文档库 最新最全的文档下载
当前位置:文档库 › 磁共振的临床应用价值

磁共振的临床应用价值

磁共振的临床应用价值
磁共振的临床应用价值

磁共振的临床应用价值

1、MRI比较于CT的优势

MRI利用人体中最多的氢质子在磁场中产生的共振效应,通过计算机处理后得到的图像。根据图像的性质不同,一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。而CT是依赖于组织的X线衰减(CT值)。这是它们图像上的基本不同。所以,MRI相对于CT的优势非常明显:

1、MRI有很高的组织对比分辨率:MRI成像主要是考察组织的含水量的多少以及所含水的特性不同。也就是说,含水量不同,MRI图像上就可以明显区分开来,即使含水量一样,由于所含水的特性(比如弛豫特性、流动特性、扩散特性等等)不同,在MRI的图像上,最终表现出来的信号会完全不同。所以MRI的图像在所有的影像学图像中,是最接近于人体实际解剖结构的,甚至可以说和解剖书上的示图完全一样,非常直观。在考察软组织病变,特别是占位性病变比如脑膜瘤,胶质瘤,垂体腺瘤等等时,MRI的优势巨大。MRI图像上病变边缘会较CT 清晰锐利得多,完全可以确定占位性病变的边界,对临床手术及切除后复诊起到极其重要的指导意义。

2、MRI有多种参数的选择与变化从而有可能对各种病变的性质加以判断。CT只能通过CT值的变化来进行诊断,参数只有CT值一个。MRI的参数有几十种之多,经常用到的就有十几种。根据参数选择的不同,MRI的图像就会完全不同。一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。临床上最常用到的是T1加权像(又称解剖像)和T2加权像(又称病理像)。举例来说,脂肪在T1加权像和T2加权像上均为高信号,肌肉、肝脏、胰腺等组织器官在T1加权像上为中等信号,而在T2加权像上则为较低信号,肺组织,大血管,钙化等在上述图像上均为一般均匀低信号,而肾、脾等组织器官在T1加权像上为较低信号,在质子像和T2加权像上均为较高信号。通过选择不同的参数,得到几种不同信号表现的图像,MRI可以将每种组织器官及病变完全区分开来,而不同的组织的CT值有可能完全一样,这时CT的局限性就暴露出来了。

3、MRI没有放射线的损害,MRI使用的是无线电波进行检测,频率也不高,以0.35T为例,频率仅为14.9MHz,并且持续时间很短。MRI只产生非常微量的热效应,人体几乎感觉不到。相对于CT所使用的射线,MRI无疑是一种环保的,

绿色的影像学检测手段。

4、MRI可以多方位,多平面的成像,对病变的位置及范围可更准确的加以判断。CT受扫描机架结构的限制,只能进行横断面的扫描,即使扫描时能够倾斜机架,角度也是非常有限的。而MRI能够进行任意断面的成像,CT当然也可以通过图像重建来得到除横断位外其他截面的图像,但这毕竟只是重建出来的,不是真实的,而且在扫描片层这个方向上,具有先天性的分辨率不足。而MRI 选择成像方位是通过梯度来控制的,任意方位的图像都是真实的。相对于CT,MRI在临床诊断上的这个优势也非常明显。比如在脊柱成像方面最常见的椎间盘膨出,从矢状面进行观察就会清楚得多。在垂体腺瘤,从冠状面进行观察是最清楚的。这些都是MRI可以轻松做到,而CT则是比较困难的。

5、MRI常不需要造影剂就可对部分病变的性质进行判断,同时也不用注射造影剂便可对血管,淋巴结或肿块进行准确判断。在CT图像上,肿瘤密度与软组织密度近似,一般需注射造影剂才能更好的显示及定性。而MRI具有天生的软组织对比度优异的优势,无需注射造影剂,只需选择合适的成像参数就可以区分开来。在血管造影,胰胆管造影,泌尿系造影等方面,MRI都是不需要注射造影剂就可以完成检查,检查时间短且无创,病人感觉舒适,非常乐意接受。医生操作起来也非常容易。在这些临床应用的诊断方面,MRI可以提供更为丰富,更为准确的信息。

6、 MRI还可以进行一些非常特殊的临床检查。比如扩散成像,在急性脑梗塞(6个小时以内)的诊断方面,MRI的扩散成像是最佳的检查手段。梗塞灶在CT图像上根本显示不出来,即使注射造影剂也无能为力,而MRI扩散成像可以非常清楚的显示是否为急性脑梗塞以及梗塞灶所在位置,以便对急性脑梗塞病人进行及时的抢救,具有很高的临床实用价值。再比如对脂肪信号的确认,MRI只需运用脂肪抑制技术,通过比较运用了和未应用脂肪抑制技术得到的两种图像,就可以完全加以确认,这对于诊断脂肪瘤是非常方便,快捷而准确的。再如判断先天性心脏瓣膜关闭不严,心肌肥厚,MRI非常直观而有效。其他的MRI特殊运用还有很多。

