文档库 最新最全的文档下载
当前位置:文档库 › 空间异面直线的判定

空间异面直线的判定

空间异面直线的判定
空间异面直线的判定

异面直线的判定

用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.

两直线平行的判定

(1) 垂直于同一个平面的两直线平行

②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b.

⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a ∥b

⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.

两直线垂直的判定

③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b?α,a⊥b.

⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b ⊥α,则a⊥b.

⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.

直线与平面平行的判定

②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a?α,b?α,a∥b,则a∥α.

③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l?α,则l ∥β.

④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l?α,则l∥α.

⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A?α,B?α,A、B在α同侧,且A、B到α等距,则AB∥α.

⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a?α,a?β,a∥α,则α∥β.

⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,b?α,b⊥a,则b∥α.

直线与平面垂直的判定

②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m?α,n?α,m∩n=B,l⊥m,l⊥n,则l⊥α.

⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l?β,l⊥a,则l⊥α.

两平面平行的判定

②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b?α,a∩b=P,a∥β,b∥β,则α∥β.

⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b?α,c,d?β,a∩b=P,a∥c,b∥d,则α∥β.

两平面垂直的判定

②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l?α,则α⊥β.

异面直线所成的角

(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.0°<θ≤90°.

直线和平面所成的角

作出斜线在平面上的射影,找到斜线与平面所成的角θ0°≤θ≤90°

二面角及二面角的平面角

(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.

(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.

若两个平面相交,则以两个平面的交线为棱形成四个二面角.

二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是

0°<θ≤180°

(3)二面角的平面角

①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.

如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.

②二面角的平面角具有下列性质:

(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.

(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.

(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD ⊥β.

异面直线所成的角求法总结加分析

异面直线所成的角求法 总结加分析 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF = 3 ,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF = 3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA = 2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角

A B C D A 1 B 1 C 1 D 1 E F 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2 a BQ = a 4 14 ∴COS∠QNB= 5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若 BC =CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN = 5 ,GN =BM = 6 , cos∠GNA= 10 30 5 62556= ??-+。 5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所 成的角。 证明:取AB 中点G ,连结A 1G ,FG , 因为F 是CD 的中点,所以GF ∥AD , 又A 1D 1∥AD ,所以GF ∥A 1D 1, 故四边形GFD 1A 1是平行四边形,A 1G∥D 1F 。 设A 1G 与AE 相交于H ,则∠A 1HA 是AE 与D 1F 所成的角。

与两条异面直线成等角的直线条数的判定

与两条异面直线成等角的直线条数的判定 一(2)班 杨一帆 过空间一点作与已知异面直线成等角的直线有几条的问题见诸于各种材料。其考查学生的空间想象能力、化归能力、识图能力、分类讨论能力,训练学生逻辑思维的深刻性、完备性。该种题型的常见解题思路是先用异面直线所成的角的定义转化为以下问题:在空间中,过两条相交直线的交点作与已知两直线成等角的直线有几条?再讨论,画图求解。本文将该类题型归纳总结出几个结论,供同学们参考。 题目1:已知异面直线a,b 成θ角,过空间任意一点o 作直线 ,使 与a ,b 成等角φ,则这样的直线 有 条。 上述问题,运用异面直线所成角的定义,过o 作直线a '∥a,b '∥b,转化为 题目2:已知直线,o b a ='' 且' ' ,b a 成θ角,(注意θ角的范围),过o 作与' ' ,b a 成等角φ的直线 ,则这样的直线 有 条。 解:本题须分两大类讨论(∵θ∈]2 ,0(π )。 第一类: θ∈)2 ,0(π 时,若φ=,2θ 则只能作一条直线 0,满足题设。(此时 0是∠' 'ob a 的角平分线,如图1)。 图1 图2 若0<φ< 2θ , 则这样的直线不存在。 若2 2θπφθ-<<,则这样的直线有两条21, ,(如图2)(实际上21, 是 0绕O 在过 0且与' ' ,b a 确定的平面垂直的平面内旋转而得。) 若2 θ πφ-= ,则这样的直线有3条21, , 01(如图3)(此时 01为∠' 'ob a 的补角 的角平分线,21, 是 0 绕O 点在过 0且与' ',b a 确定的平面垂直的平面内旋转而得。)

若 ,2 2 π φθ π< <-则这样有直线有4条21, ,43, ,(如图4,此时21, 是 0绕O 点在过 0且与' ',b a 确定的平面垂直的平面内旋转而得。43, 是 01绕O 点在过 01且与 '',b a 确定的平面垂直的平面内旋转而得。) 若2 π φ=,则这样的直线有且只有1条,即过O 垂直于' ',b a 确定的平面的直线。(如图 5) ' b ' a O 图3 图4 图5 第二类:2 π θ= 时,若4 0π φ< <,则这样的直线不存在;若4 π φ= ,则这样的直线有 两条(即为两个直角的角平分线,如图6);若2 4 π φπ < <,则这样的直线有4条(上种情 形的两条直线旋转而得,如图7);若2 π φ=,则这样的直线有且只有1条,(即过O 垂直 于' ' ,b a 确定的平面的直线。如图8) 1 2 1 2 3 4 ' a ' a ' a ' b ' b ' b 图6 图7 图8 把以上情形总结成下表:

异面直线典型例题

典型例题一 例1 若b a //,A c b = ,则a ,c 的位置关系是( ). A .异面直线 B .相交直线 C .平行直线 D .相交直线或异面直线 分析:判断两条直线的位置关系,可以通过观察满足已知条件的模型或图形而得出正确结论. 解:如图所示,在正方体1111D C B A ABCD -中,设a B A =11,b AB =,则b a //. 若设c B B =1,则a 与c 相交.若设c BC =,则a 与c 异面. 故选D . 说明:利用具体模型或图形解决问题的方法既直观又易于理解.一般以正方体、四面体等为具体模型.例如,a ,b 相交,b ,c 相交,则a ,c 的位置 b 异面,b , c 异面,则 关系是相交、平行或异面.类似地;a , a ,c 的位置关系是平行、相交或异 面.这些都可以用正方 体模型来判断. 典型例题二 例2 已知直线a 和点A ,α?A ,求证:过点A 有且只有一条直线和a 平行. 分析:“有且只有”的含义表明既有又惟一,因而这里要证明的有两个方面,即存在性和惟一性. 存在性,即证明满足条件的对象是存在的,它常用构造法(即找到满足条件的对象来证明);惟一性,即证明满足条件的对象只有..一个,换句话说,说是不存在第二个满足条件的对象.

因此,这是否定性...命题,常用反证法. 证明:(1)存在性. ∵ a A ?,∴ a 和A 可确定一个平面α, 由平面几何知识知,在α内存在着过点A 和a 平行的直线. (2)惟一性 假设在空间过点A 有两条直线b 和c 满足a b //和a c //.根据公理4,必有c b //与 A c b = 矛盾, ∴ 过点A 有一条且只有一条直线和a 平行. 说明:对于证明“有且只有”这类问题,一定要注意证明它的存在性和惟一性. 典型例题三 例3 如图所示,设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且 λ==AD AH AB AE ,μ==CD CG CB CF ,求证: (1)当μλ=时,四边形EFGH 是平行四边形; (2)当μλ≠时,四边形EFGH 是梯形. 分析:只需利用空间等角定理证明FG EH //即可. 证明:连结BD , 在ABD ?中,λ==AD AH AB AE ,∴ BD EH //,且BD EH λ=. 在CBD ?中,μ==CD CG CB CF ,∴ BD FG //,且BD FG μ=. ∴ FG EH //, ∴ 顶点E ,F ,G ,H 在由EH 和FG 确定的平面内. (1)当μλ=时,FG EH =,故四边形EFGH 为平行四边形; (2)当μλ≠时,FG EH ≠,故四边形EFGH 是梯形. 说明:显然,课本第11页的例题就是本题(2)的特殊情况.

异面直线所成角练习

1.如图,在正方体1111ABCD A B C D -中,异面直线1A D 与1BC 所成的角为 A .30° B .45° C .60° D .90° 【答案】D 【解析】 试题分析:如图所示,连接B 1C , 则B 1C ∥A 1D ,B 1C ⊥BC 1,∴A 1D ⊥BC 1,∴A 1D 与BC 1所成的角为90°. 故选:D . 考点:异面直线及其所成的角 2.已知平行六面体ABCD - A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°,则异面直线AC 1与A 1D 所成角的余弦值( ) A . 3 .7 C .5 D .5 【答案】B 【解析】 试题分析:设向量 1,,AB a AD b AA c === ,则11 ,AC a b c AD b c =++=- ,11AC A D ∴== 111111cos ,AC A D AC A D AC A D ?<>== 。 考点:空间向量的集合运算及数量积运算。 3.正方体1111ABCD A BC D -中,,,,E F G H 分别是1AA , AB ,1BB ,11B C 的中点,则直线EF 与GH 所成的角是( ) A .30° B .45° C .60° D .90°

