文档库 最新最全的文档下载
当前位置:文档库 › 铸铁的基础知识

铸铁的基础知识

铸铁的基础知识
铸铁的基础知识

2 铁—碳相图及其应用

正是因为铸铁的组织与铸铁的力学性能、铸造性能和使用性能,甚至切削加工性能等息息相关,我们就必须要掌握铸铁组织的形成规律,以达到控制组织和性能的目的。铁—碳平衡图就是掌握凝固过程及其形成组织极好工具,从中可以了解铸铁的凝固规律,控制所获得凝固组织的种类、形状和多少。

另外,生产中有多种因素会影响铸铁组织的形成,从铁—碳平衡图上也可

一目了然地分析出这些因素对组织的影响情况,从而可通过控制形成的组织类型和数量来控制铸件的性能。

所以,铸造技术人员必须具备熟练应用铁—碳平衡图的能力,这样才能在

生产实践中对铸件产生的各类问题进行有理论依据的分析和找出有针对性的解决办法。

2.1 铸铁的分类

铸铁是一种以Fe、C、Si 为基础的多元合金,其中碳含量(质量分数)为2.0%~4.0%。铸铁成分中除C、Si 外,还有Mn、P、S,号称五大元素。

在铸铁中加入Al、Cr、Ni、Mn 等合金元素,可满足耐热、抗磨、耐腐蚀等性能要求,所形成的合金铸铁又称为特种铸铁。

按使用性能,铸铁可被分为工程结构件铸铁与特种性能铸铁两大类(见表14)。

18

2.2 铁—碳双重相图

2.2.1 铁—碳双重相图的基本概念

表示合金状态与温度、成分之间关系的图形称为合金相图,是研究合金结

晶过程中组织形成与变化规律的工具。在极缓慢冷却条件下,不同成分的铁—碳合金在不同温度时形成各类组织的图形为铁—碳合金相图。

铸铁中的碳能以石墨或渗碳体两种独立相存在,因此铁—碳相图存在两重性,即铁—石墨(C)相图与铁—渗碳体(Fe3C)相图。在一定条件下,Fe—Fe3C 系相图可以向Fe—C系相图转化,所以Fe—C 为稳定系平衡相图,Fe—Fe3C 为亚稳定系相图(见图16)。

19

图16 Fe—C(石墨)、Fe—Fe3C双重相图

铸铁中的高碳相只有两种:石墨与渗碳体,石墨(G)为100%的碳,渗碳体(Fe3C)含碳量仅为6.67%。在生产中常用的三角试块的尖端处为白口,此处碳以Fe3C出现;三角试块厚的部位为灰口,此处碳以G形式出现。这说明,同一成分的铸铁既可按Fe—Fe3C 相图结晶,也可按Fe—C相图结晶,因此,研究铸铁时,必须研究铁—碳合金的双重相图。

2.2.2 铁—碳相图与铸铁的结晶

铸铁在凝固过程中要经过三个结晶阶段,即析出初相、共晶转变、共析转

20

变,在这三个阶段中分别析出不同的组织,见表15。

结晶过程结晶发

生的临

界线

结晶产物图标

初析阶段液相线

以下析

出初生

(1)BC及BC’线以下析出初生奥

氏体

(2)C’D’线以下析出初生石墨

(3)CD线以下析出初生渗碳体

共晶阶段固相线

以下发

生共晶

转变

(1)ECF线以下发生共晶转变,

共晶组织为共晶奥氏体+共晶渗碳体

(2)E’C’F’线以下发生共晶转变,

共晶组织为共晶奥氏体+共晶石墨

共析阶段

共析线

以下发

生共析

转变

(1)PSK线以下发生共析转变,奥

氏体转变为珠光体(渗碳体+铁素体

(2)P’S’K’线以下发生共析转变,

奥氏体转变为铁素体+石墨

在三个阶段的结晶中要记住两个临界点:共晶点与共析点。

共晶点的意义是:当铁液温度到达共晶温度、铁液成分到达共晶成分时,

铁液就会发生共晶转变。Fe-C(石墨)系中,共晶点C’的成分是w(C)

