文档库 最新最全的文档下载
当前位置:文档库 › 加权移位算子的拓扑共轭分类

加权移位算子的拓扑共轭分类

加权移位算子的拓扑共轭分类
加权移位算子的拓扑共轭分类

第46卷 第1期吉林大学学报(理学版)

V o.l 46 N o .1

2008年1月J OU RNAL OF JIL I N UN IVERS I TY (SCIENCE ED I T ION )Jan 2008

研究快报

加权移位算子的拓扑共轭分类

侯秉喆,曹 阳

(吉林大学数学研究所,长春130012)

摘要:考虑权为常数的单边加权移位算子,利用相似性的一个结果,给出了这类算子的完全拓扑共轭分类.

关键词:拓扑共轭;单边加权移位算子;同胚

中图分类号:O189.1 文献标识码:A 文章编号:1671 5489(2008)01 0043 02

Topologically Conj ugate Classification ofW eighte d

Backward Shift Operat ors

HOU B i n g zhe ,CAO Yang

(Ins titute of M athe m atics ,J ilin Un i ver sit y,Changchun 130012,China)

Abstrac:t Considering the w e i g hted backw ar d shift operators w it h constan t w eigh t and using a re lative result on si m ilarity ,w e gave a co m p lete classificati o n under the sense o f topolog ical con j u gacy for this class o f operators .

Key wor ds :topo l o g i c al conjugacy ;w eighted backw ard sh ift operators ;ho m eo m orph is m s

收稿日期:2007 11 12.

作者简介:侯秉喆(1981~),男,汉族,博士研究生,从事拓扑动力系统的研究,E m ai:l ab ell engend @163.co m.基金项目:国家自然科学基金(批准号:10771084).

近年来关于单边加权移位算子动力性态的研究已引起研究者的关注[1~6]

,但人们主要研究了这类

算子的传递性、混合性和混沌性

[2~5]

,而对其拓扑共轭分类的研究尚未见报道.本文将对权为常数的

一类加权移位算子给出完全的拓扑共轭分类.关于算子拓扑共轭与相似的概念可参见文献[7,8],比较两个概念不难看出,相似必是拓扑共轭,反之,则不然.

定义1 设 ={ n }

n =1是一列有界非零复数, B p :l p

l p

定义为: n B p (x )= n x n+1(n !1),这里l p

是由p 幂绝对可和序列构成的B anach 空间,x =(x 1,x 2,?), n 是到第n 个坐标的投射, B p 称为以 为权序列的单边加权移位算子.

命题1[7]

设0

引理1 设0

l q

连续,则对任意x #l p

,存在x 的邻域U,使得限制映射f U 有界.

证明:假设存在点x #l p

,使得对x 的任意邻域U,f U 无界,则对每个n #N ,存在点x (n )

#l p

,使得

x (n )

-x p <1/n,但f(x (n)

)-f (x )

q

>n.由此可见,{x

(n )

}是收敛序列,而{f (x

(n )

)}不是收敛序列,

这与f 的连续性矛盾.

对任意0

0,在l p

上定义映射h (s)

p :

n h

(s)

p

(x )=

x n

x n

?p

%

k=n

x k

p

s

-

%

k=n +1

x k

p

s

,

对每个x=(x1,x2,?)#l p,显然h(s)p(x)p=x s p,从而h(s)p是l p到自身的连续映射.进一步,可直接通过演算得到:

引理2 对任意00,h(s)p是l p的自同胚.h(s)p的逆为h(1/s)

p,而且对任意正数 及每个x#l p,h(s)p( x)= s?h(s)p(x).

对任意0

x=(x1,x2,?)#l p,g pq(x)由等式n g pq(x)=(x n/x

n )?x

n

p/q确定.关于此同胚易见:

引理3 g pq的逆为g qp,且对任意正数 ,g pq( x)= p/q?g p q(x)对每个x#l p成立.为方便,令函数?:R R定义为

?(t)=1,t>1, 0,t=1, -1,t<1.

定理1 令0

证明:由前面构造的同胚h(s)p及其性质可见,当?( )=?(!)时,h(log| |!)

p是从 B p到!B p的拓扑共轭,从而 B p与!B p拓扑共轭.

由文献[2]可知,!B p是混沌的当且仅当!>1,而混沌是拓扑共轭不变量,故当 &1, !>1时, B p与!B p不是拓扑共轭.

当?( )=1且?(!)<1时, B p与!B p不是拓扑共轭.若有同胚f,使得它是从B p到 B p的拓扑共轭,这里0< <1,则根据引理1,存在#>0和M>0,使得对任意y p&#,有f(y)p

y(n)=(0,0,?,0,#

第n个

,0,?).

