方向合成,一条链是可连续合成的,复制方向和复制叉前进的方向一致,称前导链. 22、后随链; 在DNA复制过程中,两条链均按5'到3'方向合成, 一条链的合成是不连续的,形成冈崎片段,最后由连接酶连成完整的一条链,此链称后随链. 23、转录; 是遗传信息由DNA转换到RNA的过程。 24、逆转录:以RNA为模板合成DNA的过程。 25、复制叉:DNA复制时在DNA链上通过解旋、解链和SSB蛋白的结合等过程形成的Y字型结构称为复制叉。

蛋白质的等电点测定

蛋白质的等电点测定 一、蛋白质等电点的测定 1.目的 (1)了解蛋白质的两性解离性质。 (2)学习测定蛋白质等电点的一种方法。 2.原理 蛋白质是两性电解质。在蛋白质溶液中存在下列平衡: 蛋白质分子的解离状态和解离程度受溶液的酸碱度影响。当溶液的pH达到一定数值时,蛋白质颗粒上正负电荷的数目相等,在电场中,蛋白质既不向阴极移动,也不向阳极移动,此时溶液的pH值称为此种蛋白质的等电点。不同蛋白质各有其特异的等电点。在等电点时,蛋白质的理化性质都有变化,可利用此种性质的变化测定各种蛋白质的等电点。最常用的方法是测其溶解度最低时的溶液pH值。 本实验借观察在不同pH溶液中的溶解度以测定酪蛋白的等电点。用醋酸与醋酸钠(醋酸钠混合在酪蛋白溶液中)配制成各种不同pH值的缓冲液。向诸缓冲溶液中加入酪蛋白后,沉淀出现最多的缓冲液的pH值即为酪蛋白的等电点。 3.器材 (1)水浴锅(2)温度计 (3)200mL锥形瓶4)100mL容量瓶 (5)吸管(6)试管 (7)试管架(8)乳钵 4.试剂 (1)0.4%酪蛋白醋酸钠溶液200mL 取0.4g酪蛋白,加少量水在乳钵中仔细地研磨,将所得的蛋白质悬胶液移入200mL锥形瓶内,用少量40—50℃的温水洗涤乳钵,将洗涤液也移入锥形瓶内。加入10mL1mol/L 醋酸钠溶液。把锥形瓶放到50 C水浴中,并小心地旋转锥形瓶,直到酪蛋白完全溶解为止。

将锥形瓶内的溶液全部移至100mL容量瓶内,加水至刻度,塞紧玻塞,混匀。 (2)1.00mol/L醋酸溶液100mL (3)0.10mol/L醋酸溶液100mL (4)0.01 mol/L醋酸溶液 50mL 5.操作 取同样规格的试管4支,按下表顺序分别精确地加入各试剂,然后混匀。 (2)向以上试管中各加酪蛋白的醋酸钠溶液1mL,加一管,摇匀——管。此时1、2、3、4管的pH依次为5.9、5.3、4.7、3.5。观察其混浊度。静置10分钟后,再观察其混浊度。最 混浊的一管的pH即为酪蛋白的等电点。

蛋白质等电点测定

蛋白质等电点测定及性质实验 一、目的: 了解等电点的意义及其与蛋白质分子聚沉能力的关系。 初步学会测定蛋白质等电点的基本方法,了解蛋白质的性质。 二、原理: 固体颗粒在液体中为什么能够带电 当固体与液体接触时,固体可以从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,由于电中性的要求,带电表面附近的液体中必有与固体表面电荷数量相等但符号相反的多余的反离子。在界面上带电表面和反离子形成了双电层的结构。在两种不同物质的界面上,正负电荷分别排列成的面层。 对于双电层的具体结构,一百多年来不同学者提出了不同的看法。最早于1879年Helmholz提出平板型模型;1910年Gouy和1913年Chapman修正了平板型模型,提出了扩散双电层模型;后来Stern又提出了Stern模型。 根据O.斯特恩的观点,一部分反离子由于电性吸引或非电性的特性吸引作用(例如范德华力)而和表面紧密结合,构成吸附层(或称紧密层、斯特恩层)。其余的离子则扩散地分布在溶液中,构成双电层的扩散层(或称滑移面)。由于带电表面的吸引作用,在扩散层中反离子的浓度远大于同号离子。离表面越远,过剩的反离子越少,直至在溶液内部反离子的浓度与同号离子相等。

紧密层:溶液中反离子及溶剂分子受到足够大的静电力,范德华力或特性吸附力,而紧密吸附在固体表面上。其余反离子则构成扩散层。 滑动面:指固液两相发生相对移动的界面,是凹凸不平的曲面。滑动面至溶液本体间的电势差称为ζ电势。 固体颗粒带电量的大小及测量方式 ζ电势只有在固液两相发生相对移动时才能呈现出来。ζ电势的大小由Zeta电位表示,其数值的大小反映了胶粒带电的程度,其数值越高表明胶粒带电越多,扩散层越厚。一般来说,以pH值为横坐标,Zeta电位为纵坐标作图,Zeta电位为零对应的pH值即为等电点。 对于蛋白质分子来说: 蛋白质分子的大小在胶粒范围内,约1~100微米。大部分蛋白质分子的表面都有很多亲水集团,这些集团以氢键形式与水分子进行水合作用,使水分子吸附在蛋白质分子表面而形成一层水合膜,具有亲水性;又由于蛋白质分子表面的亲水集团都带有电荷,会与极性水分子中的异性电荷吸引形成双电层。而水合膜和双电层的存在,使蛋白质的分子与分子之间不会相互凝聚,成为比较稳定的胶体溶液。如果消除水合膜或双电层其中一个因素,蛋白质溶液就会变得不稳定,两种因素都消除时,蛋白质分子就会互相凝聚成较大的分子而产生沉淀。在生活实践中,常利用蛋白质的胶体性质沉淀或分离蛋白质。如做豆腐、肉皮冻就是利用蛋白质的胶凝作用。 蛋白质分子所带的电荷与溶液的pH值有很大关系,蛋白质是两性电解质,在酸性溶液中的氨基酸分子氨基形成-NH3+而带正电,在碱性溶液中羧基形成-COO-而带负电: 蛋白质分子所带净电荷为零时的pH值称为蛋白质的等电点(PI)。其定义为:在某一pH的溶液中,蛋白质解离成阳离子和阴离子的趋势或程度相等时,呈电中性,此时溶液的pH称为该蛋白质的等电点。 等电点的应用:主要用于蛋白质等两性电解质的分离、提纯和电泳。 蛋白质等电点的测量方式:溶解度最低时的溶液pH。

