文档库 最新最全的文档下载
当前位置:文档库 › 第2讲直接证明与间接证明

第2讲直接证明与间接证明

第2讲直接证明与间接证明
第2讲直接证明与间接证明

第2讲直接证明与间接证明

1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.

2.从考查形式上看,主要以不等式、立体几何、解析几何、函数与方程、数列等知识为载体,考查综合法、分析法、反证法等方法.

【复习指导】

在备考中,对本部分的内容,要抓住关键,即分析法、综合法、反证法,要搞清三种方法的特点,把握三种方法在解决问题中的一般步骤,熟悉三种方法适用于解决的问题的类型,同时也要加强训练,达到熟能生巧,有效运用它们的目的.

1.直接证明

(1)综合法

①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.

②框图表示:P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q

(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).

(2)分析法

①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法.

②框图表示:Q?P1→P1?P2→P2?P3→…→

得到一个明显成立的条件.

2.间接证明

一般地,由证明p?q转向证明:假设q为假?r???t.

t与假设矛盾,或与某个真命题矛盾.从而判定假设q为假,推出q为真的方法,叫做反证法.

一个关系

综合法与分析法的关系

分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.

两个防范

(1)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而

推出矛盾结果,其推理过程是错误的.

(2)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.

1.p =ab +cd ,q =ma +nc ·

b m +d

n

(m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小为( ). A .p ≥q B .p ≤q C .p >q D .不确定 解析 q =

ab +mad n +nbc m

+cd ≥ab +2abcd +cd

=ab +cd =p ,当且仅当mad n =abc

m 时取等号.

答案 B

2.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( ). A .a >b B .a <b C .a =b

D .a ≤b

解析 a =lg 2+lg 5=1,b =e x ,当x <0时,0<b <1. ∴a >b . 答案 A

3.否定“自然数a ,b ,c 中恰有一个偶数”时,正确的反设为( ). A .a ,b ,c 都是奇数 B .a ,b ,c 都是偶数 C .a ,b ,c 中至少有两个偶数

D .a ,b ,c 中至少有两个偶数或都是奇数

解析 ∵a ,b ,c 恰有一个偶数,即a ,b ,c 中只有一个偶数,其反面是有两个或两个以上偶数或没有一个偶数即全都是奇数,故只有D 正确. 答案 D

4.设a 、b ∈R ,若a -|b |>0,则下列不等式中正确的是( ). A .b -a >0 B .a 3+b 3<0 C .a 2-b 2<0 D .b +a >0 解析 ∵a -|b |>0,∴|b |<a ,∴a >0,∴-a <b <a ,∴b +a >0. 答案 D

5.在用反证法证明数学命题时,如果原命题的否定事项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的正确.

例如:在△ABC 中,若AB =AC ,P 是△ABC 内一点,∠APB >∠APC ,求证:∠BAP <∠CAP ,用反证法证明时应分:假设________和________两类. 答案 ∠BAP =∠CAP ∠BAP >∠CAP

考向一 综合法的应用

【例1】设a ,b ,c >0,证明:a 2b +b 2c +c 2

a ≥a +

b +

c .

[审题视点] 用综合法证明,可考虑运用基本不等式. 证明 ∵a ,b ,c >0,根据均值不等式, 有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2

a

+a ≥2c . 三式相加:a 2b +b 2c +c 2

a +a +

b +

c ≥2(a +b +c ).

当且仅当a =b =c 时取等号. 即a 2b +b 2c +c 2

a

≥a +b +c . 【反思与悟】综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性. 【变式1-1】 设a ,b 为互不相等的正数,且a +b =1,证明:1a +1

b >4.

证明 1a +1b =????1a +1b ·(a +b )=2+b a +a

b ≥2+2=4.

又a 与b 不相等.故1a +1b

>4.

考向二 分析法的应用

【例2】已知m >0,a ,b ∈R ,求证:? ???

?a +mb 1+m 2≤a 2+mb 2

1+m

.