因为对每个n#N,有y(n)p=#,所以当n 时,有

( B p)n-1(f(y(n))p& n-1M0,

从而

f(y(1))=li m

n f(B n-1p(y(n)))=li m

n

( B p)n-1(f(y(n)))=0.

类似地,可得f(y(1)/2)=0,矛盾.

定理2 令0

证明:利用定理1及前述同胚g p q即可证得结论.

参考文献

[1] Shap iro JH.N otes on D ynam ics o f L i nea r O pera t o rs[EB/O L].2001 03 27.h ttp://www.m ath.m https://www.wendangku.net/doc/727929362.html,/~shapiro.

[2] G rosse Erd m ann K G.H ype rcyc lic and Chaotic W e i ghted Sh ifts[J].Stud iaM at h,2000,139(1):47 68.

[3] Costakis G,Sambar i no M.T opo l og ica lly M i x i ng H ypercyc lic Operators[J].P ro c Am er M at h Soc,2003,132(2):

385 389.

[4] R o l ew icz S.O n O rb its o f E le m ents[J].S t udia M ath,1969,32:17 22.

[5] SalasH N.H ypercy cli c W e i ghted Sh ifts[J].T rans Am erM a t h So c,1995,347(3):993 1004.

[6] W ANG Chun peng,SUN Shan l.i H ypercyc lic and Supercyc lic T oeplitz O perato r[J].Journal of Jili n U n i versity:

Science Ed ition,2005,43(2):137 141.(王春鹏,孙善利.H ypercyc li c与Supercyc li c的T oepli tz算子[J].吉林大学学报:理学版,2005,43(2):137 141.)

[7] Sh i e l ds A L.W e i ghted ShiftO pera tors and Ana l y ti c Functi on T heory[M].M a t he m atical Surveys,V o.l13.P rov i dence,

R I:Am erican M athe m atical Soc iety,1974.

[8] D evaney R L.A n In troduction to Chao ti c D ynam ical Sy stem s[M].2nd ed.[S.1.]:A dd ison W ese ley,1987.

(责任编辑:赵立芹)

44 吉林大学学报(理学版) 第46卷

拓扑结构介绍及其种类

拓扑结构介绍及其种类 原创:一博科技,转载请注明出处。 拓扑结构一词起源于计算机网络,是指网络中各个站点相互连接的形式,同时也是用来反映网络中各实体的结构关系,是建设计算机网络的第一步,也是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。 而今天我们要说的是PCB设计中的拓扑,和网络中差不多,指的是芯片之间的连接关系。我们也常常形容PCB布线就像是在玩连连看游戏,将相互有通讯关系的芯片连起来就好了,当然这只是一个最简单的比喻,真要是连连看那很多工程师就要高兴得跳起来了。连连看只是最low的一层,会连起来还只能叫PCB布线师,真正的PCB设计工程师既要连得好看,还要能保证芯片之间的正常通信,从而保证整个系统的正常运行,所以我们真正需要的是PCB设计工程师而不是布线师,这也是我们正在做的事情。 理解了拓扑结构的大致意思,那我们就很好来展开这个话题了。芯片之间的连接关系无非就是两种,一对一以及一对多,根据这个特性,我们可以将拓扑结构大致分成如下一些常见的类型。 点对点拓扑结构(P2P) 也即一对一的拓扑,大家说的P2P指的就是点对点,顾名思义,点对点在PCB上指的就是该总线(拓扑)只在两个芯片之间连接,这个很好理解哈。我们常规的点对点结构太多了,如高速时钟信号、带一个DDR3颗粒的时钟、地址、数据信号等,如下图所示的结构都可以叫做点对点拓扑。 点对点拓扑结构示例 点对多点拓扑结构 点对多点不是某一特定的拓扑而是一种统称,即一条总线(拓扑)从一个芯片再连接到多个芯片的结构。记得当初学几何的时候两点连成一条线(P2P),三点就可以连成一个面,而多点就可以连成多个面了,所以这种多点结构就比较复杂,又可以分成如下一些常见的类型。

网络的拓扑结构分类

网络的拓扑结构分类 网络的拓扑结构是指网络中通信线路和站点(计算机或设备)的几何排列形式。 1.星型网络:各站点通过点到点的链路与中心站相连。特点是很容易在网络中增加新的站点,数据的安全性和优先级容易控制,易实现网络监控,但中心节点的故障会引起整个网络瘫痪。 每个结点都由一条单独的通信线路与中心结点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。 2.环形网络:各站点通过通信介质连成一个封闭

