文档库 最新最全的文档下载
当前位置:文档库 › 最新高等数学场论基本概念

最新高等数学场论基本概念

最新高等数学场论基本概念
最新高等数学场论基本概念

数学物理基础

梯度、散度和旋度

梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下:

从符号中可以获得这样的信息:

①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数;

②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下

的;

③求旋度是针对一个矢量函数,得到的还是一个矢量函数。

这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式

(1)

其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式:

(2)

(

3)

(4)旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。

I.梯度的散度:

根据麦克斯韦方程有:

(5)则电势的梯度的散度为

这是一个三维空间上的标量函数,常记作

(6)称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义

所以有

当然,这只是一种记忆方式。

当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程

当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即

这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。

II.散度的梯度:

散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。在半导体中,载流子分布的不均匀会导致扩散电流。

散度的梯度这个概念其实不常用,因为计算复杂,但在后面讲用它来推导一个矢量恒等式。

III.梯度的旋度:

对于梯度的旋度,直接把(2)式代入(4)式中,有

由于势函数在空间一点的领域内往往是有二阶连续混合偏导数的,因此上式的结果为0.所以说梯度的旋度为零,它的物理意义也是很明确的。

比如一个人从海平面爬到一座山上,无论它是从山的陡坡爬上去还是从缓坡爬上去,亦或者坐直升机上去,重力对他所做的功总是相等的,即力场的做工只与位移有关,而与路径无关,这样的场称为保守场,而保守场是无旋场。再比如绘有等高线的地图,如果某点只有一个一根等高线穿过,那么该点有一个确定的相对高度。如果该点有两条或以上的等高线穿过,则这个点处在悬崖边上,这个点处是不可微,也就没有求梯度的意义。

IV.旋度的散度:

求旋度的散度也是将(4)式代入(3)式即可。若令

(7)

从而

将上面三式相加结果也为零。所以说旋度的散度为零,这就意味着一个散度场任意叠加上一个有旋场不会改变其散度,也就是说光凭矢量场的散度无法唯一地确定这个矢量场。而光凭矢量场的旋度也无法唯一地确定这个矢量,这是因为有旋场可以叠加上这么一个矢量场而不改变其旋度,而这个矢量场是一个标量函数的梯度。

V.旋度的旋度:

旋度的旋度将是本文的重点。若所研究的空间范围内是无源的,即ρ=0,J=0,则根据麦克斯韦方程有:

(8)

(9)

(10)

(11)

对(9)式两端取旋度

(12)

再将(8)式代入(12)式有

(13)

看到这里容易让人想到式(1),前面说式(1)的方程为一维波动方程,那么跟(13)式有什么联系呢?棘手的问题是算旋度已经够复杂了,算旋度的旋度岂不是更费周折?幸好有矢量恒等式可以利用来帮助简化计算,这里要用到前面所讲的散度的梯度。即有:

(14)

这里拉普拉斯算子作用于一个矢量函数时,意义变得不明确了,它和前面的几个“X度的X度”都不一样,实际上它有这样的定义:

(15)

为了验证式(14)还是要对计算“旋度的旋度”,但以后可以直接利用该式。还是做(7)式那样的处理,即令

于是

(

16)

而令

(

17)

两式相减有

(18)

类似地有

由于所关心的空间内是无源的,所以式(13)变成

(19)

这个方程很重要,称为三维波动方程,这也从理论上揭示了电磁波的存在。它的各分量展开后比较复杂,实际上我们无法绘制出一个向四面八方传播的波的振动图像,但好在可以画出一维和二维的波,从而了解波的性质。有些事物我们无法在现实世界中呈现,或绘制出图形,但是数学上却可以计算且有确切的物理意义,比如高于三维的空间,不得不感叹数学的神奇,感叹我们生活的世界的神奇。

VI.几个矢量恒等式:

前面已经介绍了一个矢量恒等式,还有其他几个重要的恒等式。由于三种“度”是三种不同微分算法,虽然有些场合可以把▽当做一个普通的矢量来处理,但并不总是正确的,这一点需要引起注意。