常见蛋白质等电点参考值

常见蛋白质等电点参考值 常见蛋白质等电点参考值 蛋白质等电点蛋白质等电点 鲑精蛋白[salmine]鲱精蛋白[clupein e] 血清白蛋白[serumalbumin] 鲟精蛋白[sturline]胸腺组蛋白[thymohistone] 珠蛋白(人)[globin (human)] 卵白蛋白[ovalbu in] 伴清蛋白[conal12。1 12。1 4。7—4。 9 11。71 10.8 7.5 4.7 1;4.59 6。8,7。1 3.5 6.3 5。1—5.3 肌红蛋白[myoglobin] 血红蛋白(人)[hemogl obin(human)] 血红蛋白(鸡)[hemoglobin(h en)] 血红蛋白(马)[hemoglobi n(horse)] 血蓝蛋白[hemerythrin] 蚯蚓血红蛋白[chlorocruo rin] 血绿蛋白[chlorocruori n] 无脊椎血红蛋白[eryt 7.07 7。23 6.92 4.6- 6.4 5。6 4。3- 4.5 4。6— 6.2 9.8— 10.1 4.47—

bumin] 肌清蛋白[myoal bumin] 肌浆蛋白[myogen A]β-乳球蛋白[β—lactoglobulin] 卵黄蛋白[livetin]γ1—球蛋白(人)[γ1-globulin(human)] γ2-球蛋白(人)[γ2—globulin(huma n)] 肌球蛋白A[myosin A] 原肌球蛋白[myosin A]4。8-5。 5.8,6.6, 7。3,8.2 5.2-5.5 5.1 5。9 3.4-3。 5 5.5-5.8 4.8 6.0 5.1 3.9 3.7-5.0 4。6-4。 7 hrocruorins] 细胞色素C[cytochrome C] 视紫质[rhodopsin] 促凝血酶原激酶[th romboplastin] α1-脂蛋白[α1-lipoprot ein] β1-脂蛋白[β1-lip oprotein] β—卵黄脂磷蛋白[β-lip ovitellin] 芜菁黄花病毒[turnip yell ow vvirus] 牛痘病毒[vaccinia viru s] 生长激素[somatotropin] 4.57 5。2 5.5 5.4 5.9 3。75 5。3 6.85 5。73 5。35 1.0 8。1 4。9 7.8 4.58 4 3.83

1蛋白质的等电点是指教学提纲

1蛋白质的等电点是指( ) 蛋白质分子的正电荷与负电荷相等时溶液的pH值 2 蛋白质高分子溶液的特性有( ) 黏度大、 3维持蛋白质三级结构的主要键是( )次级键 4 DNA水解后可得下列哪组产物( ) 胞嘧啶、胸腺嘧啶 5 蛋白质的主要特点是( ) . 生物学活性丧失 6 肽类激素诱导cAMP生成的过程是( ) 激素受体复合物使G蛋白结合GTP而活化,后者再激活腺苷酸环化酶 7 芳香族氨基酸是( ) 苯丙氨酸 8 蛋白质分子中主要的化学键是( ) 肽键 9对酶来说,下列不正确的有( ) 酶可加速化学反应速度,因而改变反应的平衡常数 10盐析沉淀蛋白质的原理是( ) 中和电荷,破坏水化膜 11 酶化学修饰调节的主要方式是( ) 磷酸化与去磷酸化 12 关于蛋白质的二级结构正确的是( ) 是多肽链本身折叠盘曲而形成 13 DNA复制的叙述错误的是( ) 两条子链均连续合成 14 关于酶的叙述正确的一项是( ) 所有酶的本质都是蛋白质 15下列脱氧核苷酸不存在于DNA中的是, . dUMP 16 关于组成蛋白质的氨基酸结构,正确的说法是( ) 在α-碳原子上都结合有氨基或亚氨基 17 核酸对紫外线的最大吸收峰在( ) 260nm 18关于酶的非竞争性抑制作用正确的说法是( ) Km值不变 19非竞争性抑制作用与竞争性抑制作用的不同点在于前者的( ) 提高底物浓度,Vm仍然降低 20 下列影响细胞内cAMP含量的酶是( ) 腺苷酸环化酶 21. 关于酶与温度的关系,错误的论述是()D. 酶的最适温度与反应时间有关 22变性蛋白质的特性有( ) B. 生物学活性丧失 4. 逆转录时碱基的配对原则是( ) B. U-A 5. 分子病主要是哪种结构异常() A. 一级结构 6. DNA分子中的碱基组成是( ) A. A+C=G+T 7. 蛋白质的一级结构和空间结构决定于( ) C. 氨基酸组成和顺序 8. 关于碱基配对,下列错误的是( ) E. A-G,C-T相配对 9. 参加DNA复制的是( ) D. DNA指导的DNA聚合酶 10. DNA分子杂交的基础是( ) A. DNA变性后在一定条件下可复性 11. 酶的活性中心是指( ) A. 由必需基团组成的具有一定空间构象的区域 13. 关于肽键与肽,正确的是( ) A. 肽键具有部分双键性质 14. 酶原所以没有活性是因为( ) B. 活性中心未形成或未暴露 15. 有关cAMP的叙述是( C. cAMP是激素作用的第二信使 16. 下列具有四级结构的蛋白质是( ) D. 乳酸脱氢酶H型和M型两种亚基组成的四聚体 17 关于酶的竞争性抑制作用的说法正确的是( ) D. 增加底物浓度可减弱抑制剂的影响 19. 蛋白质变性和DNA变性的共同点是( ) A. 生物学活性丧失 20. 在核酸中占9%-11%,且可用于计算核酸含量的元素是( ) E. 磷 21. 维持DNA双螺旋结构稳定的因素有( ) B. 碱基对之间的氢键 22. DNA分子中的碱基组成是( ) A. A+C=G+T 1. 嘌呤环中的氮原子来自( ) C. 谷氨酰胺 2. 关于尿糖,哪项说法是正确的B. 尿糖阳性是肾小管不能将尿糖全部重吸收 3. 激素敏感脂肪酶是指( ) D. 脂肪细胞中的甘油三酯脂肪酶 4. 正常人摄入糖过多后,不可能发生的反应是E. 糖转变为蛋白质