的环形。环形网容易安装和监控,但容量有限,网络建成后,难以增加新的站点。 各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。 缺点: 环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token Ring) 3.总线型网络:网络中所有的站点共享一条数据通道。总线型网络安装简单方便,需要铺设的电缆最短,成本低,某个站点的故障一般不会影响整个网络。但介质的故障会导致网络瘫痪,总线网安全性低,监控比较困难,增加新站点也不如星型网容易。

是将网络中的所有设备通过相应的硬件接口直接连 接到公共总线上,结点之间按广播方式通信,一个结 点发出的信息,总线上的其它结点均可“收听”到。 优点:结构简单、布线容易、可靠性较高,易于扩充, 是局域网常采用的拓扑结构。 缺点:所有的数据都需经过总线传送,总线成为整个 网络的瓶颈;出现故障诊断较为困难。最著名的总线 拓扑结构是以太网(Ethernet)。 树型网、簇星型网、网状网等其他类型拓扑结构 的网络都是以上述三种拓扑结构为基础的。 ④树型拓扑结构 是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要

贝叶斯分类作业题

作业:在下列条件下,求待定样本x=(2,0)T的类别,画出分界线,编程上机。 1、二类协方差不等 Matlab程序如下: >> x1=[mean([1,1,2]),mean([1,0,-1])]',x2=[mean([-1,-1,-2]),mean([1,0,-1])]' x1 = 1.3333 x2 = -1.3333 >> m=cov([1,1;1,0;2,-1]),n=cov([-1,1;-1,0;-2,-1]) m = 0.3333 -0.5000 -0.5000 1.0000 n = 0.3333 0.5000 0.5000 1.0000 >> m1=inv(m),n1=inv(n) m1 = 12.0000 6.0000 6.0000 4.0000

n1 = 12.0000 -6.0000 -6.0000 4.0000 >> p=log((det(m))/(det(n))) p = >> q=log(1) q = >> x=[2,0]' x = 2 >> g=0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q g = -64 (说明:g<0,则判定x=[2,0]T属于ω1类) (化简矩阵多项式0.5*(x-x1)'*m1*(x-x1)-0.5*(x-x2)'*n1*(x-x2)+0.5*p-q,其中x1,x2已知,x 设为x=[ x1,x2]T,化简到(12x1-16+6x2)(x1-4/3)+(6x1-8+4x2) -(12x1+16-6x2)(x1+4/3)-(-6x1-8+4x2)x2, 下面用matlab化简,程序如下) >> syms x2; >> syms x1; >> w=(12*x1-16+6*x2)*(x1-4/3)+(6*x1-8+4*x2)*x2-(12*x1+16-6*x2)*(x1+4/3)-(-6*x1-8+4*x2)*x 2,simplify(w) w =

量子力学第三章算符

第三章算符与力学量算符 3、1 算符概述 设某种运算把函数u变为函数v,用算符表示为: (3、1-1) 称为算符。u与v中得变量可能相同,也可能不同。例如,,,,,,则,x,,,都就是算符。 1.算符得一般运算 (1)算符得相等:对于任意函数u,若,则。 (2)算符得相加:对于任意函数u,若,则。算符得相加满足交换律。 (3)算符得相乘:对于任意函数u,若,则。算符得相乘一般不满足交换律。如果,则称与对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u,若u=u,则称为单位算符。与1就是等价得。 (2)线性算符 对于任意函数u与v,若,则称为反线性算符。 (3)逆算符 对于任意函数u,若则称与互为逆算符。即,。 并非所有得算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:,其中为与函数构成得线性算符,a为常数。其解u可表示为对应齐次方程得通解u。与非齐次方程得特解之与,即。因,所以不存在使。一般说来,在特解中应允许含有对应齐次方程得通解成分,但如果当a=0时,=0,则中将不含对应齐次方程得通解成分,这时存在使,从而由得:。从上述分析可知,就是否存在逆算符还与算符所作用得函数有关。 (4)转置算符 令,则称与得转置算符,就是一个向左作用得算符。若算符表示一般函数(或常数),由于函数得左乘等于右乘,所以函数得转置就等于它本身。 定义波函数与得标积为: (3、1-2) 与得标积以及与得标积为:

