文档库 最新最全的文档下载
当前位置:文档库 › 高中数学动点轨迹问题专题讲解

高中数学动点轨迹问题专题讲解

高中数学动点轨迹问题专题讲解
高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解

一.专题容:

求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.

(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.

(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练

(一)选择、填空题

1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段

2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是

(A )

22125169x y +=(0x ≠) (B )22

1144169

x y +=(0x ≠) (C )

22116925x y +=(0y ≠) (D )22

1169144

x y +=(0y ≠) 3.与圆2

2

40x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;

4.P 在以1F 、2F 为焦点的双曲线

22

1169

x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ;

5.已知圆C :22

(16x y +=一点()A ,圆C 上一动点Q , AQ 的垂直平

分线交CQ 于P 点,则P 点的轨迹方程为 .2

214

x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的切圆圆心在直线3x =上,则顶

点C 的轨迹方程是 ;

22

1916

x y -=(3x >) 变式:若点P 为双曲线

22

1916

x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的切圆圆心的轨迹方程是 ;

推广:若点P 为椭圆

22

1259

x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;

7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(2

12y x =)

8.抛物线2

2y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .

(4

k

x =(28k y >))

9.过抛物线2

4y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,

设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,

2

(1),4y k x y x

=-??=? 消去y 得 2222

(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有

21222,22(1).x x k x k y k x k ?++==???

?=-=??

消k 得22(1)y x =-.

当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为2

2(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,

由2112224,4.

y x y x ?=??=?? 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,

当12x x ≠时,有121224y y y x x -?=-,又1

PQ MF y

k k x ==-,

所以,21

y

y x ?

=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为2

2(1)y x =-.

10.过定点(1, 4)P 作直线交抛物线:C 2

2y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-

(二)解答题

1.一动圆过点(0, 3)P ,且与圆2

2

(3)100x y ++=相切,求该动圆圆心C 的轨迹方程. (定义法)

2.过椭圆

22

1369

x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.

(直接法、定义法;突出转化思想)

3.已知1A 、2A 是椭圆22

221x y a b

+=的长轴端点,P 、Q 是椭圆上关于长轴12

A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)

4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足

||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r

(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满

足||||AP AQ =u u u r u u u r

,试求k 的取值围.

解:(1)设(,)C x y ,则由重心坐标公式可得(,)33

x y G .

∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3x

M .

∵ ||||MA MC =u u u r u u u u r

,(0,1)A -,∴

=,即 2213

x y +=. 故点C 的轨迹方程为2

213

x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22

,

3 3.

y kx b x y =+??

+=?消y ,得222

(13)63(1)0k x kbx b +++-=.

∴ 22

2

2

3612(13)(1)0k b k b ?=-+->,即22

130k b +->. ①

又122

613kb

x x k

+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 22

3(,)1313kb b

N k k

-

++. ∵ ||||AP AQ =u u u r u u u r

,∴ AN PQ ⊥,∴ 1AN

k k =-,即 22

11

13313b

k kb k k ++=--

+,

∴ 2132k b +=,又由①式可得 2

20b b ->,∴ 02b <<且1b ≠.

∴ 20134k <+<且2

132k +≠,解得11k -<<

且3

k ≠±

. 故k 的取值围是11k -<<

且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ?=?u u u r u u u u r u u u r u u u u r

(Ⅰ)求动点P 的轨迹C 的方程;(直接法)

(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r

.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ?u u u r u u u r

为定值.

高中数学求轨迹方程的六种常用技法

求轨迹方程的六种常用技法 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是 4 9 ,求点M 的轨迹方程。 解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -, 设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3 AM y k x x = ≠-+,直线BM 的斜率(3)3AM y k x x = ≠- 由已知有4 (3)339 y y x x x ?=≠±+- 化简,整理得点M 的轨迹方程为22 1(3)94 x y x -=≠± 练习: 1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。 2.设动直线l 垂直于x 轴,且与椭圆2 2 24x y +=交于A 、B 两点,P 是l 上满足 1PA PB ?=的点,求点P 的轨迹方程。 3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线 的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两边上的中线长之和是30,

高中数学简单逻辑专题解析(精编版)