氨基酸分类及等电点的计算方法

等电点: 某一氨基酸处于净电荷为零的兼性离子状态时的介质pH,用pl表示 中性氨基酸的羧基解离程度大于氨基,故其pI偏酸,pI值略小于7.0,等电点一般在5~6.3之间;酸性氨基酸的羧基解离程度更大,pI明显小于7.0,等电点一般在2.8~3.2之间。;碱性氨基酸的氨基解离程度明显大于羧基等,故其pI大于7.0,等电点一般在7.6~10.8之间;在一定的pH条件下,氨基与羧基的解离程度相等,静电荷为零,此时溶液的pH 即为其等电点。 各种氨基酸在其等电点时,溶解度最小,因而用调节等电点的方法,可以分离氨基酸的混合物。 氨基酸形成内盐:氨基酸的晶体是以偶极离子的形式存在。这种偶极离子是分子内的氨基与羧基成盐的结果,故又叫内盐。 核酸的等电点比较低。如DNA的等电点为4~4.5,RNA的等电点为2~2.5。 在氨基酸溶液中存在如下平衡,在一定的pH值溶液中,正离子和负离子数量相等且浓度都很低,而偶极浓度最高,此时电解以偶极离子形式存在,氨基酸不移动。这时溶液的pH值便是该氨基酸的等电点。 蛋白氨酸、缬氨酸、异亮氨酸、赖氨酸、苏氨酸、色氨酸、苯丙氨酸,丙氨酸、谷氨酸、天门冬氨酸、甘氨酸、胱氨酸、脯氨酸、酷氨酸、丝氨酸、脯氨酸 20种蛋白质氨基酸在结构上的差别取决于侧链基团R的不同。通常根据R基团的化学结构或性质将20种氨基酸进行分类 根据侧链基团的极性 1、非极性氨基酸(疏水氨基酸):8种 丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe) 色氨酸(Trp)蛋氨酸(Met) 2、极性氨基酸(亲水氨基酸): 1)极性不带电荷:7种 甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln) 2)极性带正电荷的氨基酸(碱性氨基酸): 3种 赖氨酸(Lys)精氨酸(Arg)组氨酸(His) 3)极性带负电荷的氨基酸(酸性氨基酸): 2种 天冬氨酸(Asp)谷氨酸(Glu) 根据氨基酸分子的化学结构 1、 脂肪族氨基酸: 丙、缬、亮、异亮、蛋、天冬、谷、赖、精、甘、丝、苏、半胱、天冬酰胺、谷氨酰胺