若上两式中得与都就是任意波函数,则称上两式中得与为任意标积中得算符。下面考虑在任意标积中得性质。 波函数与在无限远点也应满足连续性条件: [可都等于零],,所以得: 可见在任意标积中,。 (5)转置共轭算符(也称为厄密共轭算符)与厄密算符 转置共轭算符通常也就是向左作用得算符,同时算符本身要取共轭。以标记得转置共轭算符,则若在任意标积中,,则称为厄密算符。即厄密算符得定义为: 或写为(3、1-3) 可以证明,位置算符与动量算符都就是厄密算符。因x就是实数,而,所以。在任意标积中,因,所以。也可以直接从定义式(3、1-3)出发,来证明就是厄密算符。 ,所以就是厄密算符。 (6)幺正算符 若在任意标积中,,则称为幺正算符。设,若为厄密算符,则必为幺正算符。 (7)算符得函数 设函数F(A)得各阶导数都存在,则定义算符得函数F()为: (3、1-4) 其中表示n个得乘幂,即。例如 3、2 算符得对易关系 定义算符得泊松(Poisson)括号为: (3、2-1) 一般说来,例如,这样得关系或称为对易关系式。就是对易关系式中得特例,这时,称与就是对易得。 1.量子力学中基本对易关系 在位置表象中,,即,此式对任意得都成立,所以得: 在动量表象中 ,即,此式对任意得都成立,所以得: 可见在位置表象中与动量表象中都得:

贝叶斯分类实验报告doc

贝叶斯分类实验报告 篇一:贝叶斯分类实验报告 实验报告 实验课程名称数据挖掘 实验项目名称贝叶斯分类 年级 XX级 专业信息与计算科学 学生姓名 学号 1207010220 理学院 实验时间: XX 年 12 月 2 日 学生实验室守则 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用

或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。 五、实验中要节约水、电、气及其它消耗材料。 六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。 七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。 八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。 九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。 十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。 十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。 学生所在学院:理学院专业:信息与计算科学班级:信计121

第三章 力学量和算符

第三章 力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现 。 § 3.1 力学量算符的引入 § 3.2 算符的运算规则 § 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数 § 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值 对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 *(,) (,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()()* (,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ

拓扑结构介绍及其种类

拓扑和端接知多少 拓扑结构介绍及其种类 拓扑结构一词起源于计算机网络,是指网络中各个站点相互连接的形式,同时也是 用来反映网络中各实体的结构关系,是建设计算机网络的第一步,也是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。 而今天我们要说的是PCB设计中的拓扑,和网络中差不多,指的是芯片之间的连接关系。我们也常常形容PCB布线就像是在玩连连看游戏,将相互有通讯关系的芯片连起来就好了,当然这只是一个最简单的比喻,真要是连连看那很多工程师就要高兴得跳起来了。连连看只是最low的一层,会连起来还只能叫PCB布线师,真正的PCB设计工程师既要连得好看,还要能保证芯片之间的正常通信,从而保证整个系统的正常运行,所以我们真正需要的是PCB设计工程师而不是布线师,这也是我们高速先生正在做的事情。 理解了拓扑结构的大致意思,那我们就很好来展开这个话题了。芯片之间的连接关系无非就是两种,一对一以及一对多,根据这个特性,我们可以将拓扑结构大致分成如下一些常见的类型(不对的地方欢迎大家指正哈!)。 点对点拓扑结构(P2P) 也即一对一的拓扑,大家说的P2P指的就是点对点,顾名思义,点对点在PCB上指的就是该总线(拓扑)只在两个芯片之间连接,这个很好理解哈。我们常规的点对点结构太多了,如高速时钟信号、带一个DDR3颗粒的时钟、地址、数据信号等,如下图所 示的结构都可以叫做点对点拓扑。 点对点拓扑结构示例 点对多点拓扑结构 点对多点不是某一特定的拓扑而是一种统称,即一条总线(拓扑)从一个芯片再连接到多个芯片的结构。记得当初学几何的时候两点连成一条线(P2P),三点就可以连

几种网络拓扑结构及对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1. 总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点

