文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学下册 2 圆小专题(五)圆中常见辅助线的作法习题 (新版)湘教版

九年级数学下册 2 圆小专题(五)圆中常见辅助线的作法习题 (新版)湘教版

九年级数学下册 2 圆小专题(五)圆中常见辅助线的作法习题 (新版)湘教版
九年级数学下册 2 圆小专题(五)圆中常见辅助线的作法习题 (新版)湘教版

小专题(五)圆中常见辅助线的作法

圆中常见辅助线的添加口诀及技巧

半径与弦长计算,弦心距来中间站.

圆上若有一切线,切点圆心半径连.

要想证明是切线,半径垂线仔细辨.

是直径,成半圆,想成直角径连弦.

弧有中点圆心连,垂径定理要记全.

圆周角边两条弦,直径和弦端点连.

还要作个内切圆,内角平分线梦圆.

三角形与扇形联姻,巧妙阴影部分算.

一、连半径——构造等腰三角形

1.如图,在⊙O中,AB为⊙O的弦,C,D是直线AB上的两点,且AC=BD.求证:△OCD是等腰三角形.

二、半径与弦长计算,弦心距来中间站

方法归纳:在圆中,求弦长、半径或圆心到弦的距离时,常过圆心作弦的垂线段,再连接半径构成直角三角形,利用勾股定理进行计算.在弦长、弦心距、半径三个量中,已知任意两个可求另一个.

2.如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,求排水管内水的深度.

三、见到直径——构造直径所对的圆周角

方法归纳:构造直径所对的圆周角,这是圆中常用的辅助线作法,可充分利用“半圆(或直径)所对的圆周角是直角”这一性质.

3.如图,AB为⊙O的直径,弦C D与AB相交于点E.∠ACD=60°,∠ADC=50°,求∠CEB的度数.

四、有圆的切线时,常常连接圆心和切点得切线垂直于半径

方法归纳:已知圆的切线时,常把切点与圆心连接起来,得半径与切线垂直,构造直角三角形,再利用直角三角形的有关性质解题.

4.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于点F.切点为G,连接AG交CD于点K.求证:KE=GE.

五、“连半径证垂直”与“作垂直证半径”——判定直线与圆相切

方法归纳:证明一条直线是圆的切线,当直线与圆有公共点时,只需“连半径、证垂直”即可;当已知条件中没有指出圆与直线有公共点时,常运用“d=r”进行判断,辅助线的作法是过圆心作已知直线的垂线,证明垂线段的长等于半径.

5.如图,点A,B,C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.求证:AP是⊙O的切线.

6.如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

六、内切圆,连接内角平分线把梦圆

方法归纳:利用内心与顶点的连线平分这个内角以及三角形的外角,同弧所对的圆周角相等进行角的转换.

7.如图,△ABC 中,E 是内心,AE 延长线交△ABC 的外接圆于点D.求证:DE =DB.

七、构造扇形与三角形,化不规则图形的面积为规则图形的面积

方法归纳:通过等积替换化不规则图形为规则图形,在等积转化中,(1)可以根据平移、旋转或轴对称等图形变换;

(2)可根据同底(等底)同高(等高)的三角形面积相等进行转化.

8.如图,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA,连接AC ,求阴影部分的面积.

参考答案

1.证明:连接OA ,OB.

∵OA ,OB 是⊙O 的半径,

∴OA =OB.

∴∠OAB =∠OBA.

∴∠OAC=∠OBD.

在△AOC 和△BOD 中,?????OA =OB ,∠OAC =∠OBD,AC =BD ,

∴△AOC ≌△BOD(SAS).

∴OC =OD ,即△OCD 是等腰三角形.

2.过O 点作OC⊥AB,点C 为垂足,交⊙O 于点D ,E ,连接OA.OA =0.5 m ,AB =0.8 m .

∵OC ⊥AB ,

∴AC =BC =0.4 m .

在Rt △AOC 中,OA 2=AC 2+OC 2,

∴OC =0.3 m ,则CE =0.3+0.5=0.8(m).

3.连接BD.