4.26%;Fe-Fe3C 系中,共晶点C的成分是w(C)4.30%。

共析点的意义是:当铸铁凝固冷却到共析温度、成分到达共析点成分时,将发生共析转变。Fe-C(石墨)系中,共析点S’的成分为w(C)0.69%;Fe-

Fe3C 系中,共析点S 的成分为w(C)0.76%。

在铁—碳相图中:

21

(1)

具有共晶成分的铸铁,称共晶铸铁;

小于共晶成分的铸铁,称亚共晶铸铁;

大于共晶成分的铸铁,称过共晶铸铁。

在铸铁的凝固过程中,要记住四条特性曲线,即液相线、固相线(共晶转变线)、碳在奥氏体中的溶解曲线和共析线。

在双重相图、两个临界点、四条特性曲线下,三个阶段结晶中所形成的铸铁组织不同,记住在不同条件下形成的各类组织是十分重要的。表16为结晶过程中的两个临界点与四条特性曲线。

名称曲线或

临界点

特性图标

液相线BCD 和

BC’D’

线

(1)该线称为液相线,此线以上

为液相区,用L表示

(2)铁液冷却至此线时,开始结

晶并析出初相

(3)BC或BC’线以下皆析出初

生奥氏体,用A或γ表示

(4)在CD线以下析出初生渗碳

体,用Fe C 表示

(5)在C’D’线以下析出初生石墨

用G 表示

固相线(共晶线

ECF与

E’C’F’

线

(1)该线称为固相线,合金冷却

至此线后凝为固体,此线以下为

固态区

(2)液相线与固相线之间,液相

与固相并存,为合金的结晶区,

BCE或BC’E’区内为铁液+初生奥

氏体,在DCF区内为铁液+初生

渗碳体,在D’C’F’区内为铁液+初

生石墨

(3)该线也称为共晶转变线,铁

液冷却至此线以下时发生共晶转

变,铁液转变为共晶奥氏体+共晶

渗碳体(按ECF 线)或转变为共

晶奥氏体+共晶石墨(按E’C’F’线

(4)共晶奥氏体+共晶渗碳体可

22)

(1)

铸铁的基础知识

2 铁—碳相图及其应用 正是因为铸铁的组织与铸铁的力学性能、铸造性能和使用性能,甚至切削加工性能等息息相关,我们就必须要掌握铸铁组织的形成规律,以达到控制组织和性能的目的。铁—碳平衡图就是掌握凝固过程及其形成组织极好工具,从中可以了解铸铁的凝固规律,控制所获得凝固组织的种类、形状和多少。 另外,生产中有多种因素会影响铸铁组织的形成,从铁—碳平衡图上也可一目了然地分析出这些因素对组织的影响情况,从而可通过控制形成的组织类型和数量来控制铸件的性能。 所以,铸造技术人员必须具备熟练应用铁—碳平衡图的能力,这样才能在生产实践中对铸件产生的各类问题进行有理论依据的分析和找出有针对性的解决办法。 2.1 铸铁的分类 铸铁是一种以、C、为基础的多元合金,其中碳含量(质量分数)为2.04.0%。铸铁成分中除C、外,还有、P、S,号称五大元素。 在铸铁中加入、、、等合金元素,可满足耐热、抗磨、耐腐蚀等性能要求,所形成的合金铸铁又称为特种铸铁。 按使用性能,铸铁可被分为工程结构件铸铁与特种性能铸铁两大类(见表14)。 表14 铸铁的分类