何谓蛋白质的等电点其大小和什么有关系经氨基酸

第一章 1.何谓蛋白质的等电点?其大小和什么有关系? 2.经氨基酸分析测知1mg某蛋白中含有45ug的亮氨酸(MW131.2),23.2ug的酪氨酸(MW204.2),问该蛋白质的最低分子量是多少? 3.一四肽与FDNB反应后,用6mol/L盐酸水解得DNP-Val.及三种其他氨基酸。当这种四肽用胰蛋白酶水解,可得到两个二肽,其中一个肽可发生坂口反应,另一个肽用LiBH4还原后再进行水解,水解液中发现有氨基乙醇和一种与茚三酮反应生成棕褐色产物的氨基酸,试问在原来的四肽中可能存在哪几种氨基酸,它们的排列顺序如何? 4.一大肠杆菌细胞中含 10个蛋白质分子,每个蛋白质分子的平均分子量为40 000,假定所有的分子都处于a螺旋构象。计算其所含的多肽链长度? 5.某蛋白质分子中有一40个氨基酸残基组成的肽段,折叠形成了由2条肽段组成的反平行?折叠结构,并含有一?转角结构,后者由4个氨基酸残基组成。问此结构花式的长度约是多少? 6.某一蛋白样品在聚丙烯酸胺凝胶电泳(PAGE)上呈现一条分离带,用十二烷基硫酸钠(SDS)和硫基乙醇处理后再进行SDS-PAGE电泳时得到等浓度的两条分离带,问该蛋白质样品是否纯? 7.“一Gly-Pro-Lys-Gly-Pro-Pro-Gly-Ala-Ser-Gly-Lys-Asn一”是新合成的胶原蛋白多肽链的一部分结构,问: 1)哪个脯氨酸残基可被羟化为4一羟基脯氨酸? 2)哪个脯氨酸残基可被羟化为3一羟基脯氨酸? 3)哪个赖氨酸残基可被羟化? 4)哪个氨基酸残基可与糖残基连接? 8.一五肽用胰蛋白酶水解得到两个肽段和一个游离的氨基酸,其中一个肽段在280nm有吸收,且 Panly反应、坂口反应都呈阳性;另一肽段用汉化氰处理释放出一个可与茚三酮反应产生棕褐色产物的氨基酸,此肽的氨基酸排列顺序如何? 9.研究发现,多聚一L-Lys在pH7.0呈随机螺旋结构,但在pH10为a螺旋构象,为什么?预测多聚一L-Glu在什么pH条件下为随机螺旋,在什么pH下为a螺旋构象?为什么?10.Tropomyosin是由两条a螺旋肽链相互缠绕构成的超螺旋结构。其分子量为 70 000,假设氨基酸残基的平均分子量为110,问其分子的长度是多少? 11.某肽经 CNBr水解得到三个肽段,这三个肽的结构分别是:Asn-Trp-Gly-Met,Gly-Ala -Leu,Ala-Arg-Tyr-Asn-Met;用胰凝乳蛋白酶水解此肽也得到三个肽段,其中一个为四肽,用 6mol/L盐酸水解此四肽只得到(Asp)2和 Met三个氨基酸,问此肽的氨基酸排列顺序如何? 12.列举蛋白质主链构象的单元及它们的主要结构特征。 13.试比较蛋白质的变性作用与沉淀作用。 14.将一小肽(pI=8.5)和 Asp溶于 pH7.0的缓冲液中,通过阴离子交换树脂柱后,再进行分子排阻层析,那么Asp和小肽哪一个先从凝胶柱上被洗脱下来,为什么? 15.从理论和应用上说明有机溶剂、盐类、SDS、有机酸等对蛋白质的影响。 16.血红蛋白和肌红蛋白都具有氧合功能,但它们的氧合曲线不同,为什么? 17.为什么无水肼可用于鉴定C-端氨基酸? 18.Anfinsen用核糖核酸酶进行的变性一复性实验,在蛋白质结构方面得出的重要结论是什么? 19.蛋白质分离纯化技术中哪些与它的等电点有关?试述这些技术分离提纯蛋白质的原理。20.根据下列资料推出某肽的氨基酸排列顺序。

氨基酸相关知识

氨基酸 天然氨基酸有180多种,组成蛋白质的20种基本氨基酸α-氨基酸,脯氨酸例外为α-环状亚氨基酸。基本氨基酸通式 不同α-氨基酸的R侧链不同,它对蛋白质的空间结构和理化性质有重要的影响。除了甘氨酸的R侧链为氢原子外,其它氨基酸的α-碳原子都是不对称碳原子,可形成不同构型(D-型和L-型),具有旋光性。蛋白质分子中的氨基酸都是L-型,称为L-型-α-氨基酸。 非极性疏水性氨基酸:丙氨酸(Ala,pI6.00)、缬氨酸(Val,pI5.96)、亮氨酸(Leu,pI5.98)、异亮氨酸(Ile,pI6.02)、苯丙氨酸(Phe,pI5.48)、脯氨酸(Pro,pI6.30)、蛋氨酸(Met,pI5.74)和色氨酸(Trp,pI5.89)。有酪氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸和丙氨酸。 极性中性氨基酸:甘氨酸(Gly,pI5.97)、丝氨酸(Ser,pI5.68)、酪氨酸(tyr,pI)、半胱氨酸(Cys,pI5.07)、天冬酰胺(Asn,pI5.41)、谷氨酰胺(Gln,pI5.65)和苏氨酸(Thr,pI5.60) 酸性氨基酸:天冬氨酸(Asp,pI2.97)、谷氨酸(Glu,pI3.22)(含有两个羧基) 碱性氨基酸:赖氨酸(Lys,pI9.74)、精氨酸(Arg,pI10.76)、组氨酸(His,pI7.59) 芳香族氨基酸:苯丙氨酸和酪氨酸 杂环族氨基酸:脯氨酸色氨酸和组氨酸。 其它为脂肪族氨基酸。 人体必需氨基酸(EAA):缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、蛋氨酸、色氨酸(需要量最少的)、苏氨酸、赖氨酸。 半必需氨基酸:酪氨酸和半胱酰胺(可有苯丙氨酸和蛋氨酸转化) 组氨酸是儿童必需氨基酸。 各种基本氨基酸均为无色结晶,熔点极高(一般200℃以上)。各种氨基酸在水中的溶解度差别很大,并能溶于稀酸和稀碱中,但不能溶解于有机溶剂。通常用乙醇能把氨基酸沉淀析出。除甘氨酸外,每种氨基酸都有旋光性和一定的比旋光度。各种氨基酸对可见光均无吸收能力。酪氨酸、色氨酸和苯丙氨酸在近紫外区有吸收。氨基酸在水溶液中或在晶体状态时都以离子的形式存在,故属于离子化合物,但氨基酸以两性离子形式存在,即H3N+CH2COO-。两性离子是指在同一个氨基酸分子上带有能释放质子的—NH3能和接受质子的—COO—。 氨基酸等电点是指氨基酸静电荷为零时溶液中的pH。 一个氨基酸的氨基与另一个氨基酸的羧基可以缩合秤肽,形成的酰胺键在蛋白质中称为肽键。 维持蛋白质构象的作用力次级键和二硫键(共价键),次级键包括氢键、疏水键、离子键、范德华力。 蛋白质是一类两性电解质,能和酸或碱发生作用。各种解离基团的解离度与溶液的pH值有关,pH值越低,碱性基团的解离程度越大(—COOH也会被封