∵AB为⊙O的直径,

∴∠ADB=90°.

又∵∠ADC=50°,

∴∠CDB=∠ADB-∠ADC=40°.

∵∠CDB与∠CAB是同弧所对的圆周角,

∴∠CDB=∠CAB=40°.

∴∠CEB=∠CAB+∠ACD=40°+60°=100°.

4.证明:连接OG.

∵FE切⊙O于点G,

∴∠OGE=90°,∠OGA+∠AGE=90°.

∵CD⊥AB,

∴∠OAK+∠AKH=90°.

又∵∠AKH=∠GKE,

∴∠OAK+∠GKE=90°.

∵OG=OA,

∴∠OGA=∠OAG.

∴∠KGE=∠GKE.

∴KE=GE.

5.证明:连接OA.

∵∠B=60°,

∴∠AOC=2∠B=120°.

又∵OA=OC,

∴∠ACP=∠CAO=30°.

∴∠AOP=60°.

又∵AC=AP,

∴∠P=∠ACP=30°.

∴∠OAP=90°.

∴OA⊥AP.

∴AP是⊙O的切线.

6.证明:连接OD,过点O作OE⊥AC于点E,则∠OEC=90°.

∵AB切⊙O于点D,

∴OD⊥AB.

∴∠ODB=90°.

∴∠ODB=∠OEC.

又∵O是BC的中点,

∴OB=OC.

∵AB=AC,

∴∠B=∠C.

∴△OBD≌△OCE(AAS).

∴OE=OD,即OE是⊙O的半径.

∴AC与⊙O相切.

7.证明:连接BE.

∵E为△ABC的内心,

∴∠ABE=∠CBE,∠BAD=∠DAC.

∵∠DEB=∠ABE+∠BAD,∠DBE=∠CBE+∠DBC,而∠DBC=∠DAC=∠BAD,∴∠DEB=∠DBE,

∴DE=DB.

8.连接OB,OC.

∵BC∥OA,

∴△OBC 和△ABC 同底等高. ∴S △ABC =S △OBC .

∴S 阴影=S 扇形OBC .

∵AB 是⊙O 的切线, ∴OB ⊥AB.

∵OA =4,OB =2, ∴∠AOB =60°.

∵BC ∥OA ,

∴∠AOB =∠OBC=60°. ∵OB =OC ,

∴△OBC 为正三角形. ∴∠OCB=60°.

∴S 阴影=S 扇形OBC =60π×22360=2π3.

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

九年级上册数学 圆 几何综合章末训练(Word版 含解析)

九年级上册数学 圆 几何综合章末训练(Word 版 含解析) 一、初三数学 圆易错题压轴题(难) 1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。 (1)求这条抛物线的解析式; (2)求点E 的坐标; (3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由 【答案】(1)y=x 2 +2x-8(2)(-1,- 72)(3)(-8,40),(-15 4,-1316),(-174 ,-25 16 ) 【解析】 分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值; (2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点 G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值, 从而求出点E 的坐标; (3)设点P (a , a 2+2a -8), 则2 28,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时 和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标. 详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-

初中数学--辅助线典型做法汇总

初中数学| 辅助线典型做法汇总(珍藏版) 三角形中常见辅助线的添加 1. 与角平分线有关的 (1)可向两边作垂线。 (2)可作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形 2. 与线段长度相关的 (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可 (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可 (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。 (4)遇到中点,考虑中位线或等腰等边中的三线合一。 3. 与等腰等边三角形相关的 (1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 ° 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形。在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。 (1)利用一组对边平行且相等构造平行四边形 (2)利用两组对边平行构造平行四边形 (3)利用对角线互相平分构造平行四边形 2. 与矩形有辅助线作法