2.2 铁—碳双重相图 2.2.1 铁—碳双重相图的基本概念 表示合金状态与温度、成分之间关系的图形称为合金相图,是研究合金结晶过程中组织形成与变化规律的工具。在极缓慢冷却条件下,不同成分的铁—碳合金在不同温度时形成各类组织的图形为铁—碳合金相图。 铸铁中的碳能以石墨或渗碳体两种独立相存在,因此铁—碳相图存在两重性,即铁—石墨(C)相图与铁—渗碳体(3C)相图。在一定条件下,—3C系相图可以向—C系相图转化,所以—C为稳定系平衡相图,—3C为亚稳定系相图(见图16)。

铸铁熔炼基本知识

铸铁熔炼基本知识(目录) 1.熔解的目的 2.灰铁与球铁主要的性能特征及成因 a)灰铁的性能特点及成因 b)球铁的性能特点及成因 c)灰铁与球铁的本质区别 3.影响铸件性能的主要因素 a)合金元素对铸件性能的影响 b)铁水中气体对铸件性能的影响 c)铁水温度对铸件性能的影响 d)炉料的影响 4.合金的熔炼方式 a)冲天炉熔炼 b)感应电炉熔炼 c)冲天炉、感应电炉双联熔炼 5.铁水的处理 a)球化处理 b)孕育处理

铸铁熔炼基本知识(内容) 一、熔解的目的 获得一定成分和一定温度的铁水 二、球铁和灰铁的主要性能特点及原因 灰铸铁中的立体片状石墨球墨铸铁中的石墨球 1.灰铁的性能特点及原因 a)强度性能差 ●石墨的缩减作用——灰铸铁组织中存在大量的石墨,石墨强度很低可 近似认为无强度,这就使得材料的实际承载面积总比材料的实际面积 要小 ●石墨的缺口(切割)作用——灰铸铁组织中的石墨大多以片状形式存 在,在石墨片的尖端有应力集中现象易导致基体过载失效 b)硬度不稳定——因受石墨的影响大硬度稳定性差 c)缺口敏感性低——灰铸铁组织中存在大量的石墨,石墨的缩减作用与石墨的缺 口作用使得灰铸铁缺口敏感性低,石墨片越粗大缺口敏感性越低 d)良好的减震性——大量的石墨阻止了振动的传播,将能量转化成热能而散发 e)良好的减摩性 ●石墨本身具有润滑作用 ●石墨脱落处可存储润滑油以保证油膜完整从而提高润滑效果 2.球铁的性能特点 a)强度和硬度高 b)具有一定的韧性

c)优良的屈/强比 d)较低的缺口敏感性 原因:石墨呈球状对基体割裂作用弱,基体连续 3.球铁、灰铁性能差异的根本原因 球铁、灰铁性能差异的根本原因在于石墨形状的不同。 球墨铸铁金相灰铸铁金相三、影响铸件性能的主要因素 1.常见合金元素对铸件性能的影响 a)C、Si(CE)的影响 ●碳当w(CE)%= w (C)%+ w (Si+P) % 3 ●对球铁的影响 ●CE值过高会产生石墨漂浮现象,使夹杂物增多铸铁性能下降;CE值 过低易产生缩松、裂纹等缺陷,CE值在4.6-4.7%左右时易形成组织致密的铸件(实际生产球铁时,如对性能成分无特殊要求,则原汤调质目标为C——3.85% Si——1.85%,球化处理后的成分约为C——3.65% Si——2.80%,w(CE)%= w (C)%+ w (Si+P) % 3 =3.65%+ 2.80%+0.06% 3 =4.60%,成分的选取恰恰有利于得到致密铸件) 石墨漂浮显微缩松