[审题视点] 先去分母,合并同类项,化成积式. 证明 ∵m >0,∴1+m >0. 所以要证原不等式成立,

只需证明(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0,

即证(a -b )2≥0,而(a -b )2≥0显然成立, 故原不等式得证.

【反思与悟】 逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题顺利获解的关键. 【变式2-1】 已知a ,b ,m 都是正数,且a <b . 求证:a +m b +m >a b

.

证明 要证明a +m b +m >a

b ,由于a ,b ,m 都是正数,

只需证a (b +m )<b (a +m ), 只需证am <bm ,

由于m >0,所以,只需证a <b . 已知a <b ,所以原不等式成立.

(说明:本题还可用作差比较法、综合法、反证法)

考向三 反证法的应用

【例3】已知函数f (x )=a x +

x -2

x +1

(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数. (2)用反证法证明f (x )=0没有负根.

[审题视点] 第(1)问用单调增函数的定义证明;第(2)问假设存在x 0<0后,应推导出x 0的范围与x 0<0矛盾即可.

证明 (1)法一 任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0. 所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以

x 2-2x 2+1-x 1-2

x 1+1

=()()()()()()211221212111x x x x x x -+--+++=()()()

21213011x x x x ->++,

于是f (x 2)-f (x 1)=ax 2-ax 1+

x 2-2x 2+1-x 1-2

x 1+1

>0, 故函数f (x )在(-1,+∞)上为增函数. 法二 f ′(x )=a x ln a +

()

2

3

1x +>0,

∴f (x )在(-1,+∞)上为增函数.

(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1,又0<ax 0<1,所以0<-x 0-2x 0+1<1,即

1

2<x 0<2,与x 0<0(x 0≠-1)假设矛盾.故f (x 0)=0没有负根.

【反思与悟】 当一个命题的结论是以“至多”,“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.

【变式3-1】 已知a ,b 为非零向量,且a ,b 不平行,求证:向量a +b 与a -b 不平行. 证明 假设向量a +b 与a -b 平行, 即存在实数λ使a +b =λ(a -b )成立,

则(1-λ)a +(1+λ)b =0,∵a ,b 不平行,

∴????? 1-λ=0,1+λ=0,得?

????

λ=1,λ=-1, 所以方程组无解,故假设不成立,故原命题成立.

怎样用反证法证明问题

【问题研究】 反证法是主要的间接证明方法,其基本特点是反设结论,导出矛盾,当问题从正面证明无法入手时,就可以考虑使用反证法进行证明.在高考中,对反证法的考查往往是在试题中某个重要的步骤进行.

【解决方案】 首先反设,且反设必须恰当,然后再推理、得出矛盾,最后肯定. 【示例】设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明l 1与l 2相交;

(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.

【审题视点】 第(1)问采用反证法,第(2)问解l 1与l 2的交点坐标,代入椭圆方程验证. [解答示范] 证明 (1)假设l 1与l 2不相交, 则l 1与l 2平行或重合,有k 1=k 2, 代入k 1k 2+2=0,得k 21+2=0.

这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.

(2)由方程组?

????

y =k 1x +1,y =k 2x -1,

解得交点P 的坐标(x ,y )为????

?

x =2k 2-k 1

,y =k 2

+k

1k 2

-k 1

.

从而2x 2+y 2=2????2k 2-k 12+? ??

??k 2+k 1k 2-k 12

=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 2

2+4k 21+k 22+4

=1,

此即表明交点P (x ,y )在椭圆2x 2+y 2=1上.

【反思与悟】 用反证法证明不等式要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,

即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的. 【试一试】 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2.

(1)求数列{a n }的通项公式;

(2)求证数列{a n }中不存在三项按原来顺序成等差数列. [尝试解答] (1)当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=1

2a n ,

所以{a n }是首项为1,公比为12的等比数列,所以a n =1

2

n -1.

(2)反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *), 则2·12q =12p +12r ,所以2·2r -q =2r -

p +1.①

又因为p <q <r ,所以r -q ,r -p ∈N *.

所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.