这里“×”乘的优先级高于“·”乘对于普通三个不共面的矢量A、B、C则有A·B×C=C·A×B=B·C×A。得到的结果是令三个矢量共起点,以三个矢量的模为棱构成的六面体的体积或它的负值。但是对于▽算子,则一般

但是一般有

实际上上面的矢量恒等式就是上式的扩展

上两式相减有

记忆上式的方法是记住下标的顺序是xyz,yzx和zxy。

这个等式相对容易证明,但前提是要在直角坐标下。

【高等数学基础】形成性考核册答案(附题目)

【高等数学基础】形成性考核册答案 【高等数学基础】形考作业1答案: 第1章 函数 第2章 极限与连续 (一)单项选择题 ⒈下列各函数对中,(C )中的两个函数相等. A. 2 )()(x x f =,x x g =)( B. 2)(x x f = ,x x g =)( C. 3 ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,1 1)(2--=x x x g 分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同 A 、2 ()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R 定义域不同,所以函数不相等; B 、()f x x = =,x x g =)(对应法则不同,所以函数不相等; C 、3 ()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x > 所以两个函数相等 D 、1)(+=x x f ,定义域为R ;21 ()11 x g x x x -= =+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。 故选C ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = 分析:奇函数,()()f x f x -=-,关于原点对称 偶函数,()()f x f x -=,关于y 轴对称 ()y f x =与它的反函数()1y f x -=关于y x =对称, 奇函数与偶函数的前提是定义域关于原点对称 设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+= 所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称 故选C ⒊下列函数中为奇函数是(B ). A. )1ln(2 x y += B. x x y cos = C. 2 x x a a y -+= D. )1ln(x y += 分析:A 、()()( )()2 2 ln(1)ln 1y x x x y x -=+-=+=,为偶函数 B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数 或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数 C 、()()2 x x a a y x y x -+-= =,所以为偶函数

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

201411455-场论与积分变换-教学大纲

场论与积分变换课程教学大纲 一、课程基本信息 课程编号:201411455 课程中文名称:场论与积分变换 课程英文名称:Field theory and integral transform 课程性质:自然科学与技术基础课程 开课专业:陈赓实验班 开课学期:第3学期 总学时: 32 (其中理论32学时,实验0学时,上机0学时,其它0学时) 总学分:2 二、课程目标 场论与积分变换是船舶与海洋工程专业后续专业课程学习所需要掌握的一门重要的数学课程。本课程的主要内容是场论及其初步应用、积分变换及其应用。通过本课程的教学,使学生掌握场和积分变换的基本理论和基本方法,培养学生在场论和积分变换方面的科学思维和数学功底,锻炼学生场论和积分变换运算能力以及应用场论与积分变换解决实际问题的能力,为进一步学习船舶与海洋工程专业后续课程奠定坚实的场论和基本变换的理论基础。 三、教学基本要求 通过本门课程系统的学习与严格的训练,全面掌握场论与积分变换的基本理论知识;培养逻辑思维能力与推理论证能力;具备熟练地运算能力与技巧;提高建立数学模型,并应用场论与积分变换的理论知识解决实际应用问题的能力。 四、教学内容与学时分配 1场论(12学时) 1.1场(2学时) 介绍场的概念、数量场的等值面、矢量场的矢量线、平行平面场。 1.2数量场的方向导数和梯度(2学时) 介绍方向导数、梯度的概念及理论。