蛋白质的等电点测定和沉淀反应

实验3 蛋白质的等电点测定和沉淀反应 一、目的 1、了解蛋白质的两性解离性质。 2、学习测定蛋白质等电点的一种方法。 3、加深对蛋白质胶体溶液稳定因素的认识。 4、了解沉淀蛋白质的几种方法及其实用意义。 二、原理 蛋白质是两性电解质。在蛋白质溶液中存在下列平衡: 蛋白质分子的解离状态和解离程度受溶液的酸碱度影响。当溶液的PH达到一定数值时,蛋白质颗粒上正负电荷的数目相等,在电场中,蛋白质既不向阴极移动,也不向阳极移动,此时溶液的pH值称为此种蛋白质的等电点。不同蛋白质各有特异的等电点。在等电点时,蛋白质的理化性质都有变化,可利用此种性质的变化测定各种蛋白质的等电点。最常用的方法是测其溶解度最低时的溶液pH值。 本实验通过观察不同pH溶液中的溶解度以测定酪蛋白的等电点。用醋酸与醋酸钠(醋酸钠混合在酪蛋白溶液中)配制各种不同pH值的缓冲液。向诸缓冲溶液中加入酪蛋白后,沉淀出现最多的缓冲液的pH值即为酪蛋白的等电点。 在水溶液中的蛋白质分子由于表面生成水化层和双电层而成为稳定的亲水胶体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水而沉淀。 蛋白质的沉淀反应可分为两类。 (1)可逆的沉淀反应此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,蛋白质的沉淀仍能溶解于原来溶剂中,并保持其天然性质而不变性。如大多数蛋白质的盐析作用或在低温下用乙醇(或丙酮)短时间作用于蛋白质。提纯蛋白质时,常利用此类反应。

(2)不可逆沉淀反应此时蛋白质分子内部结构发生重大改变,蛋白质常变性而沉淀,不再溶于原来溶剂中。加热引起的蛋白质沉淀与凝固。蛋白质与重金属离子或某些有机酸的反应都属于此类。 蛋白质变性后,有时由于维持溶液稳定的条件仍然存在(如电荷),并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已变性。 三、材料、试剂与器具 (一)材料 新鲜鸡蛋 (二)试剂 1、0.4%酪蛋白醋酸钠溶液200ml 取0.4g酪蛋白,加少量水在乳钵中仔细地研磨,将所得的蛋白质悬胶液移入200mL锥形瓶内,用少量40—50℃的温水洗涤乳钵,将洗涤液也移入锥形瓶内。加入10mL 1mol/L 醋酸钠溶液。把锥形瓶放到50℃水浴中,并小心地旋转锥形瓶,直到酪蛋白完全溶解为止。将锥形瓶内的溶液全部移到100mL容量瓶内,加水至刻度,塞紧玻塞,混匀。 2、1.00mol/L 醋酸溶液100mL 3、0.10 mol/L醋酸溶液300mL 4、0.01 mol/L醋酸溶液50mL 5、蛋白质溶液500mL 5%卵清蛋白溶液或鸡蛋清的水溶液(新鲜鸡蛋清:水=1:9) 6、pH4.7醋酸—醋酸钠的缓冲溶液100mL 7、3%硝酸银溶液10mL 8、5%三氯乙酸溶液50mL 9、95%乙醇250mL 10、饱和硫酸铵溶液250mL 11、硫酸铵结晶粉末10000mL 12、0.1mol/L盐酸溶液300mL 13、0.1mol/L氢氧化钠溶液300mL 14、0.05mol/L碳酸钠溶液300mL 15、甲基红溶液20mL (三)器具 1、水浴锅 2、温度计 3、200mL锥形瓶 4、100mL容量瓶 5、吸管 6、试管及试管架 7、 7、乳钵 四、操作步骤 (一)酪蛋白等电点的测定 (1)取同样规格的试管4支,按下表顺序分别精确地加入各试剂,然后混匀。 试管号蒸馏水 (mL) 0.01 mol/L蜡酸 (mL) 0. 1 mol/L蜡酸 (mL) 1. 0 mol/L蜡 酸(mL) 1 8.4 0.6 - — 2 8.7 - 0. 3 — 3 8.0 - 1.0 — 4 7.4 - - 1.6