(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。 (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。和矩形有关的试题的辅助线的作法较少。 3. 和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。 (1)作菱形的高 (2)连结菱形的对角线 4. 与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。 5. 与梯形有关的辅助线的作法 和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型: (1)作一腰的平行线构造平行四边形和特殊三角形 (2)作梯形的高,构造矩形和直角三角形 (3)作一对角线的平行线,构造直角三角形和平行四边形 (4)延长两腰构成三角形 (5)作两腰的平行线等 圆中常见辅助线的添加 1. 遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用: ①利用垂径定理 ②利用圆心角及其所对的弧、弦和弦心距之间的关系 ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量 2. 遇到有直径时,常常添加(画)直径所对的圆周角 作用:利用圆周角的性质得到直角或直角三角形 3. 遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点 作用:利用圆周角的性质,可得到直径

九年级数学圆 几何综合单元达标训练题(Word版 含答案)

九年级数学圆几何综合单元达标训练题(Word版含答案) 一、初三数学圆易错题压轴题(难) 1.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G. (1)求证:∠ECG=∠BDC. (2)当AB=6时,在点F的整个运动过程中. ①若BF=22时,求CE的长. ②当△CEG为等腰三角形时,求所有满足条件的BE的长. (3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出1 2 S S的值. 【答案】(1)详见解析;(2)① 182 5 ;②当BE为10, 39 5 或 44 5 时,△CEG为等腰三角形;(3) 7 24 . 【解析】 【分析】 (1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论; (2)根据勾股定理求得BD=10, ①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC =sin∠CBD,得出 3 5 CE CD CF BD ==,根据勾股定理得到CF=62CE 18 2 5 ; ②分三种情况讨论求得: 当EG=CG时,根据等腰三角形的性质和圆周角定理即可得到∠GEC=∠GCE=∠ABD= ∠BDC,从而证得E、D重合,即可得到BE=BD=10; 当GE=CE时,过点C作CH⊥BD于点H,即可得到∠EGC=∠ECG=∠ABD=∠GDC,得到CG=CD=6.根据三角形面积公式求得CH= 24 5 ,即可根据勾股定理求得GH,进而求得HE,即可求得BE=BH+HE= 39 5 ;

初中数学证明题常见辅助线作法规律.

初中数学证明题常见辅助线作法规律 初中数学证明题常见辅助线作法记忆歌诀;及几何规律汇编;人们从来就是用自己的聪明才智创造条件解决问题的,;初中几何常见辅助线作法歌诀;人说几何很困难,难点就在辅助线;辅助线,如何添?把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形;图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试 初中数学证明题常见辅助线作法记忆歌诀 及几何规律汇编 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 初中几何常见辅助线作法歌诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

初中数学圆中常作哪些辅助线

圆中常作哪些辅助线? 通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下: 弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间. 一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连.”. 例1.如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M ,求 证:PM ?PN=2PO 2. 分析:要证明PM ?PN=2PO 2,即证明PM ? PN 2 1 =PO 2, 过O 点作OC ⊥PN 于C ,根据垂经定理 PN 2 1 =PC ,只需证明 PM ?PC=PO 2,由POC PMO O P M P C P O P ???? = 。。 。 。。,“三点定型”法可判断需证 明Rt △POC ∽Rt △PMO. 证明: 过圆心O 作OC ⊥PN 于C ,∴PC= 2 1PN ∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=900. 又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO. P B A N O C M

∴ PO PM PC PO ,即∴PO 2= PM ?PC. ∴PO 2= PM ?2 1 PN ,∴PM ?PN=2PO 2. 二、连结半径 圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径与切线相互垂直”都与圆的半径有关.连结半径是常用的方法之一. 例2.已知:△ABC 中,∠B=900,O 是AB 上一点,以O 为圆心,以OB 为半径的圆切AC 与D 点,交AB 与E 点,AD=2,AE=1. 求证:CD 的长. 分析:D 为切点,连结DO ,∠ODA=900.根据切线长定理 CD=CB.DO=EO= 半径r ,在Rt △ADO 中根据勾股定理或 Rt △ADO~ Rt △ABC ,求出CD. 证明: 连结DO ∴OD ⊥AC 于D, ∴∠OCP=900. ∵AB 过O 点, ∠B=900. ∴BC 为⊙O 的切线, ∴CD=CB 设CD=CB=x,DO=EO=y 在Rt △ADO 中,AO 2 =AD 2+ DO 2,AD=2,AE=1 ∴(1+y)2=22+y 2, ∴ y= 2 3 在Rt △ABC 中,AC 2 =AB 2+ BC 2,即(2+x)2=(1+ 23+2 3)2+x 2 , ∴x=3 ∴CD=3. 三、连结公共弦 在处理有关两圆相交的问题时,公共弦像一把 A B C D E O C A B D E O 2 O 1 P