铸铁知识介绍

铸造知识介绍 铸造:是一种金属材料的成形方法。将熔融金属浇注、压射或吸入铸型型腔,凝固后成为具有一定形状和性能的铸件。 铸造方法有砂型铸造和特种铸造,既可用手工单件小批量生产,也可用机械化、自动化生造型方法大量成批生产。 铸造流程:制模——造型——烘干——熔炼——孕育处理——炉前分析——浇注——落砂清理——去浇冒口——铸件检验及缺陷分析—— 铸铁及熔炼 白口铸铁:白口铸铁中的碳全部以渗透碳体(Fe 3c )形式存在,因断口呈亮白色。故称白口铸铁,由于有大量硬而脆的Fe 3c ,白口铸铁硬度高、脆性大、很难加工。因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。大多用作炼钢和可锻铸铁的坯料。 灰口铸铁;铸铁中的碳大部或全部以自由状态片状石墨存在。断口呈灰色。它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。 灰口铸铁按基体组织不同,分为铁素体基灰口铸铁、珠光体+铁素体基灰口铸铁和珠光体基灰口铸铁三类。 由于灰口铸铁内存在片状石墨,而石墨是一种密度小,强度低、硬度低、塑性和韧性趋于零的组分。它的存在如同在钢的基体上存在大量小缺口,即减少承载面积,又增加裂纹源,所以灰口铸铁强度低、韧性差,不能进行压力加工。为改善其性能,在浇注前在铁水中加入一定量的硅铁,硅钙等孕育剂,使珠光体基体细化,石墨变细小而均匀分布,经过这种孕育处理的铸铁。称为孕育铸铁。 灰口铸铁的牌号、性能组织及用途见下表,国家标准根据直径30mm 单铸试棒的抗拉强度,将灰铸铁分为六个牌号。牌号中的“HT ”是“灰铁”的汉语拼音的第一个大写字母,其后面的数字表示该牌号灰铸铁的最小抗拉强度。 灰铸铁的牌号及力学性能指标(GB5675-85)

铸铁浴缸基本知识

铸铁浴缸(Cast iron bathtub)采用铸铁制造,表面覆搪瓷,所以重量非常大,使用时不易产生噪音;由于铸造过程比较复杂,所以铸铁浴缸一般造型比较单一而价格却很昂贵。 铸铁浴缸由于浴缸壁厚,所以其突出特点是保温性能好,受到一部分非常看重保温性能的消费者的青睐,但实际上洗澡时浴缸的热量损失90%是通过水面与空气的热交换和热辐射散失的,只有10%的热量是通过缸体散失的;另外诸如注水噪音低,易清洁,耐酸碱及化学品,光泽度高等等由于材质所塑造的种种特性成为亚克力等等材质浴缸所不可逾越的优势。所以一般铸铁浴缸价格为亚克力浴缸2-3倍。作为嵌入式浴缸它们的安装程序步骤是一样的,只是铸铁浴缸要重得多,但是几乎可以一劳永逸,所以购买铸铁浴缸还是不错的选择。 铸铁浴缸特性:铸铁和瓷釉是一种极其耐用的材料,以它为材质的浴缸通常可以使用50年以上,在国外不少铸铁浴缸都是传代使用的。铸铁浴缸的表面都经过高温施釉处理,光滑平整,便于清洁。铸铁浴缸价格比亚克力和钢板浴缸都要贵2-3倍。这也是在市场上难以普及的重要原因。 铸铁浴缸的优缺点 铸铁浴缸的优点:光洁平整,色泽温润,防污垢,注水噪声小,易清洗,经久耐用; 铸铁浴缸的缺点:价格最高,颜色及造型受工艺限制所以造型较为单调,色彩选择比较单一。,分量沉重,安装运输不易。选购铸铁浴缸时注意釉面的光洁度和平整度。 目前中国是世界最大的铸铁浴缸生产国,产品大量出口国外。随着大规模批量生产及生产技术的不断提高,铸铁浴缸价格已大幅降低 德国进口AA级釉料:2mm超厚进口釉面,全人工施釉,釉面细腻,注水声小,便于清洁。 精选陶瓷铸铁:高温煅烧,不发黄,不变色,无异味,使用寿命长 超大奢华空间体验:超大沐浴空间,让你无拘无束的享受生活 人性化的线条设计:背部斜坡设计,采用人体工程学设计,让舒适自由掌控。 隐形防滑设计:底部防滑纹理设计,加大阻力防止滑倒避免磕碰 细节特写:釉面、造型纹理、溢水口、下水口、整体尺寸。 制作工艺流程:1、原生铁倒模。2、初具成型。3、手工打磨。4、人工描瓷。5、多次循环回炉。6、荧光检测。 原料瓷粉介绍:瓷粉医用瓷粉烤瓷粉金属烤瓷粉口腔陶材料瓷粉瓷,用烧结、热压、渗透、电泳等方法制作而成,其主要成分是长石、高岭土、石英、助熔剂、着色剂和荧光剂等。是制作金属烤瓷牙、全瓷牙的主要材料。其制作的修复体颜色美观,强度高,硬度大,耐磨损,化学性能稳定等特点,广泛应用口腔临床修复中。