2、与CT一样,MRI几乎适用于全身各系统的不同疾病:

1、颅脑与脊髓:MRI由于具有强烈的软组织对比优势,所以是进行中枢神经系统影像学检查的首选。MRI对脑肿瘤,脑炎性病变、脑白质病变、脑梗塞、脑先天性异常等的诊断比CT更为敏感,可发现早期病变,定位也更加准确。对颅底及脑干的病变因无伪影可显示得更清楚。MRI可不用造影剂显示脑血管,发现有无动脉瘤和动脉畸形,MRI还可直接显示一些颅神经,可发现发生在这些神经上的早期病变。MRI可直接显示脊髓的全貌,因而对脊髓肿瘤或椎管内肿瘤、脊髓白质病变,脊髓空洞,脊髓损伤等有重要的诊断价值。对椎间盘病变,MRI 可显示其变性突出或膨出。显示椎管狭窄也较好。对于颈、胸椎、CT常显示不满意,而MRI显示清楚。另外MRI对显示椎体转移性肿瘤也十分敏感。

2、头颈部:MRI对眼、耳、鼻、喉部的肿瘤性病变显示好,如鼻咽癌对颅底、颅神经的侵犯,MRI显示比CT更清晰准确。MRI还可做颈部的血管造影,显示血管异常。对颈部的肿块,MRI也显示其范围及其特征,以帮助定性。

3、胸部:MRI可直接显示心肌和左右心室腔(用心电门控),可了解心肌损害的情况,并可测定心脏功能。对纵隔内大血管的情况可清楚显示。对纵隔肿瘤的定位定性也极有帮助,还可显示肺水肿,肺栓塞,肺肿瘤的情况。可区别胸腔积液的性质,区别血管断面还是淋巴结。

4、腹部:MRI对肝、肾、胰、脾、肾上腺等实质性脏器病疾的诊断可提供十分有价值的信息,有助于确诊。对小病变也较易显示,因而能发现早期病变。MRI胰胆道造影(MRCP)可显示胆道和胰管,可替代ERCP。MR尿路造影(MRU)可显示扩张的输尿管和肾盂、肾盏,对肾功能差,IVU不显影的病人尤为适用。

5、盆腔:MRI可显示子宫,卵巢,膀胱,前列腺,精囊等器官的病变,可直接看到子宫内膜,肌层,对早期诊断子宫肿瘤性病变有很大的帮助。对卵巢,膀胱,前列腺等处病变的定位定性诊断也有很大价值。

6、后腹膜:MRI对显示后腹膜的肿瘤以及与周围脏器的关系有很大价值。还可显示腹主动脉或其他大血管的病变,如腹主动脉瘤,布-查综合症,肾动脉狭窄等。

7、肌肉骨骼系统:MRI对关节内的软骨盘,肌腱,韧带的损伤,显示率比CT高。由于对骨髓的变化较敏感,能早期发现骨转移,骨髓炎,无菌性坏死,白血病骨髓浸润等。对骨肿瘤的软组织块显示清楚,对软组织损伤也有一定的诊

断价值。

3、MRI比较于超声的优势

超声成像是依靠组织对声波信号的回声来进行检查。具有价格低廉、简便、迅速、无创、无辐射性,准确、可连续动态及重复扫描,因此非常容易推广应用,经常作为实质脏器和含液器官的首选方法,因其成像速度快,可实时观察运动脏器。因为无辐射性,非常适用于儿童及孕妇的检查。但是它的缺点也是非常明显的。超声受气体与骨骼的阻障,不适合于含气脏器如肺、消化道及骨骼的检查,存在很大的局限性。超声检查不直观,诊断的准确性受操作者的经验、检查技巧和认真程度的影响。比如在心脏检查方面,MRI的心脏成像可以很直观地显示心脏瓣膜和四个腔室,对于瓣膜关闭不严、心肌肥厚等心脏疾病的诊断有更大的临床指导意义。

4、综述

在临床检查上,MRI、CT和超声是一种互补的关系,三大影像诊断方法都以其独到的特色广泛被临床接受,每种诊断方法都有其对某种疾病(或病理改变、或物理性质等)的敏感性和特异性。超声由于其成像的原理和特点,在临床应用上受到很大限制,适用范围远不及MRI和CT。MRI与CT一样,几乎适用于全身各系统的不同疾病,但是在敏感性、特异性和诊断正确率方面更为先进和出色,尤其在脑与脊髓疾病,MRI以其独具的特点及很高的敏感性和特异性成为神经系统疾病诊断的应用之最。医院购置了MRI设备以后,医院的诊疗水平就会上升一个台阶,到了更高的层次和境界。如果将X线拍片机定义为第一代的影像学检查手段,那么超声就是第二代影像学检查手段,CT是第三代,MRI则是第四代。