九年级 数学圆的基本性质专题练习

圆的基本性质专题练习 一、选择题 A1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) A .4个 B .3个 C . 2个 D . 1个 A2如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论①AB ⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C ,⑤,正确结论的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个 A3.如图,点B 、C 在⊙O 上,且BO=BC ,则圆周角BAC ∠等于( ) A .60? B .50? C .40? D .30? A4.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠B 大小为 ( ) A .25° B .35° C .45° D .65° A5. 已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为 A .2.5 B .5 C .10 D .15 A6、如图,AB 是⊙O 的弦,半径OA=2, 120=∠AOB ,则弦AB 的长是 ( ) (A )22 (B )32 (C )5 (D )23 B7.如图2,△ABC 内接于⊙O ,若∠OA B=28°,则∠C 的大小是( ) A .62° B .56° C .28° D .32° B8. 如图,点A 、B 、P 在⊙O 上,且∠APB=50°若点M 是⊙O 上的动 点,要使△ABM 为等腰三角形,则所有符合条件的点M 有 A .1个 B .2个 C .3个 D .4个 B9、 如图,⊙O 过点B 、C 。圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6, 则⊙O 的半径为( ) A )10 B )32 C )23 D )13 C10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ) A. (45)+ cm B. 9 cm C. 45cm D. 62cm (第2题图) (第3题图) (第4题图) (第6题图) (第7题图) (第8题图)

九年级数学圆综合练习题

圆的定义、垂径定理、弦、弧、圆心角、圆周角练习 1.如下图,已知CD 是的直径,过点D 的弦DE 平行于半径OA 若/ D 的度数是50°,则/C 的 度数是() C )30° D )25° 2.如上图,两正方形彼此相邻,且大正方形内接于半圆,若小正方形的面积为 16cm 2,则该半圆的 半径为( )? A ) (4 ,5) cm B ) 9 cm C ) 45 cm D ) 6.2 cm A. AB>2AM B. AB=2AM C. AB<2AM D. AB 与2AM 的大小不能确定 限内O B 上一点, BMO 120°,则O C 的半径为( ) A. 6 B. 5 C 3 D. 5.如下图,P 为O O 的弦AB 上的点,PA=6, PB=2,O O 的半径为5, 6. 第7题图 如上图,扇形的半径是2cm ,圆心角是40 ,点C 为弧AB 的中点,点P 在直线OB 上,则PA PC 的 最小值为 _____________ cm 7. 如图,在半径为5的O 0中,弦AB=6点C 是优弧A B 上一点(不与A 、B 重合),则cosC 的值 8.圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数为: 第1题图 第2题图 第4题图 3. O O 中,M 为匚的中点,则下列结论正确的是() 4.如上图,O C 过原点,且与两坐标轴分别交于点 A ,点 B ,点A 的坐标为(0, 3),M 是第三象

9.如图,点A、B、C、D在。O上,O点在/ D的内部,四边形OABC为平行四边形,则/ OAD# AC于另一点E,交AB于点F,G,连接EF若/ BAC=22o,则/ EFG _______ . 11. 如图,以原点O为圆心的圆交x轴于点A B两点,交y轴的正半轴于点C, D为第一象限内。O 上的一点,若/ DAB= 20。,则 / OCD= _____________ . 12. 已知:如图,AB是O O的直径,CD是O O的弦,AB, CD的延长线交于E,若AB=2DE / E=18°, 求/C及/ AOC勺度数. AB是O O的直径,弦CD交AB于E点,BE=1, AE=5,Z AE(=30°,求CD的长. 14.如图,AB为O O的弦,C、D为弦AB上两点, 证明:AE=BF. 13.已知:如图, OCD= _____ ° F ,