铸铁的基础知识

1、铸铁及其熔炼 编辑词条 铸铁是指碳的质量分数大于2.14%或者组织中具有共晶组织的铁碳合金。工业上所用的铸铁,实际上都不是简单的铁-碳二元合金,而是以铁、碳、硅为主要元素的多元合金。铸铁的成分范围大致为ω(C)=2.4%~4.0%,ω(Si)=0.6%~3.0%,ω(Mn)=0. 2%~1.2%,ω(P)=0.04%~1.2%,ω(S)=0.04%~0.20%。有时还可加入各种合金元素,以便获得能满足各种性能要求的合金铸铁。铸铁是近代工业生产中应用最为广泛的一种铸造金属材料。在机械制造、冶金矿山、石油化工、交通运输和国防工业等各部门中,铸铁件约占整个机器重量的45%~90%。因此,掌握铸铁的基本理论和生产技术,对于发展铸造生产,充分发挥铸铁件在国民经济各部门中的作用,是很有意义的。 相图是分析合金金相组织的有力工具。铸铁是以铁元素为基的含有碳、硅、锰、磷、硫等元素的多元铁合金,但其中对铸铁的金相组织起决定作用的主要是铁、碳和硅,因此铁-碳相图和铁-碳-硅三元合金相图是分析铸铁的成分与组织的关系以及组织形成过程的基础。 2、铸铁的基础知识——铁-碳相图——铁—碳相图分析 由于铸铁中的碳可能以渗碳体(Fe3C)或石墨两种独立的形式存在,因而铁、碳相图存在着Fe-G(石墨)和Fe-Fe3C两套体系,即铁-石墨系和铁-渗碳体系。从热力学观点看,石墨比渗碳体更稳定,因此,铁-石墨系也称为稳定系,而铁-渗碳体系称为亚稳定系。图2. 1-1所示为铁碳合金双重相图,即Fe-G(石墨)稳定系相图和Fe-Fe3C亚稳定系相图,分别以虚线和实线表示。表2.1-1为相图中临界点的温度及含碳量。

钢材基本知识大全

钢材基本知识大全,超实用! 一、钢材机械性能 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。设P s为屈服点s处的外力,F o为试样断面积,则屈服点σs =P s/F o(MPa)。 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。设P b为材料被拉断前达到的最大拉力,F o为试样截面面积,则抗拉强度σb= P b/F o(MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

(1)布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB)。 (2)洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料 的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 (3)维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 二、黑色金属和有色金属 1、黑色金属 是指铁和铁的合金。如钢、生铁、铁合金、铸铁等。钢和生铁都是以铁为基础,以碳为主要添加元素的合金,统称为铁碳合金。 生铁是指把铁矿石放到高炉中冶炼而成的产品,主要用来炼钢和制造铸件。 把铸造生铁放在熔铁炉中熔炼,即得到铸铁(液状,含碳量大于2.11%的铁碳合金),把液状铸铁浇铸成 铸件,这种铸铁叫铸铁件。 铁合金是由铁与硅、锰、铬、钛等元素组成的合金,铁合金是炼钢的原料之一,在炼钢时做钢的脱氧剂和合金元素添加剂用。