【答案】C 【解析】 试题分析:由三角形中位线可知11,EF A B GH BC ,所以异面直线所成角为11A BC ∠,大小为60° 考点:异面直线所成角 4.在正方体1111ABCD A BC D -中,E 是11B C 的中点,则异面直线1DC 与BE 所成角的余弦值为( ) A . 5 .5.5 10 - D .5- 【答案】B 【解析】 试题分析:取BC 中点F ,连结1,FD FC ,则1 D CF ∠为异面直线所成角,设边长为2 ,11C F DC DF ∴== 1cos 5 DC F ∴∠= 考点:异面直线所成角 5.如图,正四棱柱ABCD A B C D ''''-中(底面是正方形,侧棱垂直于底面),3AA AB '=,则异面直线A B '与AD '所成角的余弦值为( ) A 、910 B 、45 C 、710 D 、3 5 【答案】A 【解析】 试题分析:连结'BC ,异面直线所成角为''A BC ∠,设1AB = ,在'' A BC ?中 ''''AC A B BC ===''9 cos 10 A BC ∴∠= 考点:异面直线所成角 6.点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,AB PA =,则PB 与AC 所 成的角是 A .?60 B .?90 C .?45 D .?30 【答案】A 【解析】 试题分析:作出空间几何体如下图所示:设正方形的边长为2,

异面直线所成的角练习题

A B C S E F A B C D D 1 C 1 B 1 A 1 M N N M F E D C B A 高二数学练习(二) 一、选择题 1.分别和两条异面直线都相交的两条直线一定是 ( ) (A )不平行的直线 (B )不相交的直线 (C )相交直线或平行直线 (D )既不相交又不平行直线 2.已知EF 是异面直线a 、b 的共垂线,直线l ∥EF ,则l 与a 、b 交点的个数为 ( ) (A )0 (B )1 (C )0或1 (D )0,1或2 3.两条异面直线的距离是 ( ) (A )和两条异面直线都垂直相交的直线 (B )和两条异面直线都垂直的直线 (C )它们的公垂线夹在垂足间的线段的长 (D )两条直线上任意两点间的距离 4.设a, b, c 是空间的三条直线,下面给出三个命题:① 如果a, b 是异面直线,b, c 是异面直线,则a, c 是异面直线;② 如果a, b 相交,b, c 也相交,则a, c 相交;③ 如果a, b 共面,b, c 也共面,则a, c 共面.上述命题中,真命题的个数是 ( ) (A )3个 (B )2个 (C )1个 (D )0个 5.异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( ) (A )[30°,90°] (B )[60°,90°] (C )[30°,60°] (D )[60°,120°] 6.如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于 ( ) (A )90°(B )45°(C )60°(D )30° 7.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别为A 1B 1和的 中点,那么直线AM 与CN 所成角的余弦值是 ( ) (A )23(B )1010(C )5 3(D )54 8.右图是正方体的平面展开图,在这个正方体中, ①BM 与ED 平行; ②CN 与BE 是异面直线; ②③CN 与BM 成ο60角;④DM 与BN 垂直. 以上四个命题中,正确命题的序号是 ( ) (A )①②③ (B )②④ (C )③④ (D )②③④ 9.梯形ABCD 中AB//CD ,AB ?平面α,CD ?平面α,则直线CD 与平面α内的直线的位置关系只能是 ( )(A )平行 (B )平行和异面 (C )平行和相交 (D )异面和相交 10.在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE :EF =AF :FD =1 :4,又H 、G 分别为BC 、CD 的中点,则 ( ) (A )BD//平面EFGH 且EFGH 是矩形 (B )EF//平面BCD 且EFGH 是梯形 (C )HG//平面ABD 且EFGH 是菱形 (D )HE//平面ADC 且EFGH 是平行四边形 二、填空题 11.如图,在正三角形ABC 中,D 、E 、F G ,H ,I ,J 分别为AF ,AD ,BE ,DE DE ,EF ,DF 折成三棱锥以后,GH 与IJ 12.在四面体ABCD 中,若AC 与BD 成60°角,且AC =BD =a ,则连接AB 、BC 、CD 、DA 的中点的四边形面积为 .

空间直线异面关系的判定与度量讲解

空间直线异面关系的判定与度量 考点动向 空间直线的位置关系,除了初中就熟悉的相交与平行外,立体几何中新增加了异面关系,这部分是立体几何的传统重点知识,从客观小题到解答大题都会涉及到,有对异面关系的判定问题,也有对异面程度的度量问题,涉及异面成角与异面直线间的距离,这些问题可以充分考查考生的空间想象能力,解题方法主要是平移直线与借助直线的方向向量等,可以预测考查空间异面直线的问题仍将保持热度. 方法范例 例 如图1-1,已知两个正四棱锥P ABCD -与Q ABCD -的高分别为1 和2,4AB =. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 解析 本题设置的三问,有证有算, 由于已知为两个同底的正棱锥组合而成的,故可以利用几何体的性质,构造空间直角坐标系,借助向量解答,对于求异面直线所成的角,也可利用定义实施平移解答. 解法1 (I )连结AC BD ,,设AC BD O = .因为P ABCD -与Q ABCD -都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P O Q ,,三点在一条直线上,所以PQ ⊥平面ABCD . (II )由题设知,ABCD 是正方形,所以AC BD ⊥.由(I ),PQ ⊥平面 ABCD ,故可分别以直线CA DB QP ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图1-2)由题设条件,相关各点的 C A B P D Q 图1-1 C 图1-2 几何精练