九年级数学上册《中位线》教案1 华东师大版

中位线 教学目标: 1、经历三角形中位线的性质定理和梯形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题。 2、通过命题的教学了解常用的辅助线的作法,并能灵活运用它们解题。 3、进一步训练说理的能力。 4、通过学习,进一步培养自主探究和合作交流的学习习惯;进一步了解特殊与一般的辩证唯物主义观点;转化的思想。 教学重点: 经历三角形中位线的性质定理和梯形中位线的性质定理形成过程,掌握两个定理,并能利用它们解决简单的问题。 教学难点: 进一步训练说理的能力。 教学过程: 一、三角形的中位线 (一)问题导入 在§24.3中,我们曾解决过如下的问题: 如图24.4.1,△ABC中,DE∥BC,则△ADE∽△ABC。 由此可以进一步推知,当点D是AB的中点时,点E也是AC的中点。 现在换一个角度考虑, 图24.4.1 如果点D、E原来就是AB与AC的中点,那么是否可以推出DE∥BC呢?DE与BC之间存在什么样的数量关系呢? (二)探究过程

1、猜想 从画出的图形看,可以猜想: DE ∥BC ,且DE =21BC . 图24.4.2 2、证明:如图24.4.2,△ABC 中,点 D 、 E 分别是AB 与AC 的中点, ∴ 2 1==AC AE AB AD . ∵ ∠A =∠A , ∴ △ADE ∽△ABC (如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似), ∴ ∠ADE =∠ABC ,2 1=BC DE (相似三角形的对应角相等,对应边成比例), ∴ DE ∥BC 且BC DE 2 1= 思考:本题还有其它的解法吗? 已知: 如图所示,在△ABC 中,AD =DB ,AE =EC 。 求证: DE ∥BC ,DE =2 1BC 。 分析: 要证DE ∥BC ,DE =2 1BC ,可延长DE 到F ,使EF =DE ,于是本题就转化为证明DF =BC ,DE ∥BC , 故只要证明四边形BCFD 为平行四边形。 还可以作如下的辅助线作法。 3、概括 我们把连结三角形两边中点的线段叫做三角形的中位线,并且有

九年级数学圆中常见辅助线作法

圆中常见辅助线的作法 典型例题: 例题1、如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B ,C 是 弧AB 上 任意一点,过C 作⊙O 的切线分别交PA 、PB 于D 、E ,若△PDE 的周长为12,则PA 长为______________ 例题2、如图所示,已知AB 是⊙O 的直径,AC ⊥L 于C ,BD ⊥L 于D ,且AC+BD=AB 。 求证:直线L 与⊙O 相切。 例题3、如图,AB 是⊙O 的直径,弦AC 与AB 成30°角,CD 与⊙O 切于C , 交AB?的延长线于D ,求证:AC=CD . 例题4、如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点, 那么OP 的长的取值范围是_________.

B A C B 1. 遇到弦时(解决有关弦的问题时) 1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 2. 遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形 3. 遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 4. 遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点 作用:利用切线的性质定理可得OA ⊥AB ,得到直角或直角三角形。 (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 5. 遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线 段,再证垂足到圆心的距离等于半径。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

人教版九年级数学上册 圆 几何综合专题练习(word版

人教版九年级数学上册 圆 几何综合专题练习(word 版 一、初三数学 圆易错题压轴题(难) 1.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心. (1)求证:△ABD ≌△AFE (2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围. 【答案】(1)证明见解析(2)16π<S ≤40π 【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围, 24 S DE π = ,所以利用二次函 数的性质求出最值. 试题解析:(1)连接EF , ∵△ADE 是等腰直角三角形,AE=AD , ∴∠EAD=90°,∠AED=∠ADE=45°, ∵AE AE = , ∴∠ADE=∠AFE=45°, ∵∠ABD=45°, ∴∠ABD=∠AFE , ∵AF AF =, ∴∠AEF=∠ADB , ∵AE=AD , ∴△ABD ≌△AFE ; (2)∵△ABD ≌△AFE , ∴BD=EF ,∠EAF=∠BAD , ∴∠BAF=∠EAD=90°, ∵42AB =, ∴BF= 2 cos cos45 AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8,