1.3矢量场的通量及散度(2学时) 介绍通量、散度、平面矢量场的通量与散度的概念及理论。 1.4矢量场的环量及旋度(2学时) 介绍环量、旋度的概念及理论。 1.5几种重要的矢量场(2学时) 介绍有势场、惯性场和调和场等几种重要的矢量场。 1.6哈密顿算子(2学时) 介绍哈密段算子符号及其在数学公式中的应用。 2场的初步应用(4学时)(5号宋体) 2.1场论在力学中的初步应用(2学时) 介绍场论在流体力学、结构力学中的初步应用。 2.2格林公式及其推导(2学时) 介绍二维和三维格林公式及其推导。 3 傅立叶变换(6学时) 3.1 傅立叶变换(2学时) 介绍傅立叶变换的概念、单位脉冲函数与单位阶跃函数的相关理论。 3.2傅立叶变换的性质(2学时) 介绍傅立叶变换的线性性质、位移性质、微分性质、积分性质的理论及应用。3.3卷积(2学时) 介绍卷积的概念、性质以及卷积在傅立叶变换中的应用。 4 拉普拉斯变换(6学时) 4.1 拉普拉斯变换(2学时) 介绍拉普拉斯变换的存在条件、定义以及几种常用函数的拉普拉斯变换。 4.2 拉普拉斯变换的性质(2学时) 介绍拉普拉斯变换的线性性质、微分性质、积分性质、延迟性质、位移性质以及相似性质。 4.3拉普拉斯逆变换(2学时) 介绍拉普拉斯变换的逆变换及其求解方法。 5 积分变换的应用(4学时)

高数一基础知识

高数(一)的预备知识 第一部份 代数部份 (一)、基础知识: 1.自然数:0和正整数(由计数产生的)。 2.绝对值:a a a ?=?-? 00a a ≥∠ 3.乘法公式 (a+b )(a-b)=a 2-b 2 (a ±b)2=a2±2ab+b 2 a 3-b 3=(a-b)(a 2+ab+b 2) a 3+ b 3=(a+b)(a 2-ab+b 2) 4.一元二次方程 (1)标准形式:a 2+bx+c=0 (2)解的判定:2240,40,0,b ac b ac ??=-?? ?=-=????? 有两个不同的实数根有两个相同的实数根无实数根 (3)一元二次根和系数的关系:(在简化二次方程中) 标准形式:x 2 +px+q=0 设X1、X2为x2+p(x)+q=0的两个根,则; 1212p q x x x x +=-?? ?=? (4)十字相乘法: (二)指数和对数 1.零指数与负指数:0(1)0,1;1(2)n n a a x x -?≠=? ?=?? 则 2.根式与分数指数: (1 ) 1 n a = (2 ) m n a = 3.指数的运算(a>0,b>0,(x,y) ∈R ); (1)x y x y a a a +?= (2)()m n m n a a ?= (3)x y x y a a a -÷= (4)()n n n a b a b ?=? 4.对数:设,x a N X N =则称为以a 为底的对数, 记作:log a n =X, lnX ,lgX; 5.对数的性质

(1)log a M ·N=log a M+log a N (2) log log log a a M M N N =- (3) log log x a a N x N =? (4)换底公式: log log log a b a N N b = (5) log ln ,aN x a N e x =?= (三)不等式 1.不等式组的解法: (1)分别解出两个不等式,例2153241 X X X X -<-??->-? (2)求交集 2、绝对值不等式 (1); X a a X a ≤?-≤ ≤ (2);X a X a X a ≥?≥≤- 或 3、1元2次不等式的解法: (1)标准形式:2 00ax bx c ++≥≤(或) (2)解法:0 0122????? 解对应的一元次方程 判解: 0a a ?? ???? ①若与不等式同号,解取根外; ②若与不等式异号,解取根内; ③若无根(<),则a 与不等式同号; 例:(1)2560;x x -+≥ (2)2320;x x -+< (四)函数 1、正、反比例函数:y kx = , 1 y x = 2、1元2次函数:2 y ax bx c =++ (a ≠0) 顶点:2424b ac b a a -(-,); 对称轴:2b x a =- ; 最值:2 44ac b y a -=; 图像:(1)a >0,开口向上;(2)a <0,开口向下; 3、幂函数: n y x = (n=1,2,3);

(整理)高等数学基本公式概念和方法

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

考研高等数学145分高手整理完整经典笔记(考研必备免费下载)

最新下载(https://www.wendangku.net/doc/755197516.html,) 中国最大、最专业的学习资料下载站转载请保留本信息 数学重点、难点归纳辅导 第一部分 第一章集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。 第二章数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例

§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分 §1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