坐标分别是(001)P ,, ,0)(002)(0A Q B -,,,,,. 所以(2)(01)AQ PB =--=- ,,. 于是cos AQ PB AQ PB AQ PB <>== ,. 从而异面直线AQ 与PB 所成的角是arccos 9 . (III )由(II ),点D 的坐标是(0-, ,((003)AD PQ =--=- ,,, 设()n x y z = ,,是平面QAD 的一个法向量,由00n AQ n AD ?=??=?? 得00z x y +=+=? ?. 取1x = ,得(11n =- ,.所以点P 到平面QAD 的距离PQ n d n == . 解法2 (I )取AD 的中点M ,连结PM QM ,.因为P ABCD -与Q ABCD -都是 正 四 棱 锥 , 所 以 A D P M ⊥⊥,.从而AD ⊥平面 PQM .又PQ ?平面P Q M ,所以P Q A D ⊥.同理PQ AD ⊥,所以PQ ⊥平 面ABCD . (II )连结AC BD ,,设A C B D O = , 由PQ ⊥平面ABCD 及正四棱锥的性质可知 O 在PQ 上,从而P A Q C ,,,四点共面. 取OC 的中点N ,连结PN .因为 1122PO NO NO OQ OA OC ===,,所以PO NO OQ OA =,从而AQ PN BPN ,∥∠(或其补角)是异面直线AQ 与PB 所成的角.连结BN . 因为3PB == = ,PN === BN === 所以222cos 2PB PN BN BPN PB PN +-=== ∠. 图1-3

异面直线及其所成的角

异面直线及其所成的角填空题基础题1.doc 参考答案与试题解析 一.填空题(共30小题) 1.(2015?松江区一模)在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为arccos(结果用反三角函数表示). 来源:2015年上海市松江区高考数学一模试卷(文科) 难度:0.80 考点:异面直线及其所成的角. 专题:计算题;空间位置关系与距离;空间角. 分析:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.由于CC1⊥平面ABCD,则∠C1BC=60°,设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,即b=a,再由余弦定理,即可得到. 解答:解:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b, 则由于CC1⊥平面ABCD,则∠C1BC=60°,

即有tan60°=,即b=a, 在△BA1C1中,BC1=BA1==2a,A1C1=a, cos∠BC1A1==. 则BC1与AC所成的角为arccos. 故答案为:arccos. 点评:本题考查空间的直线和平面所成的角,异面直线所成的角的求法,考查运算能力,属于基础题. 2.(2015?浦东新区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D、E分别是BC、AP的中点.求异面直线AC与ED所成的角的大小为arccos. 来源:2015年上海市浦东新区高考数学一模试卷 难度:0.80 考点:异面直线及其所成的角.

异面直线所成的角求法 答案

异面直线所成的角的两种求法 初学立几的同学,遇到的第一个难点往往便是求异面直线所成的角。难在何处?不会作! 下面介绍两种求法 一.传统求法--------找、作、证、求解。 求异面直线所成的角,关键是平移点的选择及平移面的确定。 平移点的选择:一般在其中一条直线上的特殊位置,但有时选在空间适当位置会更简便。 平移面的确定:一般是过两异面直线中某一条直线的一个平面,有时还要根据平面基本性质将直观图中的部分平面进行必要的伸展,有时还用“补形”的办法寻找平移面。 例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3, 求AB 和CD 所成的角. 解? 由三角形中位线的性质知,HG∥AB,HE∥CD, ∴ ∠EHG 就是异面直线AB 和CD 所成的角. ∵? EFGH 是平行四边形,HG =2 1 AB =62, H G F E D C B A

HE =2 1 ,CD =23, ∴? S EFGH =HG·HE·sin∠EHG=126 sin∠EHG,∴ 12 6sin∠EHG=123. ∴? sin∠EHG= 2 2 ,故∠EHG=45°. ∴? AB 和CD 所成的角为45° 注:本例两异面直线所成角在图中已给,只需指出即可。 例2.点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=2 2 AD ,求异面直线AD 和BC 所成的角。(如图) 解:设G 是AC 中点,连接DG 、FG 。因D 、F 分别是AB 、CD 中点,故EG∥BC 且EG= 2 1 BC ,FG∥AD,且FG=2 1 AD ,由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为 所求。由BC=AD 知EG=GF=2 1 AD ,又EF=AD ,由余弦定理可得cos∠EGF=0,即∠EGF=90°。 注:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角。通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系。 例3.已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 与CN 所成的角的余弦值; A B C G F E D