∵BE 2 =EF 2 +BF 2 , 82<BE ≤413 , ∴128<EF 2+82 ≤208, ∴8<EF ≤12,即8<x ≤12, 则()22284 4S DE x x π π??== +-? ?=()2 482 x ππ-+, ∵ 2 π >0, ∴抛物线的开口向上, 又∵对称轴为直线x=4, ∴当8<x ≤12时,S 随x 的增大而增大, ∴16π<S ≤40π. 点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值. 2.在△ABC 中,∠A=90°,AB=4,AC=3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN∥BC 交AC 于点N . (1)如图1,把△AMN 沿直线MN 折叠得到△PMN,设AM=x . i .若点P 正好在边BC 上,求x 的值; ii .在M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数关系式,并求y 的最大值. (2)如图2,以MN 为直径作⊙O,并在⊙O 内作内接矩形AMQN .试判断直线BC 与⊙O 的位置关系,并说明理由. 【答案】(1)i .当x=2时,点P 恰好落在边BC 上;ii . y=,

人教版数学九年级中考备考训练习题:圆的综合(含答案)

人教版数学九年级中考备考训练习题:圆的综合(含答案)1.如图,四边形ABCD是正方形,E是AD边上的一个动点(有与A、D重合),以E为圆心,EA为半径的⊙E交CE于G点,CF与⊙E切于F点.AD=4,AE=x,CF2=y.(1)求y与x的函数关系式,并写出x的取值范围; (2)是否存在x的值,使得FG把△CEF的面积分成1:2两部分?若存在,求出x的值;若不存在,请说明理由. 解:(1)∵CF与⊙E切于F点, ∴EF⊥CF, ∵AE=x,AD=4, ∴DE=4﹣x, ∵四边形ABCD是正方形, ∴CD=AD=4,∠ADC=90°, ∴CE2=DE2+CD2=(4﹣x)2+16, 在Rt△EFC中,CF2=CE2﹣EF2, ∴y=(4﹣x)2+16﹣x2=32﹣8x(0<x<4); (2)∵FG把△CEF的面积分成1:2两部分, ∴EG=EC,或EG=EC, ∴x=,或x= ∴x=±﹣,或x= ∵0<x<4, ∴x=,或x=. 2.AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E

在AB的延长线上,∠A=∠BCE. (1)求证:CE是⊙O的切线; (2)若BC=BE,判定四边形OBCD的形状,并说明理由. (1)证明:∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠ACO+∠BCO=90°, ∵OC=OA, ∴∠A=∠ACO, ∴∠A+∠BCO=90°, ∵∠A=∠BCE, ∴∠BCE+∠BCO=90°, ∴∠OCE=90°, ∴CE是⊙O的切线; (2)解:四边形OBCD是菱形, 理由:∵BC=BE, ∴∠E=∠ECB, ∵∠BCO+∠BCE=∠COB+∠E=90°, ∴∠BCO=∠BOC, ∴BC=OB, ∴△BCO是等边三角形, ∴∠AOC=120°, ∵F是AC的中点, ∴AF=CF, ∵OA=OC, ∴∠AOD=∠COD=60°,

初中数学圆的辅助线八种作法

中考数学圆的辅助线 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90° => △OPE ≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证 AB ( BD , ( CD ( D C B P O A E F P B 图 1 AC ( AC ( BD ( AB ( CD (

∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AC=BD =>AP=DP OA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP 2.有直径,可作直径上的圆周角 对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。 例2 如图2,在△ABC 中,AB=AC , 以AB 为直径作⊙O 交BC 于点D ,过D 作⊙O 的切线DM 交AC 于M 。求证 DM ⊥AC 。 分析:由AB 是直径,很自然想到其所 B D C M A O . A 2 1 图 2 D C B P O A P B 图1-1