场论中三大积分公式的应用及联系

场论中三大积分公式的应用 在物理学中,曲线积分和曲面积分有着广泛的应用。物理学家为了既能形象地表达有关的物理量,又能方便地使用数学工具进行逻辑表达和数据计算,使用了一些特殊的术语和记号, 在此基础上产生了场论。 在大一的下半学期的高等数学课上。我们学习了微积分这一门基础课,而曲线积分及曲面积分就是学习重点之一。在曲线积分和曲面积分的学习中,对于重积分的求解运算,Green 公式、Gauss 公式和Stokes 公式作为章节核心,需要我们重点研究。而本文围绕着对三大公式的应用和联系进行探讨。 一、三大公式 Green 公式:设D 为平面上由光滑或分段光滑的简单闭曲线所围的单连通区域。如果函数(,)P x y ,(,)Q x y 在D 上具有连续偏导数,那么 (,)(,)(,)(,)L D Q x y P x y P x y dx Q x y dy dxdy x y +????+=-????? ???? , 其中L + 表示沿D 的边界的正方向。 Gauss 公式:设Ω是3R 中由光滑或分片光滑的封闭曲面?Ω所围成的二维单连通封闭区域,(,,)P x y z , (,,)Q x y z 与(,,)R x y z 在Ω上具有连续偏导数,则divFd F nds + Ω?ΩΩ=??????,即 P Q R dxdydz Pdydz Qdzdx Rdxdy x y z + Ω?Ω?????++=++ ??????????? , 其中+?Ω表示有向封闭曲面?Ω的外侧。 Stokes 公式:设S 为光滑曲面或分片光滑的双侧曲面,其边界为光滑或分段光滑闭曲线S ?,若(,,)P x y z ,(,,)Q x y z 与(,,)R x y z 在S 及其边界S ?上具有连续偏导数,则有 S S R Q P R Q P Pdx Qdy Rdz dydz dzdx dxdy y z z x x y ?????????????++=-+-+- ? ? ?????????? ?????? cos cos cos S R Q P R Q P dS y z z x x y αβγ??????????????=-+-+-?? ? ? ??????????????? ??, 其中S ?取S 的诱导定向。 二、三大公式的联系 1.表述形式 根据三大公式的表述形式,可以得到三大公式阐释的各类积分之间的关系,分别是:

《高等数学基础》作业

高等数学基础形成性考核册 专业:建筑 学号: 姓名:牛萌 河北广播电视大学开放教育学院 (请按照顺序打印,并左侧装订)

高等数学基础形考作业1: 第1章 函数 第2章 极限与连续 (一)单项选择题 ⒈下列各函数对中,( C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f = ,x x g =)( C. 3 ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,1 1 )(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是( B ). A. )1ln(2x y += B. x x y cos = C. 2 x x a a y -+= D. )1ln(x y += ⒋下列函数中为基本初等函数是( C ). A. 1+=x y B. x y -= C. 2 x y = D. ? ??≥<-=0,10 ,1x x y ⒌下列极限存计算不正确的是( D ). A. 12lim 2 2 =+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01 sin lim =∞→x x x ⒍当0→x 时,变量( C )是无穷小量. A. x x sin B. x 1 C. x x 1 sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。 A. )()(lim 00 x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义 C. )()(lim 00 x f x f x x =+→ D. )(lim )(lim 0 x f x f x x x x - +→→=

高数题型总结

高等数学 第一部分函数·极限·连续性 题型一:考查函数的各种特性问题 函数复合问题 题型二:考查极限概念及性质问题关于 题型三:求极限问题 1.未定式极限问题(型,型,型,型,型) 2.非未定式极限问题(递归数列极限,n项和式极限,n项 积的极限,含参变量的极限,) 3.关于无穷小阶的问题 4.连加或者连乘求极限问题 5.极限存在性问题 6.含参数的极限问题 7.中值定理求极限问题 8.含变限积分的函数极限问题 9.左右极限问题 题型四:判断函数在某点的连续与间断问题,间断点分类问题 题型五:利用闭区间上连续函数性质的证明问题 题型六:分析极限,求参数问题