2001铸铁工理论知识基础试题A

职业技能鉴定理论知识基础试题(A卷) 工种及代码:铸铁工等级:高级 编制单位(公章):炼铁厂 2001—08—27 共6页第1页 填空题:(每题2 分,10题,20分) *b 1、铁水中主要成分有、碳、锰等,并有少量的硫、磷。 *a 2、冷却水用量是用表来表示的。 *c 3、铸铁过程中,要勤挠,掌握两边铁流均匀。 *a 4、元素使铸铁块具有热脆性。 *b 5、行车小车减速机是是式的。 *b 6、铁水分为铁水和铸造铁水。 *a 7、铁工具必须,以防爆炸伤人。 *a 8、二次冷却的目的是。 *c9、铸铁机链带上方设置冷却装置的目的是。 *b10、喷浆装置距流嘴的距离是越越好。 标准答案: 1.铁、 2.流量、 3.流嘴、 4.硫、 5.立、 6.炼纲、 7.干燥、 8.快速降低 铸铁块温度、9.加速铁水冷却(凝固)、 10.远。 选择题:(每题2分,共20题,40分) *a 1.我处铸铁机型式为:()。 (A)滚轮式( B)固定式(C)滚轮固定式 (D) 滚轮移动式 *b2.槽窝与流嘴的连接部分为()。 (A)大沟(B)人字板(C)机后滑板 (D)链带 *a 1.行车小车行走减速机为()。 (A)立式(B)卧式(C)蜗轮蜗杆式(D)伞齿轮接触式 *c 2.选取铸铁机配用电机功率取决于()。 (A )生产能力(B)匹配的行车性能(C)作业率(D)工作环境 *b5.铁流嘴的作用是() _________________________________________________________________

命题人:许振兴审题人:刘元意 职业技能鉴定理论知识基础试题(A卷) 工种及代码:铸铁工等级:中级 编制单位(公章):莱钢炼铁厂 2001—08—12 共6页第2页 (A)分布铁水(B)控制铁损(C)控制块度(D)安全 *c 6.铁的化学元素符号是() (A)T (B)Fe (C)S (D)C *b 7.减速机使用和维护中的主要问题是() (A)振动(B)过热(C)漏油(D)噪音 *a8.铸铁工艺对铁水质量要求不重要的是() (A)铁水流动性(B)铁水温度(C)铁水化学成分(D)铁水存放时间 *b9.铸铁安全生产时没有规定()。 (A)不准跨越大沟(B)不准站在平台上(C)不准在平台下工作(D)工具的干燥 *c10.一次冷却水管的长度大约是链条的() (A)2/3 (B)1/3 (C)3/4 (D)4/5 *c11.一般铸铁机链带最大运行速度大约是()m/min。 (A)5 (B)15 (C)20 (D)30 *a11.、铸铁生产的主要技术指标是()。 (A)铸铁量、铁损率、铸铁机台数(B)生产率、铁损率、块度合格率(C)铸铁量、块度合格率、罐容 (D) 生产率、温度、块度合格率 *b13.影响铸铁模开裂的主要因素是()。 (A)热应力、冷却时间、铸铁模材质(B)喷浆、热应力、冷却时间(C)热应力、铸铁模材质、铸铁模质量 (D) 热应力、铸铁模材质、温度*a14.块度合格率是指()。 (A)合格铁块数与总铸铁罐数的比例(B)合格铁块数与总炉次之比(C)合格铁块量与总铸铁量之比 (D) 合格铁块量与总铸铁罐之比 *b15.铁水罐倾翻过程中要控制的主要参数是()。