全国高考数学试题分类解析——简单逻辑 1.(安徽理科第7题)命题“所有能被2整除的数都是偶数”的否定.. 是( ) (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数是偶数 (D )存在一个不能被2整除的数不是偶数 解析:全称命题的否定是特称命题,选D 2.(北京文科第4题)若p 是真命题,q 是假命题,则( ) (A )p q ∧是真命题 (B)p q ∨是假命题 (C)p ?是真命题 (D)q ?是真命题 答案: D 3.(福建理科第2题)若R a ∈,则2=a 是0)2)(1(=--a a 的( ) A.充分而不必要条件 B 必要而不充分条件 C.充要条件 D.既不充分又不必要条件 答案:A 4.(福建文科3)若a ∈R ,则“a=1”是“|a|=1”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分又不必要条件 答案:A 5.(湖北理科9、文科10)若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,?,那么()0,=b a ?是a 与b 互补( ) A. 必要而不充分条件 B. 充分而不必要条件 C. 充要条件 D. 既不充分也不必要的条件 答案:C 解析:若实数b a ,满足0,0≥≥b a ,且0=ab ,则a 与b 至少有一个为0,不妨设0=b ,则()0,2=-=-=a a a a b a ?,反之,若()0,22=--+=b a b a b a ? 则022≥+=+b a b a ,两边平方得ab b a b a 22222++=+0=?ab ,则a 与b 互补,故选C. 6.(湖南理科2)设{1,2}M =,2{}N a =,则“1a =”是“N M ?”则( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

2021-2022年高中数学《平面动点的轨迹》说课稿 新人教A版必修1

2021-2022年高中数学《平面动点的轨迹》说课稿新人教A版必修1 一、教学目标 (一)知识与技能 1、进一步熟练掌握求动点轨迹方程的基本方法。 2、体会数学实验的直观性、有效性,提高几何画板的操作能力。 (二)过程与方法 1、培养学生观察能力、抽象概括能力及创新能力。 2、体会感性到理性、形象到抽象的思维过程。 3、强化类比、联想的方法,领会方程、数形结合等思想。 (三)情感态度价值观 1、感受动点轨迹的动态美、和谐美、对称美 2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气 二、教学重点与难点 教学重点:运用类比、联想的方法探究不同条件下的轨迹 教学难点:图形、文字、符号三种语言之间的过渡 三、、教学方法和手段 【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。 【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。 【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。 四、教学过程 ?1、创设情景,引入课题 生活中我们四处可见轨迹曲线的影子 【演示】这是美丽的城市夜景图 【演示】许多人认为天体运行的轨迹都是圆锥曲线, 研究表明,天体数目越多,轨迹种类也越多 【演示】建筑中也有许多美丽的轨迹曲线 设计意图:让学生感受数学就在我们身边,感受轨迹 曲线的动态美、和谐美、对称美,激发学习兴趣。 ?2、激发情感,引导探索

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

动点的轨迹问题

动点的轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法: 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不 需要特殊的技巧,易于表述成含 x,y 的等式,就得到轨迹方程,这种方法称之为直接法。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发 直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点 P(x,y)却随另一动点Q(x ' , y ' )的运动而有规律的运动,且动点 Q 的轨迹为给定或容易求得,则可先将 x ',y ' 表示为 x,y的式子,再代入 Q 的轨迹方程,然而整理得 P 的轨迹方程,代入法也称相关点法。 4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使 x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。 5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。 6.转移法:如果动点 P 随着另一动点 Q 的运动而运动,且 Q 点在某一已知曲线上运动,那么只需将 Q 点的坐标来表示,并代入已知曲线方程,便可得到 P 点的轨迹方程。

专题_解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题 学大分教研中心 周坤 轨迹方程的探解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。解答这类问题,需要善于揭示问题的部规律及知识之间的相互联系。本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。OK ,不废话了,开始进入正题吧... Part 1 几类动点轨迹问题 一、动线段定比分点的轨迹 例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。 ()()()00P x y A a B b 解:设,,,,,, ()( )0 11101a a x x y b b y λλλλλλλ+???=+=??? +??++?=??=? ?+? , 2225a b +=代入 () () 2 2 2 2 2 1125y x λλλ +++ = () () 2 2 2 2 2 125 2511x y λλλ+ =++

2225 14 P x y λ=+= 当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;② 01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③; 例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程. ()()113P x y B x y AB BP =-解:设,,,,有 ()()()()11 33131313x x y y ?+-= ?+-? ? +-?=?+-? 11332 312 x x y y -?=??? -?=??化简即: 22114x y +=代入 22 3331422x y --???? += ? ????? 得 所以点P 的轨迹为()2 2 116139x y ? ?-+-= ?? ? 二、两条动直线的交点问题 例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x = AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,,