蛋白质等电点

1、方法:平板等电聚焦 ●原理:蛋白质分子在含有载体两性电介质形成的连续而稳定的线性pH梯度中进行电泳。但不自是按照等电点不同被分离。 ●仪器:Bio-Rad Model 111Mini IEF Cell ●样品要求:液体:浓度>3mg/ml;体积>200ul;固体:质量>200ug 样品纯度>90%;含盐量<3 0mM;分子量:一般要求大于1000Da ●常见影响测试情况:1、蛋白质纯度不足2、含盐量过高3、蛋白质分子量太小,导致无法固定染色 一、目的: 学习聚丙烯酰胺凝胶平板等电聚焦电泳测定蛋白质等电点的原理及方法。 二、原理: 等电点聚焦(isoelectric focusing, IEF)或简称电聚焦(electrofocusing),也曾称等电点分离聚焦电泳等。它是60年代中期出现的技术,克服了一般电泳易扩散的缺点。近年来,等电点聚焦电泳又有了新的进展,可以分辨等电点只差0.001pH单位的生物分子。由于它的分辨力高、重复性好、样品容量大、操作简便、迅速,在生物化学、分类学、分子生物学及临床医学研究等诸方面,都得到广泛应用。 等电点聚焦电泳产生pH梯度的方法有两种:一是用两种不同的pH缓冲液相互扩散,在混合区形成pH梯度,此为人工pH梯度。这种pH梯度不稳定,常用于制备电泳;另一种是利用载体两性电解质在电场作用下形成自然pH梯度。本实验就是利用载体两性电解质形成的自然pH梯度进行蛋白质样品等电焦聚电泳的。 理想的载体两性电解质应该在其本身的等电点处有足够的缓冲能力和良好的导电性,且分子量要小,组成与被分析样品有所区别,对分析样品无变性作用或发生化学反应。常用的载体两性电解质是一系列脂肪族多氨基和多羧基类的混合物,即是一系列的异构物和同系物,分子量在300—1000之间,各组分的等电点(pI)既有差异又相接近,pI的范围在2.5—11之间。合成载体两性电解质的原料是丙烯酸和多乙烯多胺,合成反应如下: R1和R2为氢或带有氨基的脂肪基。这一反应的特点是生成众多的异构物和同系物的混合物,而不是均一的化合物。混合物中各成分的含量、等电点的分布,取决于原材料的性质、比例和合成条件。目前常用的载体两性电解质的商品有:Ampholine(LKB公司)、Pharmlyte (Pharmacia公司)、Serralyty(Serva公司),近来已有国产商品了。不同厂家合成的方法不同,电泳的条件也略有不同。目前,载体两性电解质商品在使用时还存在一些问题,如

氨基酸等电点

氨基酸等电点::在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时的溶液ph称该氨基酸的等电点。 .蛋白质的等电点:在某一pH溶液中,蛋白质分子可游离成正电荷和负电荷相等的兼性离子,即蛋白质分子的净电荷等于零,此时溶液的pH值称为该蛋白质的等电点。 蛋白质的变性:在某些物理或化学因素的作用下,蛋白质的空间结构受到变化,从而导致其理化性质的改变和生物学功能的丧失,成为蛋白质的变性。 蛋白质一级结构:就是蛋白质分子中氨基酸残基的排列顺序,即氨基酸的线性序列。 蛋白质的二级结构:在pr分子中的某一段肽链的局部空间结构,也就是该段肽链主链的骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 蛋白质的三级结构:指多肽链上的所有原子(包括主链和侧链)在三维空间的分布。 蛋白质的四级结构:多肽亚基的空间排布和相互作用。亚基间以非共价键连接。 必需氨基酸:指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸。 DNA变性:在某些理化因素的作用下,DNA双链间互补碱基对之间的氢键断裂,双螺旋解开,使DNA双链解链为单链的过程,此种作用称DNA的变性。 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”。 核酸分子杂交:两条不同来源的单链DNA,或一条单链DNA,一条RNA,只要它们有大部分互补的碱基顺序,也可以复性,形成一个杂合双链,此过程称杂交。 解链温度(TM):在DNA热变性时,通常将DNA变性50%时的温度叫解链温度用Tm表示。 核酶:具有催化作用的RNA称为核酶。 解链曲线:以核酸溶液的流体力学特性(如黏度)或光学特性(如吸收率)作为温度的函数所作的图解。 酶的活性中心:必需基团在酶分子表面的一定区域形成一定的空间结构,直接参与了将作用物转变为产物的反应过程,这个区域叫酶的活性中心。 米氏常数(Km 值):用Km 值表示,是酶的一个重要参数。Km 值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M 或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响 .同工酶:指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶。 酶原:没有活性的酶的前体称为酶原。 酶原的激活:酶原转变成有活性的酶的过程称为酶原的激活。这个过程实质上是酶活性部位形成和暴露的过程。 辅酶:与酶蛋白结合疏松的辅助因子。 辅基:与酶pr结合紧密的酶辅助因子。 变构调节:是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称酶的变构调节 竞争性抑制作用:一种最常见的酶活性的抑制作用,抑制剂与底物竞争,从而阻止底物与酶的结合。 非竞争性抑制作用:抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使得Vmax变小,但Km不变。 反竞争性抑制作用:抑制剂只与酶-底物复合物结合,而不与游离酶结合的一种酶促反应抑制作用。这种抑制作用使得Vmax,Km都变小,但Vmax/Km比值不变。