如何求异面直线所成的角

如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。其中“作”是关键,那么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处理方法。 Ⅰ、用平移法作两条异面直线所成的角 一、端点平移法 例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若 1AB BC CC ==,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , //DF EC Q 且DF EC = ∴四边形DFEC 为平行四边形 //EF DC ∴ EFA ∴∠(或它的补角)为CD 与AF 所成的角。 设2AB =, 则EF = AF = EA = 故2222EF FA EA EFA EF FA +-∠==g arccos 10 EFA ∴∠= 二、中点平移法 例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。 解:连结MD ,取MD 的中点O ,连结NO , Q O 、N 分别MD 、AD 为的中点, ∴NO 为DAM ?的中位线, ∴//NO AM , ONC ∴∠(或它的补角)为AM 与CN 所成的角。 设正四面体ABCD 的棱长为2 ,则有2NO = ,CN = ,2CO =, 故2222 cos 23 NO CN CO ONC NO CN +-∠= =g 2 arccos 3 ONC ∴∠= 1 B D C

高中数学《两条异面直线所成的角》练习

高中数学两条异面直线所成的角练习 一、选择题: 1.在正方体ABCD—A1B1C1D1中,M、N、P、Q分别是棱AB、BC、CD、CC1的中点,直线MN与PQ 所成的度数是() (A)(B)(C)(D) 2.下列命题中,正确的命题是() (A)直线a、b异面,过空间任一点O,作OA∥a,OB∥a,则∠AOB叫做异面直线a和b所成的角 (B)如果∠CBA=∠BAD,那么BC∥AD (C)和两条异面直线都垂直的直线,叫做这两条异面直线的公垂线 (D)两条异面直线所成的角只能是锐角或直角 3.已知a、b为两条异面直线,在a上有3个点,在b上有5个点,这些点最多可确定平面的个数是() (A)8 (B)15 (C)24 (D)30 4.AB为异面直线a、b的公垂线,直线l∥AB,则l与a、b两直线交点的个数是()(A)0个(B)1个(C)最多一个(D)最多两个 5.已知a、b、c是两两互相垂直的异面直线,d为b、c公垂线,则() (A) d与a是不互相垂直的异面直线

(B) d与a是相交直线 (C) d与a是平行直线 (D) d与a是互相垂直的异面直线 6.空间三条直线满足条件a∥b,a⊥c,则b与c的位置关系是() (A)垂直(B)平行(C)相交(D)异面 7.如果一个角的两边和另一个角的两边分别平行,则这两个角() (A)相等(B)相等或互补(C)相交(D)无确定的关系 8.正方体ABCD—A1B1C1D1中,E、F、G分别为AB、BC、CC的中点,则EF与BG所成角的余弦值为() (A)(B)(C)(D)- 二、填空题: 1.正方体ABCD—A1B1C1D1的棱长为1,则BD1与CC1所成角的正切值为_____,BD1与CC1的距离为_____. 2.长方体ABCD—A1B1C1D1中,AB=BC=2a,AA1=a,M、N分别是A1B1、BB1的中点,则A1D与MN所成角的余弦值是__________. 3.已知异面直线a与b所成的角为,P为空间一定点,则过点P且与a、b所成的角都是的直线有且仅有_____条. 4.对于已知直线a,如果直线b满足条件:与a为异面直线,与a所成的角为定值θ

人教版高中数学必修二考点练习:异面直线的判定

异面直线的判定 1. 如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系: ①直线A1B与直线D1C的位置关系是________; ②直线A1B与直线B1C的位置关系是________; ③直线D1D与直线D1C的位置关系是________; ④直线AB与直线B1C的位置关系是________. 2. 若a、b是异面直线,b、c是异面直线,则() A.a∥c B.a、c是异面直线 C.a、c相交D.a、c平行或相交或异面 3. 若a,b,c是空间3条直线,a∥b,a与c相交,则b与c的位置关系是() A.异面B.相交 C.平行D.异面或相交 4. 若直线a、b、c满足a∥b,a、c异面,则b与c() A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线 5. 如下图所示,点P,Q,R,S分别在正方体的4条棱上,且是所在棱的中点,则直线PQ 与RS是异面直线的一个图是________.

6. 在长方体ABCD-A1B1C1D1中,与棱AA1垂直且异面的棱有________. 7. 如下图所示是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为() A.相交B.平行 C.异面而且垂直D.异面但不垂直 8. 若P是两条异面直线l,m外的任意一点,则() A.过点P有且仅有一条直线与l,m都平行 B.过点P有且仅有一条直线与l,m都垂直 C.过点P有且仅有一条直线与l,m都相交 D.过点P有且仅有一条直线与l,m都异面 9. 如右图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问: (1)AM和CN是否是异面直线?说明理由. (2)D1B和CC1是否是异面直线?说明理由.