第二部分导数与微分 题型一:考查导数·微分概念的问题 题型二:导数与微分的计算问题 题型三:求高阶导数的问题(简单初等函数的n阶导数,参数方程确定的函数的二阶导数,隐式方程F(x,y)=0确定的隐函数y=y(x)的二阶导数) 题型四:利用导数求平面曲线的切线方程·法线方程的问题 题型五:基本求导类型,显函数·隐函数·参数方程·分段函数·复合函数 题型六:导数的几何应用 题型七:分段函数可导性的判断:分段函数·含绝对值的函数·带极限的函数

第三部分中值定理及一元函数微分学的应用 题型一:利用罗尔中值定理证明中值问题 题型二: 利用拉格朗日中值定理证明中值问题 题型三:利用柯西中值定理证明中值问题 题型四: 利用泰勒公式证明中值问题 题型五:函数的单调性,单调区间及极值问题 题型六:函数曲线的凹凸区间,拐点及渐近线问题 题型六:方程实根(函数零点,两个曲线交点)问题 题型七:不等式的证明问题 题型八:证明()=0()的问题 题型九:特征结论中只有一个中值,不含其它字母 题型十:结论中含,含a,b(a,b与可分离;a,b与不可分离) 题型十一:结论中含两个或两个以上中指的问题 情形一:结论中只含(),(); 情形二:结论中含两个中值,但是关于两个中值的项复杂程度不同 情形三:结论中含中值(不仅仅含(),()),两者对应的项完全对等

高等数学基础知识点大全(94页完美打印版)

高高等数学基本知识点

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。 ②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作C U A。 即C U A={x|x∈U,且x A}。 集合中元素的个数 ⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。 ⑶、一般地,对任意两个集合A、B,有 card(A)+card(B)=card(A∪B)+card(A∩B) 我的问题: 1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

高等数学知识地图

集合 函数映射 函数保序性 数列极限唯一性 联系→性质有界性 微积分学函数极限保号性e^x 理论基础无穷小→无穷小的比较→等价无穷小一元函数sin(x)、cos(x) ——极限无穷及常用代换微分学微分ln(1+x)、(1+x)^n 函数、无穷大及应用 极限运算法则柯西中值定理麦克劳林中值定理→佩亚诺型余项 和连续存在法则→重要极限↑↑ 定义四则运算微分中值定理→费马引理→罗尔定理→拉格朗日中值定理→泰勒中值定理→拉格朗日型余项复合函数洛必达法则——零比零型、无穷比无穷型 连续性反函数单调性→极值、最值 连续初等函数凸凹性→拐点端点 间断点第一类——可去、跳跃切线法↓ 第二类——无穷、振荡导数应用零点二分法鞍点最值点←间断点、不可导点 最值定理水平渐近线函数↑↑ 性质零点定理渐线性铅直渐近线作图驻点→极值点 介值定理斜渐近线y’=0 原理基本概念弧微分零点基本定理曲率曲率圆拐点y=0 可分离变量的微分方程曲率半径y’’=0 一阶微分方程齐次微分方程→可化为齐次微分方程的方程定义←原函数 线性微分方程不定积分性质基本积分公式有理函数的积分 常微分伯努利方程换元积分法 方程全微分方程计算分部积分法 可降阶的y^(n)=f(x) 一元函数特殊积分计算 高阶微分方程y’’=f(x,y’)、y’’=f(y,y’) 积分学定义与性质→积分中值定理函数高阶微分方程常系数线性齐次方程及应用微积分基本公式( 微分方程非齐次方程Pn(x)e^ax 差分欧拉方程(Pl(x)cos(bx) 定积分计算弧长 方程其他解法幂级数解法+Pn(x)sin(bx))e^ax 几何应用平面面积、回转体侧面积微分方程组的解法应用物理应用体积