31 线性算子与共轭空间

第三章 线性算子 Linear Operators 本章将研究从一个线性赋范空间X 到另一个线性赋范空间Y 中的映射,亦称算子.如果Y 是数域,则称这种算子为泛函.事实上,我们对算子和泛函的概念并不陌生,例如微分算子d D dx =就是从连续可微函数空间到连续函数空间上的算子;积分算子(黎曼积分)()b a f x dx ?就是连续函数空间上的泛函.本章主要研究保持两个线性赋范空间代数运算的简单算子:线性算子和线性泛函. 3.1 线性算子与共轭空间 3.1.1 线性算子的定义及举例 定义3.1.1 算子 设X 和Y 是同一数域K 上的线性赋范空间,若T 是X 的某个子集D 到Y 中的一个映射,则称T 为子集D 到Y 中的算子.称D 为算子T 的定义域,或记为()D T ;并称Y 的子集{(),}TD y y T x x D ==∈为算子T 的值域.对于x D ∈,通常记x 的像()T x 为Tx . 注1:当X Y ==R 时,算子T 为函数;若Y =R ,算子T 为实泛函. 定义3.1.2 连续算子 设X 和Y 是同一数域K 上的线性赋范空间,0x D X ∈?,T 为D 到Y 中的算子,如果 0ε?>,0δ?>,当0x x δ-<,有0T x T x ε-<,则称算子T 在点0x 处连续.若算子T 在D 中 每一点都连续,则称T 为D 上的连续算子. 注2:()f x 在0x 点连续?{}n x D ??,若0n x x →,则有0()()n f x f x →. 定义3.1.3 线性算子 设X 和Y 是同一数域K 上的线性赋范空间,D X ?,T 为D 到Y 中的算子, 如果,x y D ?∈,,αβ?∈K ,有()()()T x y T x T y αβαβ+=+,则称T 为D 上的线性算子. 定义3.1.4 线性有界算子 设X 和Y 是同一数域K 上的线性赋范空间,D X ?,:T D Y →为线性算子,如果存在0M >,x D ?∈,有Tx M x ≤,则称T 为D 上的线性有界算子,或称T 有界. 注3:上述的有界与数学分析中的函数有界不同:例如函数()f x x =是实数域R 上的无界函数,即不存在0M >,使得()f x M ≤,但是 ()f x x M x =≤ (1M =) 可见,无界函数可能是线性有界泛函.

以太网、网络拓扑结构分类、双绞线的传输距离和分类

以太网、网络拓扑结构分类、双绞线的传输距离和分类 以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3。 网络拓扑结构的分类 1总线型拓扑:是一种基于多点连接的拓扑结构,是将网络中的所有的设备通过相应的硬件接口直接连接在共同的传输介质上。结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可。在总线结构中,所有网上微机都通过相应的硬件接口直接连在总线上,任何一个结点的信息都可以沿着总线向两个方向传输扩散,并且能被总线中任何一个结点所接收。由于其信息向四周传播,类似于广播电台,故总线网络也被称为广播式网络。总线有一定的负载能力,因此,总线长度有一定限制,一条总线也只能连接一定数量的结点。最著名的总线拓扑结构是以太网(Ethernet)。 总线布局的特点:结构简单灵活,非常便于扩充;可靠性高,网络响应速度快;设备量少、价格低、安装使用方便;共享资源能力强,非常便于广播式工作,即一个结点发送所有结点都可接收。 在总线两端连接的器件称为端结器(末端阻抗匹配器、或终止器)。主要与总线进行阻抗匹配,最大限度吸收传送端部的能量,避免信号反射回总线产生不必要的干扰。 总线形网络结构是目前使用最广泛的结构,也是最传统的一种主流网络结构,适合于信息管理系统、办公自动化系统领域的应用。 2环型拓扑:环形网中各结点通过环路接口连在一条首尾相连的闭合环形通信线路中,就是把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,环路上任何结点均可以请求发送信息。请求一旦被批准,便可以向环路发送信息。

互联网拓扑结构及其绘制

网络拓扑结构及其绘制 教学内容:网络拓扑结构及其绘制 一、教学目标 1. 能使用VISIO软件进行网络拓扑结构的绘制 2. 能判断小型局域网的网络拓扑结构 3. 能根据网络拓扑结构特点和组网条件进行网络结构的选型 二、学习内容分析 1.本节的作用和地位 计算机网络拓扑结构是计算机网络学习的基础,也是学习的重点和难点内容之一。 2.本节主要内容 网络拓扑是指网络中各个端点相互连接的方法和形式。网络拓扑结构反映了组网的一种几何形式。局域网的拓扑结构主要有总线型、星型、环型以及混合型拓扑结构。本课首先通过设定特殊的任务情境引发学生的学习兴趣和对于任务的思考。通过设计实际的拓扑结构图,促使学生应用知识。通过“实地考察”进一步激发其感知,加深对计算机网络拓扑结构的感性认知。 3.重点难点分析 教学重点:计算机网络几种拓扑结构概念及其各自优缺点、应用比较。 教学难点:根据实际情况选择计算机网络拓扑结构。 三、学情分析 在开始本门课程学习之前,学生已经对网络技术有所应用,并初步了解关于计算机网络的基本知识,但是缺乏系统的学习过程,对于应用中碰到的很多问题存在疑惑。同时在整个社会大环境下,网络应用带来的方便性以及网络技术的神秘性对学生有着非常大的吸引力,学生对网络技术具有天生的兴趣,充分培育和利用好学生的这些兴趣,将使教学更轻松。 学生初次接触拓扑概念,并且这一概念本身比较抽象,不容易理解,因此拓扑结构这一内容的学习对于学生来说存在一定的难度。因此,首先要解决的问题是如何使学生更好理解这一概念。针对这一问题,可以采用日常生活中最常见的