(完整版)直接证明与间接证明练习题

2、直接证明与间接证明 三种证明方法的定义与步骤: 1. 综合法 是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。 2. 分析法 是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。 3. 反证法 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法. 反证法法证明一个命题的一般步骤: (1) 假设命题的结论不成立; (2) 根据假设进行推理,直到推理中导出矛盾为止 (3) 断言假设不成立(4) 肯定原命题的结论成立 题型一:用综合法证明数学命题 例1 :对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的 []0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有 1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数. (1) 若函数()f x 为理想函数,求(0)f 的值; (2)判断函数()21x g x =-(]1,0[∈x )是否为理想函数,并予以证明; 解析:(1)取021==x x 可得0)0()0()0()0(≤?+≥f f f f . 又由条件①0)0(≥f ,故0)0(=f . (2)显然12)(-=x x g 在[0,1]满足条件①0)(≥x g ; 也满足条件②1)1(=g .若01≥x ,02≥x ,121≤+x x ,则 )] 12()12[(12 )]()([)(2 12 12121-+---=+-++x x x x x g x g x x g 0)12)(12(1222122121≥--=+--=+x x x x x x ,即满足条件③, 故)(x g 理想函数. 注:紧扣定义,证明函数()21x g x =-(]1,0[∈x )满足三个条件

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新人教A版选修45

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新 人教A 版选修45 [整合·网络构建] [警示·易错提醒] 1.比较法的一个易错点. 忽略讨论导致错误,当作差所得的结果“正负不明”时,应注意分类讨论. 2.分析法和综合法的易错点. 对证明方法不理解导致证明错误,在不等式的证明过程中,常因对分析法与综合法的证明思想不理解而导致错误. 3.反证法与放缩法的注意点. (1)反证法中对结论否定不全. (2)应用放缩法时放缩不恰当. 专题一 比较法证明不等式 比较法是证明不等式的最基本、最重要的方法,主要有作差比较法和作商比较法,含根号时常采用比平方差或立方差.基本步骤是作差(商)—变形—判断—结论,关键是变形,变形的目的是判号(与1的大小关系),变形的方法主要有配方法、因式分解法等. [例?] 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx ). 证明:因为b +c a x 2+c +a b y 2+a +b c z 2-2(xy +yz +zx )= ? ????b a x 2+a b y 2-2xy +? ?? ??c b y 2+b c z 2-2yz +

? ????a c z 2+c a x 2-2zx =? ????b a x -a b y 2+ ? ????c b y -b c z 2+? ?? ??a c z -c a x 2≥0, 所以b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx )成立. 归纳升华 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法. [变式训练] 已知a ,b ∈R ,求证:a 2+b 2 +1≥ab +a +b . 证明:法一 因为a 2+b 2-ab -a -b +1=12 [(a -b )2+(a -1)2+(b -1)2]≥0, 所以a 2+b 2+1≥ab +a +b . 法二 a 2+b 2-ab -a -b +1=a 2-(b +1)a +b 2-b +1, 对于a 的二次三项式, Δ=(b +1)2-4(b 2-b +1)=-3(b -1)2≤0, 所以a 2-(b +1)a +b 2 -b +1≥0, 故a 2+b 2+1≥ab +a +b . 专题二 综合法证明不等式 综合法证明不等式的思维方式是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立. 证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误. [例2] 设a ,b ,c 均为正数,且a +b +c =1,求证: a 2b +b 2c +c 2 a ≥1. 证明:因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2 a +a ≥2c , 故a 2b +b 2c +c 2 a +(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2 a ≥a +b +c . 所以a 2b +b 2c +c 2 a ≥1. 归纳升华

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高考知识点直接证明与间接证明

第2节 直接证明与间接证明 最新考纲 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点 . 知 识 梳 理 1.直接证明 2.间接证明 间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法. (1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法. (2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定