上海市初三数学复习专题及答案 圆的基础知识

授课类型T圆的基础T综合题目 授课日期及时段 教学内容 题型一:圆的有关概念及其性质 (宝山区)6.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条直径翻折,可以看到直径两侧的两个半圆互相重合”。由此说明:(B) (A)圆是中心对称图形,圆心是它的对称中心; (B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分; (D)垂直弦的直径平分弦及弦所对的弧. 题型二:点与圆的位置关系 (普陀区)17.在Rt△ABC中,∠C=90°,AC=5,BC=8,如果以点C为圆心作圆,使点A在圆C内,点B在圆C 外,那么圆C半径r的取值范围为______________ 题型三:垂径定理的应用 (长宁区)14. 点A B ,是⊙O上两点,10 AB=,点P是⊙O上的动点(P与A B ,不重合),连结AP PB ,过点O分别作OE AP ⊥于E,OF PB ⊥于F,则EF=______________ 17. 如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8. 则sin∠ABD=______________ (闸北区)18.如图七,直径AB⊥弦CD于点E,设AE x =,BE y =,用含x y ,的式子表示运动的弦CD和与之垂直的直径AB的大小关系______________ O D C B A 第17题 x y C B D A O E ( 图 七 )

C B E · O D A y x ? O P A (崇明区)18、如图,AB 是圆O 的直径,2=AB ,弦3=AC ,若D 为圆上一点,且1=AD , 则=∠DAC ______________ (奉贤区)18.如图,⊙O 的半径是10cm ,弦AB 的长是12cm ,OC 是⊙O 的半径且OC AB ⊥, 垂足为D ,CD =______________ (虹口区)17.如图3,AB 是⊙O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =, 那么AE 的长为______________ (长宁区)15.铲车轮胎在建筑工地的泥地上留下圆弧形凹坑如图所示,量得凹坑跨度AB 为80cm ,凹坑最大深度CD 为20cm ,由此可算得铲车轮胎半径为______________ (金山区) 18. 如图,在平面直角坐标系中点()3,4P ,以P 为圆心,PO 长为半径作⊙P , 则⊙P 截x 轴所得弦OA 的长是______________ (闵行区) 16.如图,水平放置的圆柱形油桶的截面半径r = 4,油面(阴影部分)高为3 2 r , 那么截面上油面的面积为______________(答案保留π及根号) (静安区)16.如图,⊙O 的的半径为3,直径AB ⊥弦CD ,垂足为E ,点F 是BC 的中点, 那么EF 2+OF 2 =______________ 练习 C A O B A B O D C A B D C A C D F O B E 32 r

九年级数学上册 圆中计算及综合训练习题 新人教版

C B O 12cm 圆中计算及综合训练(习题) 1.如图,AB 与⊙O 相切于点B,OA= 2 OA,则劣弧BC 的弧长为. ,AB=3,若弦BC∥ A 6cm 第1 题图第2 题图 2.一圆锥的主视图如图所示,则该圆锥侧面展开图的圆心角的度数为 . 3.已知圆锥底面圆的半径为 6 cm,高为 8 cm,则该圆锥的侧面积为 cm2. 4.如图,把一个半径为12 cm 的圆形硬纸片等分成三个扇形,用其中 一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则该圆锥的底面半径是cm. 5.如图,在 Rt△ABC 中,∠C=90°,CA=CB=4.分别以A,B, C 为圆心,以 1 AC 为半径画弧,则三条弧与边AB 所围成的 2 阴影部分的面积是. C A B 6.已知在△ABC 中,AB=6,AC=8,∠A=90°.把Rt△ABC 绕直线AC 旋转 一周得到一个圆锥,其表面积为S1,把 Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S2,则S1:S2= . 3