合金钢与铸铁基本知识

二、概述 1.合金钢的显微组织 合金钢依合金元素含量的不同,可分为三种:合金元素总量<5%的称为低合金钢;合金元素为5%~10%的称为中合金钢;合金元素>10%的称为高合金钢。 一般合金结构钢、合金工具钢都是低合金钢。由于合金元素的加入,使铁碳相图发生一些变化,但其平衡状态的显微组织与碳钢没有本质的区别。低合金钢热处理后的显微组织与碳钢没有根本不同,差别只在于合金元素加入后,使C曲线右移(除Co以外),即以较低的冷却速度也可以获得马氏体组织。例如,40Cr钢经调质处理后的显微组织和40钢调质后的显微组织基本相同,都为回火索氏体。GCr15钢840℃油淬、低温回火后的显微组织,与T12钢780℃水淬、低温回火后的显微组织也一样,皆为回火马氏体和碳化物。 合金钢种类繁多,本实验只选择高速钢进行观察和分析。 高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它含有大量合金元素,使铁碳相图中的E点大大左移,虽然只含有0.7%~0.8%的碳,仍可获得莱氏体组织,所以又称为莱氏体钢。 高速钢在铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物、马氏体、屈氏体以及残留奥氏体组成。如图6-1所示。虽然高速钢在铸态下的组织存在严重的成分和组织不均匀性,从而影响其性能,为此随后必须经过锻造和轧制,破碎莱氏体网络,促使其碳化物均匀分布。 高速钢锻造退火组织:在金相显微镜下观察其组织为索氏体+碳化物。其中粗大的亮色晶粒为初生共晶碳化物,较细小的为次生碳化物以及索氏体基体中的极细共晶碳化物,退火后的的硬度为HB207~255。 高速钢淬火组织:淬火加热温度一般为1260~1280℃,高温加热的目的是使较多的碳化物溶解于奥氏体中,淬火后马氏体中合金元素含量高,回火后钢的红硬性高且耐磨性好。淬火采用油冷或空冷,其显微组织为马氏体+未溶碳化物+残余奥氏体(尚有20%~30%)。马氏体呈隐针状,其针形很难显示出来,但可看出明显的奥氏体晶界及分布于晶粒内的未溶碳化物,淬火后的硬度约为HRC61~62,如图6-2所示。 高速钢淬火后需经三次回火,其组织为回火马氏体,碳化物和少量残余奥氏体(约2%~3%)。回火后硬度为HRC63~65,如图6-3所示。 2.铸铁的显微组织 按铸铁在结晶过程中石墨化程度不同,可分为白口铸铁、灰口铸铁和麻口铸铁。 白口铸铁:其组织具有莱氏体特征而没有游离的石墨,即全部碳以碳化物的形式存在于铸铁中。 灰口铸铁:碳全部或大部分以石墨的形式存在于铸铁中。灰口铸铁的组织是由钢的基体和石墨组成。 麻口铸铁:其组织特征介于白口铸铁与灰口铸铁之间,即表面为白口铸铁,中心为灰口铸铁。 白口铸铁和麻口铸铁由于莱氏体组织存在,因而有较大的脆性,在工业上很少应用。 根据铸铁中石墨的形态、大小和分布情况不同,铸铁分为:灰口铸铁、可锻铸铁和球墨铸铁。 灰口铸铁:根据基体组织的不同,灰口铸铁可分为:铁素体灰口铸铁;铁素体+珠光体灰口铸铁;珠光体灰口铸铁。如图6-4所示,为铁素体灰口铸铁的显微组织,其中石墨呈灰色条片状分布在白亮色的铁素体基体上。 可锻铸铁:可锻铸铁又称展性铸铁,它是由白口铸铁经石墨化退火处理而获得的,其渗碳体发生分解而形成团絮状石墨。按其组织不同,可锻铸铁分为铁素体可锻铸铁和珠光体可锻铸铁两类。 图6-5为铁素体基体可锻铸铁的显微组织,其中石墨称暗灰色团絮状,亮白色晶粒为基体。 球墨铸铁:球墨铸铁中石墨呈球状。它是用镁、钙及稀土元素球化剂进行球化处理,使石墨变为球状。由于石墨呈球状对基体的削弱作用最小,使球墨铸铁的金属基体强度利用率高达70%~90%(灰口铸铁只达30%左右),因而其机械性能远远优于普通灰口铸铁和可锻铸铁。图6-6为球墨铸铁的显微组织,其中亮白色晶粒为铁素体基体,灰色球状为石墨。