原命题的结论成立. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (2)用反证法证明结论“a >b ”时,应假设“a ab >b 2 C.1a <1b D.b a >a b 解析 a 2-ab =a (a -b ),∵a 0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2. 答案 B 3.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A.2ab -1-a 2b 2≤0 B.a 2 +b 2 -1-a 4+b 4 2≤0 C.(a +b )22-1-a 2b 2≤0 D.(a 2-1)(b 2-1)≥0 解析 a 2+b 2-1-a 2b 2≤0?(a 2-1)(b 2-1)≥0. 答案 D

高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课后练习 新人教A版选修4-5

2016-2017学年高中数学 第2讲 证明不等式的基本方法 1 比较法、 综合法与分析法课后练习 新人教A 版选修4-5 一、选择题 1.设02x =4x >2x , ∴只需比较1+x 与1 1-x 的大小. ∵1+x -11-x =1-x 2-11-x =-x 2 1-x <0, ∴1+x <1 1-x . 答案: C 2.已知a ,b ,c ,d ∈{正实数}且a b

答案:A

3.已知a >2,x ∈R ,P =a +1a -2,Q =? ????12x 2-2,则P ,Q 的大小关系为( ) A .P ≥Q B .P >Q C .P 2,∴a -2>0, P =a +1a -2=a -2+1a -2 +2≥2+2=4. 又Q =? ????12x 2-2≤? ?? ??12-2=4.∴P ≥Q . 答案: A 4.已知a ,b ∈R ,则“a +b >2,ab >1”是“a >1,b >1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: ∵a >1,b >1?a +b >2,ab >1 a + b >2,ab >1?/ a >1,b >1 举例说明a =3,b =12 . 答案: B 二、填空题 5.设a >b >0,x =a +b -a ,y =a -a -b ,则x ,y 的大小关系是x ________y . 解析: ∵a >b >0, ∴x -y =a +b -a -(a -a -b ) =b a +b +a -b a +a -b = b a -b -a +b a +b +a a +a -b <0. 答案: < 6.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若∠C =90°,则a +b c 的取值范围是________. 解析: 由题意知c 2=a 2+b 2≥2ab , 即ab c 2≤12 .

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

复习教学案 第一章图形与证明(二)1 (2)

本文为本人珍藏,有较高的使用、参考、借鉴价值!! 第一章 图形与证明(二) 【知识回顾】 【基础训练】 1.(08,盐城)梯形的中位线长为3,高为2,则该梯形的面积为 。 2.(08,南京)若等腰三角形的一个外角为70°,则它的底角为 度。 3.(08,乌鲁木齐)某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为 A .9cm B .12cm C .15cm D .12cm 或15cm 4.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为__________cm . 5.(08,梅州)如图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度. 2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定 5.中位线 三角形的中位线 梯形的中位线 注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。 1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定 3.平行四边形 平行四边形的性质和判定:4个判定定理 矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。 (2)菱形的面积公式:ab S 21= (b a ,是两条对角线的长) 注意: (1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。 即需要掌握常作的辅助线。 (2)梯形的面积公式: ()lh h b a S =+=21(l -中位线长)

直接证明和间接证明(4个课时)课程教案

2.2直接证明与间接证明 教学目标: (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法证明简单的不等式; (3)能根据实际题目灵活地选择适当地证明方法; (4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议: 1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用) 2.重点、难点分析 重点:不等式证明的主要方法的意义和应用; 难点:①理解分析法与综合法在推理方向上是相反的; ②综合性问题证明方法的选择. (1)不等式证明的意义 不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立. (2)比较法证明不等式的分析 ①在证明不等式的各种方法中,比较法是最基本、最重要的方法. ②证明不等式的比较法,有求差比较法和求商比较法两种途径.