异面直线及其夹角

异面直线及其夹角 教学目标:: 知识目标:1、掌握异面直线的概念,会画空间两条异面直线的图形, 会判断两直线是否为异面直线。 2、掌握异面直线所成角的概念及异面直线垂直的概念,能 求出一些较简单的异面直线所成的角 能力目标:在问题解决过程中,培养学生的实验观察能力、空间想能 力象、逻辑思维能力、分析问题、解决问题的能力。 教学重点、难点: 重点:异面直线所成角的概念, 能求出一些较简单的异面直线所成的角。 难点:异面直线所成角的定义, 如何作出异面直线所成的角。 教学准备:多媒体课件 教学课时:二课时 教学过程: 第一课时 一、导入新课 1.引导学生观察立交桥上的车辆为什么能畅通无阻? 两条道路所在的直线不在同一平面内。它们既不平行也不相交,这样的两条直线有什么特点呢? 2.请学生做一个小实验,拿两支笔在空间中你能摆出几种位置关系? 有3种:平行、相交、不平行也不相交的两条直线(对于这样的两条直线以前我们没有学习过,那么它们之间有什么特点和关系呢?)。(板书课题) 二、新课讲解 前面我们学习过平行线,相交线,它们是同一平面内两条直线的位置关系,通过前面的实验和动画的观察,在空间还存在另一种两条直线的位置关系(不平行也不相交)。我们给它一个新的名称“异面直线”。 1 异面直线的定义:不同在任何.. 一个平面内的两条直线叫异面直线。 2.两条异面直线的性质:既不平行,也不相交。(如前面我们所说的两个例子,同学们还能找出具有这种性质的两条直线吗?)找两位学生说说他们所找的情况。 3.空间两条异面直线的画法。 如何用图形来表示两条异面直线,通常怎么样画?(老师板演,同时让学生总结其特点) 这三种表示方法有一个共同的特点,就是用平面来衬托,离开平面的衬托,不同在任何一个平面的特征难以体现。(今后我们也可以不用平面来衬托) 同学们想一想如果这样表示两条异面直线行吗?为什么? a b a b b a

异面直线所成的角

科目:数学 课 题 §2.1.2.2异面直线所成的角课型新课 教学目标(1)理解异面直线所成的定义 (2)掌握求异面直线所成的角要注意的问题(3)掌握求异面直线所成角的一般步骤 教学过程教学内容备 注 一、自主学习 1.什么叫异面直线?三线平行公理和等角定理分别说明什么问题? 2.不同的异面直线有不同的相对位置关系,用什么几何量反映异面直线之间的相对位置关系,是我们需要探讨的问题.

二、 质 疑 提 问 思考1:两条相交直线、平行直线的相对位置关系,分别是通过什么几何量来反映的? 思考2:两条异面直线之间有一个相对倾斜度,若将两异面直线分别平行移动,它们的相对倾斜度是否 发生变化? 思考3:设想用一个角反映异面直线的相对倾斜度,但不能直接度量,你有什么办法解决这个矛盾? 三、 问 题 探 究 思考1:把两条异面直线分别平移,使之在某处相交 得到两条相交直线,我们用这两条相交直线所夹的锐 角(或直角)来反映异面直线的相对倾斜程度,并称之 为异面直线所成的角.你能给“异面直线所成的角” 下个定义吗? 对于两条异面直线a,b,经过空间任一点O作直线a′∥a, b′∥b,则 a′与b′所成的锐角(或

直角)叫做异面直线a与b所成的角(或夹角) 思考2:若点O的位置不同,则直线a′与b′的夹角大小发生变化吗?为什么?为了作图方便,点O宜选在何处? 思考3:求异面直线所成角的步骤有哪些? 思考1:我们规定两条平行直线的夹角为0°,那么两条异面直线所成的角的取值范围是什么? 思考2:如果两条异面直线所成的角是90°,则称这两条直线互相垂直.两条互相垂直的异面直线a,b,

补充构造异面直线所成角的几种方法

一. 异面直线所成角的求法 1、正确理解概念 (1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。 (2)异面直线所成角的取值范围是(0°,] 90? 2、熟练掌握求法 (1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。 (2)求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。 ②求相交直线所成的角,通常是在相应的三角形中进行计算。 ③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。 3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。 E F 1 A 1 B 1 C 1 D A B C D G E F 1 A 1 B 1 C 1 D A B C D G

例2已知S是正三角形ABC所在平面外的一点,如图SA=SB=SC, 且∠ASB=∠BSC=∠CSA= 2 π, M 、N分别是AB和SC的中点. 求异面直线SM与BN所成的角的余弦值. 例3长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。 B M A N C S B M A N C S B M A N C S

异面直线的判定练习题及答案

异面直线的判定 1.已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三 等分点(如图),求证: (1)对角线AC、BD是异面直线; (2)直线EF和HG必交于一点,且交点在AC上. 是△BCD平面外的一点,E、F分别是BC、AD的中点, (1)求证:直线EF与BD是异面直线; 3.已知:平面α∩平面β=a,b?α,b∩a=A,c?β且c∥a,求证:b、c是异面直线. 4.已知不共面的三条直线a、b、c相交于点P,A∈a,B∈a,C∈b,D∈c,求证: AD与BC是异面直线. 5.平行六面体ABCD-A1B1C1D1中,求证:CD1所在的直线与BC1所在的直线是异面直线.