铸铁基础知识与灰铸铁

含碳量在2%以上的铁碳合金。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。 8.1.1 铸铁的分类 1.根据铸铁石墨化程度分 (1)灰口铸铁:即在结晶过程中充分墨化的铸铁,其断口为暗灰色,游离碳全部以石墨状态存在。 (2)白口铸铁:没有石墨化,完全按Fe-Fe3C相图进行结晶而得到的铸铁。 (3)麻口铸铁:石墨化未充分进行,工业上应用少(脆、硬)。 2.根据铸铁中石墨形态分 (1)灰口铸铁:石墨以片状存在于铸铁中; (2)可锻铸铁:石墨以团絮状存在于铸铁中; (3)球墨铸铁:石墨以球状存在于铸铁中; (4)蠕墨铸铁:石墨以蠕虫状存在于铸铁中。 8.1.2 铸铁的石墨化 铸铁中碳原子析出并形成石墨的过程称为石墨化。 1. 石墨化的途径 石墨既可以从液体和奥氏体中析出,也可以通过渗碳体分解来获得.灰口铸铁和球墨铸铁中的石墨主要是从液体中析出;可锻铸铁中的石墨则完全由白口铸铁经长时间退火,由渗碳体分解而得到。 2.影响石墨化的因素 化学成分:随C、Si↑→G核↑,有利于 G 析出;S↑→阻碍 G ,促进白口化,所以严格控制。 冷却速度:V↑→原子来不急扩散,G难以进行;易白口。V小——易得到灰

口。所以设计时:合理选择铸件壁厚。 8.1.3 铸铁的组织与性能的关系 铸铁的力学性能主要取决于基体的组织和石墨的形态、数量、大小以及分布状态。其中基体的组织一般可通过不同的热处理加以改变。力学性能:由于石墨对基体有严重割裂,所以铸铁的抗拉强度和塑性都很低。 (1)优良的铸造性能; (2)良好的切削加性; (3)优良的耐磨性与减震性; (4)较低的机械性; (5)缺口敏感性较低。 8.1.4 灰铸铁的成分与组织 灰铸铁是指具有片状石墨的铸铁,主要成分是铁、碳、硅、锰、硫、磷,是应用最广的铸铁,其产量占铸铁总产量80%以上。价格便宜,应用广泛,占铸铁总量的80% 。影响灰口铸铁组织和性能的因素:化学成分的影响(主要是控制C、Si含量),冷却速度的影响(冷速越快,越易形成白口铁)。灰铸铁碳量较高(为2.7%~4.0%),可看成是碳钢的基体加片状石墨。按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;珠光体一铁素体基体灰铸铁;珠光体基体灰铸铁。 (1)铁素体灰铸铁:在铁素体的基体上分布着多而粗大的石墨片,其强度、硬度差,很少应用。 (2)珠光体灰铸铁:在珠光体的基体上分布着均匀、细小的石墨片,其强度、硬度相对较高,常用于制造床身、机体等重要件。 (3)珠光体—铁素体灰铸铁:在珠光体和铁素体混合的基体上,分布着较为粗大的石墨片,此种铸铁的强度、硬度尽管比前者低,但仍可满足一般机体要求,其铸造性、减震性均佳,且便于熔炼,是应用最广的灰铸铁。 灰铸铁显微组织的不同,实质上是碳在铸铁中存在形式的不同。灰铸铁中的碳有化合碳(Fe3C)和石墨碳所组成。化合碳为0.8%时,属珠光体灰铸铁;化合碳小于0.8%时,属珠光体—铁素体灰铸铁;全部碳都以石墨状态存在时,则为铁素体灰铸铁

相关文档