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

动点的轨迹问题

动点的轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法: 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。 4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。 5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。 6.转移法:如果动点P 随着另一动点Q 的运动而运动,且Q 点在某一已知曲线上运动,那么只需将Q 点的坐标来表示,并代入已知曲线方程,便可得到P 点的轨迹方程。 7.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。 8.待定系数法:求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。 9.点差法:求圆锥曲线中点弦轨迹问题时,常把两个端点设为),(),,(2211y x B y x A 并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。 此部分内容主要考查圆锥曲线,圆锥曲线的定义是根本,它是相应标准方程和几何性质的“源”。对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略。 二、注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

立体几何中的动点轨迹问题讲解

立体几何中的动点轨迹问题讲解 这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。 这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。 立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。 题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。

但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。 与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C

高中数学-空间图形的轨迹问题

空间图形的轨迹问题 1 判断轨迹的类型问题 这类问题常常要借助于圆锥曲线的定义来判断,常见的轨迹类型有:线段、圆、圆锥曲线、球面等。在考查学生的空间想象能力的同时,又融合了曲线的轨迹问题。 例1 在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D)。 A. 线段 B. 一段椭圆弧 C. 双曲线的一部分 D. 抛物线的一部分 简析本题主要考查点到直线距离的概念,线面垂直及抛物线的定义。因为B1C1 面AB1,所以PB1就是P到直线B1C1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D。 引申1 在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B)。 A. 线段 B. 一段椭圆弧 C. 双曲线的一部分 D. 抛物线的一部分 引申2 在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C)。 A. 线段 B. 一段椭圆弧 C. 双曲线的一部分 D. 抛物线的一部分 例2 在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A)。 A. 圆或圆的一部分 B. 抛物线或其一部分 C. 双曲线或其一部分 D. 椭圆或其一部分 简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D所成的角都相等,故点P的轨迹有可能是圆或圆的一部分。 例3已知正方体的棱长为a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P到直线的距 离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A)。 A. 抛物线 B. 双曲线 C. 直线 D. 圆 简析在正方体中,过P作PF AD,过F作FE A1D1,垂足分别为F、E,连结PE。则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线。 点评正方体是空间图形中既简单、熟悉、又重要的几何体,具有丰富的内涵,在

高中数学选择题技巧讲解

专题一数学客观题的解题方法与技巧 专题一I 选择题的解法 高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字—准确、迅速.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 选择题具有题小、量大、基础、快捷、灵活的特点,是高考中的重点题型.在高考试卷中数量最大,占分比例高.全国卷的选择题占60分.因此,正确的解好选择题已成为高考中夺取高分的必要条件. 选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快捷.应“多一点想的,少一点算的”,该算不算,巧判断.因而,在解答时应该突出一个“选”字,尽量减少书写解答过程.在对照选项的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速的选择巧法,以便快速智取. 选择题的巧解说到底就是要充分利用选项提供的信息,发挥选项的作用.能力稍差的学生解选择题仅仅顾及题干,然后像解答题那样解下去,选项只取了核对的作用.本来像选择题这样的小题应当“小题小作”,但却做成了解答题.至少做成了填空题.这样就“小题大作”了,导致后面的解答题没有充裕的时间思考,这是不划算的. 由于选择题结构特殊,不要求反映过程,再加上解答方式没有固定的模式,灵活多变,具有极大的灵活性.选择题的解题思想,渊源于选择题与常规题的联系与区别,它在一定程度上还保留着常规题的某些痕迹;而另一方面,选择题在结构上具有自己的特点,即至少有一个答案是正确的或合适的.因此,可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支;选择题中的错误支具有双重性,既有干扰的一面,也有可利用的一面.只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速做出判断. 1.选择题的解题策略 解题的基本策略是:充分地利用题干和选择支的两方面条件所提供的信息作出判断.先定性后定量,先特殊后推理;先间接后直解,先排除后求解. 一般地,解答选择题的策略是: ①熟练掌握各种基本题型的一般解法; ②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧;

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

人教A版高中数学必修一专题讲解 全套名师教学资料

高中数学必修一专题讲解 高中数学必修一专题讲解(集锦) 专题一:抽象函数常见题型解法 总章——抽象函数的考察范围及类型 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的特殊模型:

一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。 评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。[]11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。 练习:定义在(]8,3上的函数f(x)的值域为[]2,2-,若它的反函数为f -1(x),则y=f -1(2-3x)的定义域为 ,值域为 。(]8,3,34,0?? ??? ?