小结:常用方法是反证法 (1)利用反证法证明对角线AC、BD是共面直线,推出矛盾,从而证明是异面直 (2)说明直线EF和HG必交于一点,然后证明这点在平面ADC内.又在平面ABC内,必在它们的交线AC上. :(1)假设对角线AC、BD在同一平面α内, 则A、B、C、D都在平面α内,这与ABCD是空间四边形矛盾,∴AC、BD是异面直线. (2)∵E、H分别是AB、AD的中点所以EH平行且等于1/2BD, 又F、G分别是BC、DC的三等分点, EG平行等于2/3BD,.∴EH∥FG,且EH<FG.∴FE与GH相交 设交点为O,又O在GH上,GH在平面ADC内,∴O在平面ADC内. 同理,O在平面ABC内.从而O在平面ADC与平面ABC的交线AC上. 2.(1)假设EF与BD不是异面直线,则EF与BD共面,得到A、B、C、D在同一平面内,矛盾. 3.(1)证明:用反证法.设EF与BD不是异面直线, 4.则EF与BD共面,从而DF与BE共面,即AD与BC共面, 5.所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾. 6.故直线EF与BD是异面直线. 7.3.证明b、c是异面直线,比较困难,考虑使用反证法,即若b与c不是异面直线,则b∥c或b与c相交,证明b∥c或b与c相交都是不可能的,从而证明b、c是异面直线证明:用反证法: 8.若b与c不是异面直线,则b∥c或b与c相交 9.(1)若b∥c.∵a∥c,∴a∥b这与a∩b=A矛盾; 10.(2)若b,c相交于B,则B∈β,又a∩b=A, 11.∴A∈β∴AB?β,即b?β这与b∩β=A矛盾 12.∴b,c是异面直线. 4.证明:法一:(反证法)假设AD和BC共面,所确定的平面为α, 5.那么点P、A、B、C、D都在平面α内,∴直线a、b、c都在平面α内,与已知条件a、b、c不共面矛盾, 6.假设不成立,∴AD和BC是异面直线. 7.法二:(直接证法)∵a∩c=P,∴它们确定一个平面, 8.设为α,由已知C?平面α,B∈平面α,AD?平面α,B?AD,∴AD和BC是异面直线. 9.证明:用反证法, 10.假设CD1所在的直线与BC1所在的直线不是异面直线. 11.设直线CD1与BC1共面α. 12.∵C,D1∈CD1,B,C1∈BC1,∴C,D1,B,C1∈α∵CC1∥BB1,∴CC1,BB1确定平面BB1C1C,∴C,B,C1∈平面BB1C1C. 13.∵不共线的三点C,B,C1只有一个平面,∴平面α与平面BB1C1C重合.∴D1∈平面BB1C1C,矛盾. 14.因此,假设错误,即CD1所在的直线与BC1所在的直线是异面直线

求两条异面直线之间距离的两个公式

求两条异面直线之间距离的两个公式 王文彬 (抚州一中 江西 344000) 本文介绍求异面直线距离的两个简捷公式,以及如何定量地确定异面直线公垂线的方法. 1.公式一 如图1,1l 、2l 是异面直线,2l ?平面α,1l A α?=,1l 在α内的射影为l ,设2l l B ?=,且12,l l 与l 所成的角分别为12,θθ,AB m =,则1l 与2l 之间的距离为 d = (1) 证明:设1l 与2l 的公垂线为MN ,如 图1所示,过M 作MH l ⊥于H ,由于1l 在平面α内的射影为l ,故MH ⊥平面α, NM 在α内的射影为NH .由2MN l ⊥知 2NH l ⊥. 在Rt BNH ?中 22cos ()cos BN BH AB AH θθ==- 12(cos )cos m AM θθ=-……………………………① 同理21(cos )cos AM m BN θθ=-…………………② 联立①②解得 图1

212 22 12cos sin 1cos cos m AM θθθθ=- (1.1) 221 22 12cos sin 1cos cos m BN θθθθ=- (1.2) 从而 212 112212cos sin sin sin 1cos cos m MH AM θθθθθθ==?- 221 2222 12 cos sin tan tan 1cos cos m NH BN θθθθθθ==?- () () 2 2 2 2 2 4 22421 212122 2 2 1 2 cos sin sin cos sin tan 1cos cos m MN MH NH θθθθθθθθ∴=+= +- () ()2 2 4242121122 2 2 1 2 sin sin cos sin sin 1cos cos m θθθθθθθ= +- () ()2 22222121212 2 212sin sin cos sin sin 1cos cos m θθθθθθθ= ?+- () ()2 2222221212122 2 2221212sin sin sin sin sin sin sin sin sin sin m θθθθθθθθθθ= ?+-+- 22212 2222 1212sin sin sin sin sin sin m θθθθθθ=+-22212csc csc 1m θθ=+-. 即有公式(1)成立. 运用公式(1)求1l 与2l 之间的距离时,无需知道它们公垂线的位置,但如果要确定公垂线的位置,则可根据公式(1.1)和公式(1.2)分别计算出AM 和BN 的值,进而确定公垂线 MN 具体位置.