氨基酸等电点的相关问题

氨基酸等电点的相关问题 一、定义 等电点(pI,isoelectric point):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。两性离子所带电荷因溶液的pH值不同而改变,当两性离子正负电荷数值相等时,溶液的pH值即其等电点。 当外界溶液的pH大于两性离子的pl值,两性离子释放质子带负电。 当外界溶液的pH小于两性离子的pl值,两性离子质子化带正电。 二、两性与等电点的关系 氨基酸具有氨基和羧基的典型反应,例如氨基可以羟基化、酰基化可与亚硝酸作用;羧基以成酯或酰氯或酰胺等。此外,由于分子中同时具有氨基与羧基,还有氨基酸所特有的性质。 氨基酸分子中既含有氨基,又含有羧基,所以氨基酸与强酸强碱都能成盐,氨基酸是两性物质,本身能形成内盐。 氨基酸的高熔点(实际为分解点)、难溶于非极性有机溶剂等性质说明氨基酸在结晶状态是以两性离子存在的。 在水溶液中,氨基酸二偶极离子即可以与一个结合成为正离子,又可以失去一个成为负离子。这三种离子在水溶液中通过得到或失去互相转换同时存在,在pH值达到等电点时溶液处于平衡。 等电点不是中性点,不同氨基酸由于结构不同,等电点也不同。酸性氨基酸水溶液的pH值必然小于7,所以必须加入较多的酸才能使正负离子量相等。反之,碱性氨基酸水溶液中正离子较多,则必须加入碱,才能使负离子量增加。所以碱性氨基酸的等电点必然大于7。 各种氨基酸在其等电点时,溶解度最小,因而用调节等电点的方法,可以分离氨基酸的混合物。 核酸的等电点比较低。如DNA的等电点为4~4.5,RNA的等电点为2~2.5。 在氨基酸溶液中存在如下平衡,在一定的pH值溶液中,正离子和负离子数量相等且浓度都很低,而偶极浓度最高,此时电解以偶极离子形式存在,氨基酸不移动。这时溶液的pH值便是该氨基酸的等电点。 某一氨基酸处于净电荷为零的兼性离子状态时的介质pH,用pl表示。中性氨基酸的羧基解离程度大于氨基,故其pI偏酸,pI值略小于7.0;酸性氨基酸的羧基解离程度更大,pI明显小于7.0;碱性氨基酸的氨基解离程

常见蛋白质等电点参考值

常见蛋白质等电点参考值

氨基酸的解离常数和等电点

辣根过氧化物酶 过氧化物酶,酶学分类号为EC 1.11.1.7。该酶催化 Donor+ H2O2--→Oxidized donor+2 H2O。 过氧化物酶,通常来源于辣根(因此称辣根过氧化物酶),是临床检验试剂中的常用酶。该产品不但广泛用于多个生化检测项目,也广泛运用于免疫类(ELISA)试剂盒。过氧化物酶作为多个试剂盒显色体系的关键成分,对试剂盒的质量有重要影响。 辣根过氧化物酶(Horseradish Peroxidase, HRP)比活性高,稳定,分子量小,纯酶容易制备,所以最常用。HRP广泛分布于植物界,辣根中含量高,它是由无色的酶蛋白和棕色的铁卟啉结合而成的糖蛋白,糖含量18%。HRP由多个同功酶组成,分子量为40,000,等电点为PH3~9,酶催化的最适PH因供氢体不同而稍有差异,但多在PH5左右。酶溶于水和58%以下饱和度硫酸铵溶液。HRP的辅基和酶蛋白最大吸收光谱分别为403nm和275nm,一般以OD403nm /OD275nm的比值RZ(德文Reinheit Zahl)表示酶的纯度。高纯度的酶RZ值应在3.0左右(最高可达3.4)。RZ值越小,非酶蛋白就越多。 英文名称:Glucose oxidase;GOX;GOD CAS号:9001-37-0 分子量:15.4~16万KDa(SDS-PAGE中约80KDa,等电点4.6) 活力:100~250u/mg 酶活定义:37℃,PH5.7条件下,每分钟形成1umol过氧化氢所需要的酶量 Solubility (1%, Water):Pass PH稳定性:4.5~6.5 最佳PH:5.5 热稳定性:<50℃(PH7.0,15min) 最适作用温度30℃~60℃ 使用方法:测活时,用10mM柠檬酸钠缓冲液(PH5.7)溶解冻干粉末 性状:黄色粉末。一种能氧化葡萄糖生成葡萄糖酸的氧化还原酶。该酶需黄素腺嘌呤二核苷酸(FAD)作为辅酶,每个分子中含两个FAD。易溶于水,完全不溶于乙醚、氯仿、丁醇、吡啶、甘油、乙二醇等有机溶剂,50%丙酮、66%的甲醇能使其沉淀。化学物质EDTA、KCN、NaF不影响其酶活性,但酶活性受HgCL(氯化汞)、AgCL(氯化银)、苯肼、对氯汞苯甲酸等影响而使酶活性降低