Q O D B B O A C 7. 如图,在 Rt △ABC 中,∠ABC =90°,AB =3,BC = 3 3 ,P 是 BC 边上的动点.设 BP =x ,若能在 AC 边上找到一点 Q ,使 ∠BQP =90°,则 x 的取值范围是 .(提示:考虑 90° 的圆周角所对的弦是直径) A B C 8. 如图,在△ABC 中,AB =AC ,以 AB 为直径的⊙O 交 AC 边于点 D ,过 点 C 作 CF ∥AB ,与过点 B 的切线交于点 F ,连接 BD . (1)求证:BD =BF ; (2)若 AB =10,CD =4,求 BC 的长. A F ︵ 9. 如图,已知⊙O 的直径 AB =12,弦 AC =10,D 是BC 的中点, 过点 D 作 DE ⊥AC ,交 AC 的延长线于点 E . (1)求证:DE 是⊙O 的切线; (2)求 AE 的长. D E

九年级中考数学圆的综合解答题压轴题提高专题练习及详细答案.doc

九年级中考数学圆的综合解答题压轴题提高专题练习及详细答案 一、圆的综合 1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距 离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相 切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形 (性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB, CD 与 BC, AD 之间的数量关系 猜想结论:(要求用文字语言叙述) 写出证明过程(利用图1,写出已知、求证、证明) (性质应用) ① 初中学过的下列四边形中哪些是圆外切四边形(填序号) A:平行四边形:B:菱形: C:矩形; D:正方形 ②如图 2,圆外切四边形ABCD,且 AB=12, CD=8,则四边形的周长是. ③圆外切四边形的周长为48cm,相邻的三条边的比为5:4: 7,求四边形各边的长. 【答案】见解析. 【解析】 【分析】 (1)根据切线长定理即可得出结论; (2)①圆外切四边形是内心到四边的距离相等,即可得出结论; ② 根据圆外切四边形的对边和相等,即可求出结论; ③ 根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论. 【详解】 性质探讨:圆外切四边形的对边和相等,理由: 如图 1,已知:四边形ABCD的四边 AB, BC,CD, DA 都于⊙ O 相切于 G, F, E, H. 求证: AD+BC=AB+CD. 证明:∵ AB, AD 和⊙O 相切,∴ AG=AH,同理: BG=BF,CE=CF,DE=DH, ∴A D+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相 等.故答案为:圆外切四边形的对边和相等; 性质应用:① ∵根据圆外切四边形的定义得:圆心到四边的距离相等. ∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边 的距离相等. 故答案为: B, D;

人教版 九年级数学 第24章 圆 综合训练(含答案)

亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。请同学们认真、规范答题!老师期待与你一起分享你的学习成果! 人教版 九年级数学 第24章 圆 综合训练 一、选择题 1. 如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( ) A. 10 B. 2 3 C. 13 D. 3 2 2. 如图,等边三角形 ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB , AC 相切,则☉O 的半径为 ( ) A .2 B .3 C .4 D .4- 3. 如图,在⊙O 中,若C 是AB ︵ 的中点,∠A =50°,则∠BOC 的度数是( ) A .40° B .45° C .50° D .60° 4. 已知⊙O 的半径为2,点P 到圆心O 的距离为4,则点P 在( ) A .⊙O 内 B .⊙O 上 C .⊙O 外 D .无法确定

5. 在⊙O 中,M 为AB ︵ 的中点,则下列结论正确的是( ) A .A B >2AM B .AB =2AM C .AB <2AM D .AB 与2AM 的大小关系不能确定 6. (2020·攀枝花) 如图,直径6AB =的半圆,绕B 点顺时针旋转30?,此时点 A 到了点A ',则图中阴影部分的面积是( ) A' A A. 2π B. 34 π C. π D. 3π 7. 如图,将两张完全相同的正六边形纸片(边长为 2a )重合在一起,下面一张纸片 保持不动,将上面一张纸片沿水平方向向左平移a 个单位长度,则空白部分与阴影部分的面积之比是( ) A .5∶2 B .3∶2 C .3∶1 D .2∶1 8. 如图,将半径为 6的⊙O 沿AB 折叠,AB ︵ 与垂直于AB 的半径OC 交于点D , 且CD =2OD ,则折痕AB 的长为( ) A .4 2 B .8 2 C .6 D .6 3 二、填空题 9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

相关文档
相关文档 最新文档