如何求异面直线所成的角

3 3 如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也 是高考的热点,求异面直线所成的角常分为三个步骤:作 证 求。其中“作”是关键,那 么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处 理方法。 I 、用平移法作两条异面直线所成的角 、端点平移法 例1、在直三棱柱 ABC A 1B 1C 1中, CBA 900 ,点D , F 分别是 AQ , A ,B i 的中点,若 AB BC CC i ,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , QDF//EC 且 DF EC 四边形DFEC 为平行四边形 EF // DC EFA (或它的补角)为CD 与AF 所成的角。 设 AB 2,则 EF 76,AF 730 arccos 10 、中点平移法 例2、在正四面体ABCD 中, 解:连结MD ,取MD 的中点0,连结NO , Q O 、N 分别MD 、AD 为的中点, NO 为DAM 的中位线, NO//AM , ONC (或它的补角)为AM 与CN 所成的角。 広 J 7 设正四面体ABCD 的棱长为2,则有NO —,CN 73, CO — 2 2 皿 NO 2 CN 2 CO 2 故 cos ONC ----------------- 2NOgCN 2 ONC arccos-故EFA EF 2 FA 2 EA 2 2EFgFA 730 10 75,EA 45 M , N 分别是BC, AD 的中点,求AM 与CN 所成的角的余弦值。 EFA A l A D

异面直线判定

异面直线巧辨别 ——异面直线的三种判别方法在学习立体几何的时候,大家经常会遇到证明两直线异面的题目.这一类的题目大家看上去会觉得很简单,因为直观看上去两条直线很明显不在一个平面内,但是要证明起来却又会觉得不知从何处下手.这次的专题就要介绍给大家证明异面直线的三种最基本的思路:定义法、反证法和定理法. 定义法一一排除 我们知道,异面直线的定义就是不共在任何平面内的两条直线.因为空间内的两条直线只有四种位置关系:重合、平行、相交和异面.所以,根据定义,我们只需要排除两条直线重合、平行和相交的可能,就可以证明两直线异面了. 这种思路非常的简单,但是要分别证明不重合、不平行、不相交也是很烦琐的工作,所以,一般情况下,我们不常使用这种思路.(除非,你真的想不到其它的证明方法) 反证法找出矛盾 反证法是我们在数学证明时常用的一种思路,也就是先假定命题的结论不成立,然后进行推理,如果出现与已知条件矛盾或者与公理、定理矛盾的情况,就可以说明我们的假定不成立,也就说明了原命题是正确的. 在异面直线判定中利用反证法,也就是先假设两条直线共面.有的题目很简单,根据两直线共面可以推导出直线上所有的点均在同一平面,就可以推导出与已知条件矛盾;还有一类题目就需要我们分情况来讨论,假定两直线共面,分为两种情况,平行和相交,要分别针对这两种情况进行推导,找到矛盾.

定理法 简明直观 所谓定理法,就是应用异面直线的判定定理,平面的一条交线与平面内不过交点的直线为异面直线.也就是说,如果一条直线m 与一个平面α相交于一点P ,那么α上任意一条不经过点P 的直线n 都与m 互为异面直线. ( 这种思路是很直观的,应用这种思路时,我们只需要找到一个平面,使一条直线n 在平面上,另一条直线m 与该平面相交于P 点,然后就只需证明P 不在直线n 上就可以了. 实践一下 上面我们介绍了三种异面直线的判定方法,下面我们就一起来实践几道题目,看一下每道题目应该用哪种思路,并且也检验一下,刚刚我们介绍的三种不同的思路,你是不是已经真正掌握了. 实践1:四面体ABCD 中,,AC BC AD BD =≠,DM AB ⊥于M ,CN AB ⊥于N ,求证DM 与CN 是异面直线. 指点迷津:这里要我们证明DM 和CN 为异面直线,很显然,DM 是在平面ABD 上的,而CN 与平面ABD 交于点N ,所以,根据判定定理,我们只需要证明N 不在DM 上就可以了.这里AC BC =,CN AB ⊥,所以N 为AB 的中点,而AD BD ≠,DM AB ⊥,所以M 不是AB 的中点,也就是说,DM 不会过点N ,所以,DM 和CN 为异面直线.

相关文档