电大高等数学基础考试答案完整版

高等数学基础归类复习 一、单项选择题 1-1下列各函数对中,( C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)( C.3 ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,1 1 )(2--=x x x g 1-⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对 称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = 设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于(D )对称. A. x y = B. x 轴 C. y 轴 D. 坐标原点 .函数2 e e x x y -=-的图形关于( A )对称. (A) 坐标原点 (B) x 轴 (C) y 轴 (D) x y = 1-⒊下列函数中为奇函数是( B ). A. )1ln(2 x y += B. x x y cos = C. 2 x x a a y -+= D. )1ln(x y += 下列函数中为奇函数是(A ). A. x x y -=3 B. x x e e y -+= C. )1ln(+=x y D. x x y sin = 下列函数中为偶函数的是( D ). A x x y sin )1(+= B x x y 2= C x x y cos = D )1ln(2x y += 2-1 下列极限存计算不正确的是( D ). A. 12lim 2 2 =+∞→x x x B. 0)1ln(lim 0 =+→x x C. 0sin lim =∞→x x x D. 01 sin lim =∞→x x x 2-2当0→x 时,变量( C )是无穷小量. A. x x sin B. x 1 C. x x 1sin D. 2)ln(+x 当0→x 时,变量( C )是无穷小量.A x 1 B x x sin C 1e -x D 2x x .当0→x 时,变量(D )是无穷小量.A x 1 B x x sin C x 2 D )1ln(+x 下列变量中,是无穷小量的为( B )

高等数学常用概念及公式

高等数学常用概念及公式 ● 极限的概念 当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作: lim ∞ →x f(x)=A 或 lim 0 x x →f(x)=A ● 导数的概念 设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比 x y ??当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim →?x x y ??=lim 0x x →0 0)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dx x df ) (|x=x0 ● 函数的微分概念 设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量 Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx 其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。记作dy ,即: dy=A Δx=f ’(x)dx

● 不定积分的概念 原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx 则称函数F(x)是已知函数f(x)在该区间上的一个原函数。 不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作 ?dx x f )( 求已知函数的原函数的方法,叫不定积分法,简称积分法。 其中“?”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。 ● 定积分的概念 设函数f(x)在闭区间[a ,b]上连续,用分点 a=x 0

数学基本概念

基本概念 第一章数和数的运算一概念(一)整数 1整数的意义:自然数和0都是整数。2自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除 整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a 能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

2021年考研数学之高等数学考前必背公式梳理

2021年考研数学之高等数学考前必背公式梳理因式分解 经典不等式年 数列 等差 等比 其他 三角 倍角 和差 降阶 平方 和差化积 积化和差 几何 幂指函数化简 极限 泰勒展开式(幂级数)(8+4) 重要极限 一元微分 导数定义 微分运算

求导(7+10) 高阶求导 莱布尼茨公式 泰勒公式 麦克劳林公式 中值定理 介值定理 零点定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 泰勒公式(中值定理)积分中值定理(2) 辅助函数(6) 微分不等式(6) 曲率、曲率半径 一元积分 不定积分 基本积分表(10+10)分部积分 定积分

定积分定义 定积分公式 平面图形面积 平面曲线弧长 旋转体体积 旋转体侧面积 形心坐标 截面面积已知的立体体积物理应用 反常积分判敛 变限积分求导 多元微分 基本概念 全增量 全微分 偏增量 偏导 隐函数求导 一个方程 方程组 二阶泰勒公式 二重积分

定义 应用 柱体体积 总质量 质心坐标 转动惯量 微分方程 一阶 伯努利方程 二阶可降阶 二阶线性 齐次方程的特征方程齐次方程的通解 特解 欧拉方程 n阶线性齐次 特征方程 通解 无穷级数 判敛法 重要结论 先积后导

先导后积 傅里叶级数 多元积分 基础 曲线的切线与法平面参数方程 方程组 曲面的切平面与法线显式/隐式方程 参数方程 柱面问题 曲线在面上的投影 旋转曲面 空间向量 数量积 向量积 混合积 方向角 方向向量(单位向量)平面方程 直线方程 位置关系

点到平面的距离平面与平面 直线与直线 平面与直线 场论 方向导数与梯度散度 旋度 三重积分 常见曲面 球面坐标系 应用 重心 转动惯量 一型线 普通对称性 轮换对称性 直角坐标系 参数方程 极坐标系 应用 曲杆长度

相关文档
相关文档 最新文档