由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的 a-b>0.这种证法就是求差比较法. 由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件. ③求差比较法的基本步骤是:“作差→变形→断号”. 其中,作差是依据,变形是手段,判断符号才是目的. 变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可. ④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析 ①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法. ②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式. ③综合法证明不等式的逻辑关系是: (已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析

(通用版)201X版高考数学一轮复习 不等式选讲 2 第2讲 不等式的证明教案 理

第2讲 不等式的证明 1.基本不等式 定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则 a +b 2 ≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a 、b 、c 为正数,则 a + b +c 3 ≥3 abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 2.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键 使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向. 对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2, 所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3. 若a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1 b 2≥8. 证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0, 所以1 a 2+1 b 2= (a +b )2 a 2 + (a +b )2 b 2 =1+2b a + b 2a 2+1+2a b +a 2b 2=2+? ????2b a +2a b +? ?? ?? b 2a 2+a 2 b 2≥2+

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

人教版高数选修4-5第2讲:证明不等式的基本方法(教师版)

证明不等式的基本方法 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点: 掌握比较法、综合法和分析法、反证法和放缩法的方法; 教学难点: 理解放缩法的解题及应用。 1、比较法:所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 2、分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。 3、综合法:从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法。 4、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,这种证明方法叫做反正法.用反证法证明不等式时,必须将命题结论的反面的各种情形一一导出矛盾这里作一简单介绍。 反证法证明一个命题的思路及步骤: 1) 假定命题的结论不成立; 2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾; 3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4) 肯定原来命题的结论是正确的。 5.放缩法:放缩法就是在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明比原不等式更好的不等式来代替原不等式的证明.放缩法的目的性强,必须恰到好处, 同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及.否则不能达到目的。 类型一: 比较法、分析法和综合法去证明不等式 例1. 求证:x 2 + 3 > 3x 解析:∵(x 2 + 3) - 3x = 04 3 )23(3)23()23 (32222>+ -=+-+-x x x ∴x 2 + 3 > 3x 答案:见解析 练习1. 已知a , b , m 都是正数,并且a < b ,求证: b a m b m a >++

数学:第一章图形与证明(二)复习教案(苏科版九年级上)

第一章 图形与证明(二)复习教学案 【知识回顾】 2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定 5.中位线 三角形的中位线 梯形的中位线 注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。 1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定 3 .平行四边形 平行四边形的性质和判定:4个判定定理 矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。 (2)菱形的面积公式:ab S 2 1= (b a ,是两条对角线的长) 注意: (1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。 即需要掌握常作的辅助线。 (2)梯形的面积公式:()lh h b a S =+=2 1(l -中位线长)

【基础训练】 1.梯形的中位线长为3,高为2,则该梯形的面积为 。 2.若等腰三角形的一个外角为70°,则它的底角为 度。 3.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为 A .9cm B .12cm C .15cm D .12cm 或15cm 4.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为 __________cm . 5.如图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度. 6.如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C , OB 的中点D ,测得CD =30米,则AB =______米. 7.平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个 条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( ) A .AB=BC B .AC=BD C .AC⊥B D D.AB⊥BD 8.(08,扬州)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 、当AB=BC 时,它是菱形 B 、当A C ⊥B D 时,它是菱形 C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形 9.下列条件中不能确定四边形ABCD 是平行四边形的是( ) A.AB=CD ,AD ∥BC B.AB=CD ,AB ∥CD C.AB ∥CD ,AD ∥BC D.AB=CD ,AD=BC 10.如图,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③ B .②③ C .③④ D .①②③ A B C D 第10题 D C 第11题 A D B O 第12题 第13题

直接证明和间接证明基础+复习+习题+练习)

课题:直接证明和间接证明 教学目标: 1.掌握并灵活运用比较法证明简单的不等式,掌握综合法与分析法,会利用综合法和分析法证明不等式. 2. 了解用反证法、换元法、放缩法等方法证明简单的不等式. 教学重点: 灵活作差比较法、作商比较法证明不等式,能合理进行作差(作商)后的变形、配凑,会灵活应用综合法、分析法解决不等式的证明问题 . 教材复习 比较法证明不等式的基本步骤:????? ? →→? ?????? ? 配方法分解法作差(商)变形判断通分法放缩法有理化 综合法:就是从题设条件和已经证明的基本不等式出发,不断用必要条件替换前面的不 等式,直至推出要证明的结论,可简称为“由因导果”,在使用分析法证明不等式时,要注意基本不等式的应用。 分析法:就是从所要证明的不等式出发,不断地利用充分条件替换前面的不等式,直至 找到题设条件或已经证明的基本不等式。可简称为“执果索因”,在使用分析法证明不等式时,习惯上用“?”或“?”表达。 反证法的一般步骤:反设——推理——导出矛盾(得出结论); 换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性; 常用的换元有三角换元有: 已知2 2 2 a y x =+,可设θθsin ,cos a y a x ==; 已知12 2 ≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r ); 放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析、多次尝试得出, 要注意放缩的适度。常用的方法是:

①添加或舍去一些项,如:a a >+12 ,n n n >+)1(,2 2 131242a a ????++>+ ? ?? ??? ②将分子或分母放大(或缩小) ③真分数的性质:“若0a b <<,0m >,则 a a m b b m +< + ④利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+()x R ∈ ⑦利用常用结论: 2 =>= ()* ,1k N k ∈> , 2=<=()* ,1k N k ∈> Ⅱ、 k k k k k 111)1(112--=-< ; 111)1(112 +-=+>k k k k k (程度大) Ⅲ、 )1 111(21)1)(1(111122+--=+-=->>,且互不相等,1abc =, (1) 2 n n ++<

第二讲 证明不等式的基本方法 复习课 学案(含答案)

第二讲证明不等式的基本方法复习课学案 (含答案) 第二讲第二讲证明不等式的基本方法证明不等式的基本方法复习课复习课学习目标 1.系统梳理证明不等式的基本方法. 2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法. 3.进一步熟练掌握不同方法的解题步骤及规范1比较法作差比较法是证明不等式的基本方法,其依据是不等式的意义及实数大小比较的充要条件证明的步骤大致是作差恒等变形判断结果的符号2综合法综合法证明不等式的依据是已知的不等式以及逻辑推理的基本理论证明时要注意的是作为依据和出发点的几个重要不等式已知或已证成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当时,取等号”的理由要理解掌握3分析法分析法证明不等式的依据也是不等式的基本性质.已知的重要不等式和逻辑推理的基本理论分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件执果索因,最后得到的充分条件是已知或已证的不等式一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加

以证明,所以分析法和综合法可结合使用4反证法反证法是一种“正难则反”的方法,反证法适用的范围直接证明困难;需要分成很多类进行讨论;“唯一性”“存在性”的命题;结论中含有“至少”“至多”否定性词语的命题5放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有舍掉或加进一些项;在分式中放大或缩小分子或分母;用基本不等式放缩.类型一比较法证明不等式例1若x,y,zR,a0,b0,c0.求证bcax2caby2abcz22xyyzzx证明 bcax2caby2abcz22xyyzzxbax2aby22xycby2bcz22yzacz2cax22zxba xaby2cbybcz2aczcax20,bcax2caby2abcz22xyyzzx成立反思与感悟作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法跟踪训练1设a,b为实数,0n1,0m1,mn1,求证a2mb2nab 2.证明 a2mb2nab2na2mb2mnnma22abb2mnna21mmb21n2mnabmnn2a2m2b22mna bmnnamb2mn0,a2mb2nab 2.类型二 综合法与分析法证明不等式例2已知a,b,cR,且 abbcca1,求证1abc3;2abcbaccab3abc证明1要证abc3,由于a,b,cR,因此只需证abc23,即证a2b2c22abbcca3,根据条

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

最新自主招生数学专题讲义-第2讲:不等式(1)

第二讲:不等式 ———————————————————————————————————————————— 第一部分 概述 不等式部分包括:解不等式;不等式的证明 在复旦大学近三年自主招生试题中,不等式题目占12%,其中绝大多数涉及到不等式的证明; 交大试题中,不等式部分通常占10%-15%,其中涉及到一些考纲之外的特殊不等式 常用不等式及其推广: 需要适当补充一点超纲知识 柯西不等式 均值不等式及其推广 第二部分 知识补充: 1、 柯西不等式的证明 1212,,2 ((112111n n a b R a b a b n a a a n n a a a +?∈+≥≥≥++++≥≥≥ ++L L 有平方平均)算术平均)调和平均) 推广到个正实数,有123123,,,,,,,,,,0(1,2,,),(1,2,,),n n i i i a a a a b b b b b i n k a kb i n ====L L L L n 柯西不等式设是实数则 当且仅当或存在一个数 使得时等号成立222222 212121122()()()n n n b a a a b b b a b a b a b +++++++L L L ≥n n b a b a b a B Λ++=2211, b b b C n 2 2221+++=Λ222222212121122()()()n n n b a a a b b b a b a b a b +++++++L L L ≥②