交通地图进行类比教学。拓扑概念建立起来之后,网络的拓扑结构就比较好理解。本课设计了一个课堂任务,要求学生画出一个校园网络拓扑结构图,对于怎样去表达网络的拓扑结构,要给学生以适当的引导,这里可以适当的演示一些简单的网络拓扑效果图,以便学生轻松上手。 四、教学方法 本节课通过校园网络的实地考察和任务驱动(网络拓扑图的制作)教学方式,促进实践与理论的整合,培养学生探究、解决问题的兴趣和能力。 通过小分组的教学组织,降低个体学习的难度,对于技术水平较高的同学,教师要鼓励其在分组内或分组之间充分发挥起技术应用特长,带动技术水平相对较低的同学,将学生的个体差异转变为教学资源,让学生在参与合作中互相学习并发挥自己的优势和特长,各有所得。 五、教学过程

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

模式识别大作业

作业1 用身高和/或体重数据进行性别分类(一) 基本要求: 用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。 具体做法: 1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响。 图1-先验概率0.5:0.5分布曲线图2-先验概率0.75:0.25分布曲线 图3--先验概率0.9:0.1分布曲线图4不同先验概率的曲线 有图可以看出先验概率对决策规则和错误率有很大的影响。 程序:bayesflq1.m和bayeszcx.m

关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。比较相关假设和不相关假设下结果的差异。在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响。 训练样本female来测试 图1先验概率0.5 vs. 0.5 图2先验概率0.75 vs. 0.25 图3先验概率0.9 vs. 0.1 图4不同先验概率 对测试样本1进行试验得图

作业1-贝叶斯分类器

作业1、BAYES分类器 算法1. %绘图,从多个视角观察上述3维2类训练样本 clear all; close all; N1=440; x1(1,:)=-1.7+0.9*randn(1,N1); % 1 类440 个训练样本,3 维正态分布 x1(2,:)= 1.6+0.7*randn(1,N1); x1(3,:)=-1.5+0.8*randn(1,N1); N2=400; x2(1,:)= 1.3+1.2*randn(1,N2); % 2 类400 个训练样本,3 维正态分布 x2(2,:)=-1.5+1.3*randn(1,N2); x2(3,:)= 1.4+1.1*randn(1,N2); plot3(x1(1,:),x1(2,:),x1(3,:),'*',x2(1,:),x2(2,:),x2(3,:),'o'); grid on; axis equal; axis([-5 5 -5 5 -5 5]); xlabel('x ');ylabel('y ');zlabel('z '); %假定2类的类条件概率分布皆为正态分布,分别估计2类的先验概率、均值向量、协方差矩阵 p1=N1/(N1+N2); % 1 类的先验概率 p2=N2/(N1+N2); % 2 类的先验概率 u1=sum(x1')/N1; % 1 类均值估计 u1=u1' for i=1:N1 xu1(:,i)=x1(:,i)-u1;end; e1=(xu1*xu1')/(N1-1) % 1 类协方差矩阵估计 u2=sum(x2')/N2; % 2 类均值估计 u2=u2' for i=1:N2 xu2(:,i)=x2(:,i)-u2;end; e2=(xu2*xu2')/(N2-1) % 2 类协方差矩阵估计 %求解2类的BAYES分类器的决策(曲)面,并绘图、从多个视角观察决策面 %bayse 概率概率分布函数 w10=-(1/2)*u1'*(inv(e1))*u1-0.5*log(det(e1))+log(0.52); w20=-(1/2)*u2'*(inv(e2))*u2-0.5*log(det(e2))+log(0.48); W1=-(0.5)*inv(e1); W2=-(0.5)*inv(e2); w1=inv(e1)*u1; w2=inv(e2)*u2; temp=-5:0.1:5; [x1,y1,z1]=meshgrid(temp,temp,temp); val=zeros(size(x1)); for k=1:(size(x1,1)^3) X=[x1(k),y1(k),z1(k)]';

基于贝叶斯的文本分类

南京理工大学经济管理学院 课程作业 课程名称:本文信息处理 作业题目:基于朴素贝叶斯实现文本分类姓名:赵华 学号: 114107000778 成绩:

基于朴素贝叶斯实现文本分类 摘要贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 关键词社区发现标签传播算法社会网络分析社区结构 1引言 数据挖掘在上个世纪末在数据的智能分析技术上得到了广泛的应用。分类作为数据挖掘中一项非常重要的任务,目前在商业上应用很多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该分类器可以将数据集合中的数据项映射到给定类别中的某一个,从而可以用于后续数据的预测和状态决策。目前,分类方法的研究成果较多,判别方法的好坏可以从三个方面进行:1)预测准确度,对非样本数据的判别准确度;2)计算复杂度,方法实现时对时间和空间的复杂度;3)模式的简洁度,在同样效果情况下,希望决策树小或规则少。 分类是数据分析和机器学习领域的基本问题。没有一个分类方法在对所有数据集上进行分类学习均是最优的。从数据中学习高精度的分类器近年来一直是研究的热点。各种不同的方法都可以用来学习分类器。例如,人工神经元网络[1]、决策树[2]、非参数学习算法[3]等等。与其他精心设计的分类器相比,朴素贝叶斯分类器[4]是学习效率和分类效果较好的分类器之一。 朴素贝叶斯方法,是目前公认的一种简单有效的分类方法,它是一种基于概率的分类方法,被广泛地应用于模式识别、自然语言处理、机器人导航、规划、机器学习以及利用贝叶斯网络技术构建和分析软件系统。 2贝叶斯分类 2.1分类问题综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。 从数学角度来说,分类问题可做如下定义: 已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。(不考虑模 糊数学里的模糊集情况) 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

贝叶斯分类算法

最近在面试中,除了基础& 算法& 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法,而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关聚类& 分类算法的系列文章以作为自己备试之用(尽管貌似已无多大必要,但还是觉得应该写下以备将来常常回顾思考)。行文杂乱,但侥幸若能对读者也起到一定帮助,则幸甚至哉。 本分类& 聚类算法系列借鉴和参考了两本书,一本是Tom M.Mitchhell所著的机器学习,一本是数据挖掘导论,这两本书皆分别是机器学习& 数据挖掘领域的开山or杠鼎之作,读者有继续深入下去的兴趣的话,不妨在阅读本文之后,课后细细研读这两本书。除此之外,还参考了网上不少牛人的作品(文末已注明参考文献或链接),在此,皆一一表示感谢。 本分类& 聚类算法系列暂称之为Top 10 Algorithms in Data Mining,其中,各篇分别有以下具体内容: 1. 开篇:决策树学习Decision Tree,与贝叶斯分类算法(含隐马可夫模型HMM); 2. 第二篇:支持向量机SVM(support vector machine),与神经网络ANN; 3. 第三篇:待定... 说白了,一年多以前,我在本blog内写过一篇文章,叫做:数据挖掘领域十大经典算法初探(题外话:最初有个出版社的朋友便是因此文找到的我,尽管现在看来,我离出书日期仍是遥遥无期)。现在,我抽取其中几个最值得一写的几个算法每一个都写一遍,以期对其有个大致通透的了解。 OK,全系列任何一篇文章若有任何错误,漏洞,或不妥之处,还请读者们一定要随时不吝赐教& 指正,谢谢各位。 基础储备:分类与聚类 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,都包含哪些具体算法或问题。 常见的分类与聚类算法 简单来说,自然语言处理中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,k-最近邻法(k-nearest neighbor,

基本的网络拓扑结构

基本的网络拓扑结构 SDH网是由SDH网元设备通过光缆互连而成的,网络节点(网元)和 传输线路的几何排列就构成了网络的拓扑结构。网络的有效性(信道的 利用率)、可靠性和经济性在很大程度上与其拓扑结构有关。 网络拓扑的基本结构有链形、星形、树形、环形和网孔形,如图5-1所示。 ●链形网 此种网络拓扑是将网中的所有节点一一串联,而首尾两端开放。这种拓 扑的特点是较经济,在SDH网的早期用得较多,主要用于专网(如铁路 网)中。 ●星形网 此种网络拓扑是将网中一网元做为特殊节点与其他各网元节点相连,其 他各网元节点互不相连,网元节点的业务都要经过这个特殊节点转接。 这种网络拓扑的特点是可通过特殊节点来统一管理其它网络节点,利于 分配带宽,节约成本,但存在特殊节点的安全保障和处理能力的潜在瓶 颈问题。特殊节点的作用类似交换网的汇接局,此种拓扑多用于本地网 (接入网和用户网)。 (a) 链形 (b)星形 (c) 树形 (d) 环形 (e) 网孔形 TM TM TM TM TM TM TM TM TM TM ADM ADM ADM ADM DXC/ADM DXC/ADM 图5-1基本网络拓扑图