计算氨基酸的等电点

计算氨基酸的等电点 氨基酸的带电状况与溶液的ph值有关,改变ph值可以使氨基酸带上正电荷或负电荷,也可以使他处于正负电荷数相等即净电荷为零的兼性离子状态,此时的ph值为氨基酸的等电点。 氨基酸是同时带氨基和羧基的物种,在水溶液中羧基失去氢离子带负电,而氨基得到氢离子带正电,由于羧基酸性和氨基的碱性不相同,所以氨基酸往往整体上是带电的。调节溶液的pH值,可以改变二者的电离状况,到某一点时羧基所带的负电荷与氨基所带的正电荷相同,氨基酸表现为整体不带电,这点的pH值就是氨基酸的等电点。 记-COOH的电离常数为Ka1 ,-NH3+的电离常数为Ka2,则等电点的pH值为pH=(Ka1+Ka2)/2 解释氨基酸的等电点 氨基酸是两性分子,能结合H(+)的-NH2,形成正电荷离子,也带有能够电离出H(+)的-COOH,形成负离子。 因此,氨基酸分子的整体与溶液的pH有关,改变溶液pH可以使氨基酸带上正电荷,负电荷或者正好处于净电荷为零的兼性离子状态,这个pH就是该氨基酸的等电点。 解离常数(pK)是水溶液中具有一定离解度的溶质的的极性参数。离解常数给予分子的酸性或碱性以定量的量度,pKa减小,对于质子给予体来说,其酸性增加;对于质子接受体来说,其碱性增加。 pK=PH+log电子受体/电子供体 氨基酸中,-COOH的电离常数为Ka1 ,-NH(3+)的电离常数为Ka2,该氨基酸的等电点的pH就是(Ka1+Ka2)/2 去哪找等电点计算方法的资料? 建议你去买本生化的教辅书 等电点:如果调节溶液的PH值使得其中的氨基酸呈电中性,我们把这个PH值称为氨基酸的等电点:PI。PI是氨基酸的重要常数之一,它的意义在于,物质在PI处的溶解度最小,是分离纯化物质的重要手段。等电点的计算:对于所有的R基团不解离的氨基酸而言(即解离只发生在α-羧基和α-氨基上),计算起来非常简单:PI=(PK1’+PK2’)/2若是碰到R基团也解离的,氨基酸就有了多级解离,这个公式就不好用了,比如Lys、Glu、Cys等。aa Cys Asp Glu Lys His ArgPK’α-羧基1.71 2.69 2.19 2.18 1.82 2.19PK’α-氨基8.33 9.82 9.67 8.95 9.17 9.04PK’-R-基团10.78(-SH)3.86(β-COOH)4.25(γ- COOH)10.53(ε-NH2)6(咪唑基)12.48(胍基)在这种情况下可以按下面的步骤来计算:<1> 由PK’值判断解离顺序,总是PK1’< PK2’< PK3’< …,即谁的PK’值小,谁

蛋白质等电点测定

蛋白质等电点测定及性质实验 一、目的: 了解等电点的意义及其与蛋白质分子聚沉能力的关系。 初步学会测定蛋白质等电点的基本方法,了解蛋白质的性质。 二、原理: 固体颗粒在液体中为什么能够带电? 当固体与液体接触时,固体可以从溶液中选择性吸附某种离子,也可以就是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,由于电中性的要求,带电表面附近的液体中必有与固体表面电荷数量相等但符号相反的多余的反离子。在界面上带电表面与反离子形成了双电层的结构。在两种不同物质的界面上,正负电荷分别排列成的面层。 对于双电层的具体结构,一百多年来不同学者提出了不同的瞧法。最早于1879年Helmholz提出平板型模型;1910年Gouy与1913年Chapman修正了平板型模型,提出了扩散双电层模型;后来Stern又提出了Stern模型。 根据O、斯特恩的观点,一部分反离子由于电性吸引或非电性的特性吸引作用(例如范德华力)而与表面紧密结合,构成吸附层(或称紧密层、斯特恩层)。其余的离子则扩散地分布在溶液中,构成双电层的扩散层(或称滑移面)。由于带电表面的吸引作用,在扩散层中反离子的浓度远大于同号离子。离表面越远,过剩的反离子越少,直至在溶液内部反离子的浓度与同号离子相等。

紧密层:溶液中反离子及溶剂分子受到足够大的静电力,范德华力或特性吸附力,而紧密吸附在固体表面上。其余反离子则构成扩散层。 滑动面:指固液两相发生相对移动的界面,就是凹凸不平的曲面。滑动面至溶液本体间的电势差称为ζ电势。 固体颗粒带电量的大小及测量方式? ζ电势只有在固液两相发生相对移动时才能呈现出来。ζ电势的大小由Zeta电位表示,其数值的大小反映了胶粒带电的程度,其数值越高表明胶粒带电越多,扩散层越厚。一般来说,以pH值为横坐标,Zeta电位为纵坐标作图,Zeta电位为零对应的pH值即为等电点。 对于蛋白质分子来说: 蛋白质分子的大小在胶粒范围内,约1~100微米。大部分蛋白质分子的表面都有很多亲水集团,这些集团以氢键形式与水分子进行水合作用,使水分子吸附在蛋白质分子表面而形成一层水合膜,具有亲水性;又由于蛋白质分子表面的亲水集团都带有电荷,会与极性水分子中的异性电荷吸引形成双电层。而水合膜与双电层的存在,使蛋白质的分子与分子之间不会相互凝聚,成为比较稳定的胶体溶液。如果消除水合膜或双电层其中一个因素,蛋白质溶液就会变得不稳定,两种因素都消除时,蛋白质分子就会互相凝聚成较大的分子而产生沉淀。在生活实践中,常利用蛋白质的胶体性质沉淀或分离蛋白质。如做豆腐、肉皮冻就就是利用蛋白质的胶凝作用。 蛋白质分子所带的电荷与溶液的pH值有很大关系,蛋白质就是两性电解质,在酸性溶液中的氨基酸分子氨基形成-NH3+而带正电,在碱性溶液中羧基形成-COO-而带负电: 蛋白质分子所带净电荷为零时的pH值称为蛋白质的等电点(PI)。其定义为:在某一pH 的溶液中,蛋白质解离成阳离子与阴离子的趋势或程度相等时,呈电中性,此时溶液的pH称为该蛋白质的等电点。 等电点的应用:主要用于蛋白质等两性电解质的分离、提纯与电泳。 蛋白质等电点的测量方式:溶解度最低时的溶液pH。

相关文档