证明: 柯西不等式的推论一 柯西不等式的推论二 柯西不等式的应用 2AC B 不等式就是②≥()222 2121122222 121,2,()()2() ()i i n n n n a i n a f x a a a x a b a b a b x b b b ==+++++++++L L L L 若全部为零,则原不等式显然成立。若不全部为零,构造二次函数0)()()()(2222211≥++++++=n n b x a b x a b x a x f Λ又∴二次函数()f x 的判别式0△≤, 即2222222112212124()4()()0n n n n a b a b a b a a a b b b ++-++?+++L L L ≤ 证明: 22 2222 12212(111)() (111)n n a a a a a a ++++++?+?++?L L L ≥ 例1已知12,,,n a a a L 都是实数,求证: 222212121()n n a a a a a a n ++++++L L ≤ 22221212() ()n n n a a a a a a ∴++++++L L ≥222212121()n n a a a a a a n ∴++++++L L ≤2 111,n n i i i i i a R a n a +==????∈≥ ? ?????∑∑设则例2 已知,,,a b c d 是不全相等的正数,证明: 2222a b c d ab bc cd da +++>+++ 证明: 2 22222222 ()() ()≥a b c d b c d a ab bc cd da +++++++++ ∵,,,a b c d 是不全相等的正数,a b c d b c d a ∴ ===不

直接证明与间接证明 精品教案

2.2直接证明与间接证明(文) 【课题】:2.2.1 综合法和分析法(1) 【设计与执教者】:广州石化中学张洪娟gz100088@https://www.wendangku.net/doc/7d5219483.html, 【学情分析】: 前一阶段刚刚学习了人们在日常活动和科学研究中经常使用的两种推理——合情推理和演绎推理。数学结论的正确性必须通过逻辑推理的方式加以证明。这是数学区别于其他学科的显著特点。本节学习两类基本的证明方法:直接证明与间接证明。 在以前的学习中,学生已经接触过用综合法、分析法和反证法证明数学命题,但他们对这些证明方法的内涵和特点不一定非常清楚,逻辑规则也会应用不当。本部分结合学生已学过的数学知识,通过实例引导学生分析这些基本证明方法的电教过程与特点,并归纳出操作流程框图,使他们在以后的学习和生活中,能自觉地、有意识地运用这些方法进行数学证明,养成言之有理、论证有据的习惯。 【教学目标】: (1)知识与技能:结合已学过的数学实例,了解直接证明的基本方法——综合法;了解综合法的思考过程、特点 (2)过程与方法:能够运用综合法证明数学问题 (3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯 【教学重点】: 了解综合法的思考过程、特点;运用综合法证明数学问题。 【教学难点】: 根据问题特点,选择适当的证明方法证明数学问题。 【课前准备】:几何画板 【教学过程设计】:

ABC中, ,且A,B 证:ABC为等 ,B,C成等 ,B,C为ABC的内 A+B+C=

ABC为等

【练习与测试】: 1.命题“对任意角θθθθ2cos sin cos ,4 4 =-都成立”的证明过程如下: “θθθθθθθθθ2cos sin cos )sin )(cos sin (cos sin cos 2 2 2 2 2 2 4 4 =-=+-=-”,该 过程应用了( ) A. 分析法 B. 综合法 C. 综合法与分析法结合使用 D. 间接证法 答案:B 解:因为是利用三角公式和乘法公式直接推出结论,故选B 。 2. 已知2 0π α< <,求证:1cos sin 4 4<+αα。

相关文档 最新文档