●树形网 此种网络拓扑可看成是链形拓扑和星形拓扑的结合,也存在特殊节点的 安全保障和处理能力的潜在瓶颈。 ●环形网 环形拓扑实际上是指将链形拓扑首尾相连,从而使网上任何一个网元节 点都不对外开放的网络拓扑形式。这是当前使用最多的网络拓扑形式, 主要是因为它具有很强的生存性,即自愈功能较强。环形网常用于本地 网(接入网和用户网)、局间中继网。 ●网孔形网 将所有网元节点两两相连,就形成了网孔形网络拓扑。这种网络拓扑为 两网元节点间提供多个传输路由,使网络的可靠更强,不存在瓶颈问题 和失效问题。但是由于系统的冗余度高,必会使系统有效性降低,成本 高且结构复杂。网孔形网主要用于长途网中,以提供网络的高可靠性。 当前用得最多的网络拓扑是链形和环形,通过它们的灵活组合,可构成 更加复杂的网络。本节主要讲述链网的组成和特点和环网的几种主要的 自愈形式(自愈环)的工作机理及特点。 5.2 链网和自愈环 传输网上的业务按流向可分为单向业务和双向业务。以环网为例说明单 向业务和双向业务的区别。如图5-2所示。 图5-2环形网络 若A和C之间互通业务,A到C的业务路由假定是A→B→C,若此时C 到A的业务路由是C→B→A,则业务从A到C和从C到A的路由相同, 称为一致路由。 若此时C到A的路由是C→D→A,那么业务从A到C和业务从C到A 的路由不同,称为分离路由。 我们称一致路由的业务为双向业务,分离路由的业务为单向业务。常见 组网的业务方向和路由如表5-1所示。

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告 ---最小错误率贝叶斯决策分类 一、实验原理 对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为 11 22 11()exp ()()2(2)T d p π-??=--∑-???? ∑x x μx μ 式中,12,,,d x x x ????=x 是d 维行向量,12,,,d μμμ????=μ 是d 维行向量,∑是d d ?维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。 本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数 ()(|)(), 1,2,3i i i g p P i ωω==x x (3个类别) 其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。 由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。 我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为 112 2 ()1()exp ()(),1,2,32(2)T i i d P g i ωπ-?? = -∑=???? ∑ x x -μx -μ 对上式右端取对数,可得 111()()()ln ()ln ln(2)222 T i i i i d g P ωπ-=-∑+-∑-i i x x -μx -μ 上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。则判别函数()i g x 可简化为以下形式 111 ()()()ln ()ln 22 T i i i i g P ω-=-∑+-∑i i x x -μx -μ

模式识别作业--两类贝叶斯分类

深圳大学研究生课程:模式识别理论与方法 课程作业实验报告 实验名称:Bayes Classifier 实验编号:proj02-01 姓名:汪长泉 学号:2100130303 规定提交日期:2010年10月20日 实际提交日期:2010年10月20日 摘要:在深入掌握多维高斯分布性质,贝叶斯分类的基础上,用计算机编程实现一个分类两类模式样本的贝叶斯分类器。用matlab编程,并分析了实验结果,得出贝叶斯分类的一般结论。

1. 贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。 1.1 两类情况 两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。 ① 用i ω,i =1, 2表示样本x (一般用列向量表示)所属的类别。 ② 假设先验概率()P ω1,()P ω2已知。(这个假设是合理的,因为如果先验概率未知,可以从训 练特征向量中估算出来,即如果N 是训练样本总数,其中有,N N 12个样本分别属于 2,1ωω,则相应的先验概率: ()/P N N ω≈11,2 ()/P N N ω≈2) ③ 假设(类)条件概率密度函数 (|),i p ωx i =1,2 已知,用来描述每一类中特征向量的分 布情况。如果类条件概率密度函数未知,则可以从可用的训练数据中估计出来。 1.2贝叶斯判别方法 贝叶斯分类规则描述为: 如果2(|)(|)P ωP ω>1x x ,则x ∈1ω 如果2(|)(|)P ωP ω<1x x ,则x ∈2ω (2-1-1) 贝叶斯分类规则就是看x ∈ω1的可能性大,还是x ∈2ω的可能性大。(|)i P ωx , i =1,2解释为当样本x 出现时,后验概率(|)P ω1x 和(|)P ω2x 的大小从而判别为属于 1ω或属于2ω类。 1.3三种概率的关系――――贝叶斯公式 ()() (|)= () i i i p |P P p ωωωx x x (2-1-3) 其中,()p x 是x 的概率密度函数(全概率密度),它等于所有可能的类概率密度函数乘以相应的先验概率之和。 ()(|)()i i i p p P ωω==∑2 1 x x

相关文档