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 ~ 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值. 作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求. O 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a>0时,y有最小值k;当a<0时,y有最大值k. 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) ~ 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

高中数学九大解题技巧

高中数学九大解题技巧 1、配法通过把一个解析式利用恒等变形的,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的,叫配。配用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学在代数、几何、三角等的解题中起着重要的作用。因式分解的有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的

高一数学 必修二与圆有关的轨迹问题

高一数学 4.1.2 与圆有关的轨迹问题课时 1 【学习目标】 1.初步理解用代数方法处理几何问题的思想,坐标法 3. 初步学习用代入法,定义法求点的轨迹方程,了解求点的轨迹方程的方法,步骤。【学习重点】求点的轨迹方程的方法,步骤。 【学习难点】求点轨迹的过程中寻找动点满足的几何关系 复习案 1、复习P92直线的点斜式方程的推导过程初步体会求点的轨迹的过程,方法 2、复习P118圆的标准方程方程的推导过程初步体会求点的轨迹的过程,方法。 学习案 动点M的坐标(x,y)满足的关系式称为点M的轨迹方程 例1、已知线段AB的端点B的坐标是(4,3),端点A在圆22 (1)4 x y ++=上运动,求线段AB的中点M的轨迹方程。(试着作图,当点A在圆上运动时,追踪中点M的轨迹) 小结 当动点M的变化是由点P的变化引起的,并且已知点P在某一曲线C上运动时,常用代入法(也称相关点法)求动点M的轨迹方程,其步骤是:(1)设动点M的坐标为(x,y);(2)用点M的坐标表示点P的坐标;(3)将所得点P的坐标代入曲线C的方程,即得点M的轨迹方程 变式训练、 1、过原点O做圆2280 x y x +-=的弦OA求弦OA的中点M的轨迹方程 例2若Rt ABC ?的斜边的两端点A、B的坐标分别为(-3,0)(7,0)求直角顶点C的轨迹方程例3、已知点A(-3,0),B(3,0),动点P满足2 PA PB =,求点P 的轨迹方程分析:找出动点满足的关系式,代入动点的坐标,可得轨迹方程,由轨迹方程确定曲线的形状. 课堂小结 总结:求曲线的轨迹方程的步骤 (1)建立适当坐标系,设出动点M的坐标(x,y) (2)列出点M满足条件的集合 (3)用坐标表示上述条件,列出方程 (4)将上述方程化简。 (5)证明化简后的以方程的解为坐标的解都是轨迹上的点。 练习 1、一动点到A(-4,0)的距离是到B(2,0)的距离的2倍,求动点的轨迹方程 2、已知两定点A(-2,0),B(1,0),若动点P满足2 PA PB =,则点P的轨迹方程 3、已知圆的方程为:2266140 x y x y +--+=,求过点() 3,5 A--的直线交圆得到的弦PQ 的中点M的轨迹方程 4、等腰三角形的顶点A的坐标是(4,2),底边一个端点B的坐标是(3,5),求另一个端点C的轨迹方程。

高中数学专题讲解之抛物线

高中数学专题讲解之 抛物线 考点1 抛物线的定义: 平面上与一个定点F 和一条直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 抛物线的定义中条件“F 不在l 上”不可遗漏,否则,如果F 在l 上,则轨迹为过F 且与l 垂直的直线。 题型: 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 例1、(1)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 (2)抛物线y=4上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. B. C. D. 0 例2、求平面内到原点与直线20x y --=距离相等的点的轨迹方程,并指出轨迹所表示的曲线。 例3、求到点A ()2,0-的距离比到直线:3l x =的距离小1的点的轨迹方程。 巩固练习: 1.已知抛物线的焦点为,点,在抛物线上,且、、成等差数列, 则有 ( ) A . B . C . D. 2.已知点F 是抛物线的焦点,M 是抛物线上的动点,当最小时, M 点坐标是 ( ) 2 x 16 17161587 2 2(0)y px p =>F 111222()()P x y P x y ,,,333()P x y ,||1F P ||2F P ||3F P 321x x x =+321y y y =+2312x x x =+2312y y y =+),4,3(A x y 82 =MF MA +

A. B. C. D. 3.已知方程()2 20x py p =->的抛物线上有一点M (),3m -,点M 到焦点F 的距离为5, 求m 的值。 4、在正方体1111D C B A ABCD -的侧面11A ABB 内有一动点P 到直线11B A 与直线BC 的距 离相等,则动点P 所在的曲线的形状为…………( ) 考点2 抛物线的标准方程 题型:求抛物线的标准方程 例4、求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线上 巩固练习: 1、若抛物线的焦点与双曲线的右焦点重合,则的值 2、对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号) )0,0()62,3()4,2()62,3(-240x y --=2 2y px =2 213 x y -= p A B 1 B A (A) A B 1 B (B) A B 1 B (C) A B 1 B A (D)

相关文档
相关文档 最新文档