由于MRI在医学影像学上的价值的肯定和显著作用和整个国家、国民医疗保健的需求,并按照卫生部的发展计划,CT将普及到县级医院,而作为在临床上更具优势的且与CT形成互补的MRI,要在全国中等城市的地市级医院及部分发达地区的县级医院普及,基本达到300张病床以上的医院都要具备至少一台MRI 系统,但首要的前提条件是临床诊断水平的相应提高及医院对设备的一次性投资费用,运行费用,病人的承受能力,换句话说,磁共振代表了一个医院的医疗技

术水平及整体实力。同时带动各个科室临床技术水平的提高,医院可在社会效益及经济效益方面取得双丰收。

5、MRI与CT的应用价值比较

磁共振成像(MRI)质量控制手册(ACR)

磁共振成像(MRI)质量控制手册――英文版前 言 美国放射学院(ACR)磁共振成像成像(MRI)质量保证委员会成立的目的,就是为了保证各指定医院磁共振成像性能质量。委员会的任命是为了保证患者、相关的医生和其它研究的完成。而这些研究是在指定医院,由训练有素、高技能的人员正确使用MRI设备下进行的。 美国放射学院指定的MRI机构已同意持续进行MRI设备质量控制计划。美国放射学院MRI质量保证委员会已收到很多提问,如“组成一个恰当的MRI设备质量控制计划的内容是什么?”、“各科室不同的医疗卫生专业人员的恰当角色应当是怎样的?”等等。 本手册旨在帮助医院检测和维护自己的MRI设备,这和美国放射学院制定的《MRI设备医学、诊断、物理、性能标准》[Res.19—1999]中的公开原则是一致的。委员会已把这些原则用于阐述哪些人应对哪项具体工作负有责任的具体内容,并提供了使用美国放射学院MRI体模检测和评价设备性能的许多方法。 美国放射学院MRI质量保证委员会成员,无偿地贡献出自己的时间和经验来完成《美国放射学院MRI质量控制手册》,特别是Geoffrey Clarke 博士编写了本手册的重要部分,并花费了大量时间检测本手册所写的程序。委员会之外的人员也参与其中,提供了非常有价值的

内容和建议,在这里向他们表示衷心的感谢!他们是:William G..Bradley,Fr.,M.D.,Edward F.Jackson,Ph.D.,Joel P.Felmlee,Ph.D.,and Wlad Sobol,Ph.D.,and Jonathan Tucker,Ph.D., 后四位专家专门编写了“MRI物理师/技术专家篇”。我们也向美国放射学院秘书长Jeff Hayden,R.T.(R)(MR)表示感谢!向Pamela Wilcox Buchalla, Marie Zinninger,美国放射学院两位副执行官,以及几年来一直关注这项计划和美国放射学院其它计划认定的同仁,一并表示感谢! 我们使用本手册进行实验性检测来判断它的兼容性,美国放射学院向以下在实验性检测中主动提供宝贵的反馈意见的人员致谢!他们是:Tom Callahan,MPS,R.T.(R)(MR),Glyn Johnson,Ph.D.,Viswanathan Venkataraman,M.S.,Edmond Knopp,M.D., Laura Foster B.S. R.T.(R)(QM)(M). Jeffrey C.Weinreb,M.D. 美国放射学院MRI质量保证委员会主席 2001年1月 磁共振成像(MRI)质量控制手册――中文版序言1978年第一台头部磁共振成像(MRI)设备、 1980年第一台全身

磁共振的临床应用价值

磁共振的临床应用价值 1、MRI比较于CT的优势 MRI利用人体中最多的氢质子在磁场中产生的共振效应,通过计算机处理后得到的图像。根据图像的性质不同,一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。而CT是依赖于组织的X线衰减(CT值)。这是它们图像上的基本不同。所以,MRI相对于CT的优势非常明显: 1、MRI有很高的组织对比分辨率:MRI成像主要是考察组织的含水量的多少 以及所含水的特性不同。也就是说,含水量不同,MRI图像上就可以明显区分开来,即使含水量一样,由于所含水的特性(比如弛豫特性、流动特性、扩散特性 等等)不同,在MRI的图像上,最终表现出来的信号会完全不同。所以MRI的图像在所有的影像学图像中,是最接近于人体实际解剖结构的,甚至可以说和解剖书上的示图完全一样,非常直观。在考察软组织病变,特别是占位性病变比如脑膜瘤,胶质瘤,垂体腺瘤等等时,MRI的优势巨大。MRI图像上病变边缘会较CT 清晰锐利得多,完全可以确定占位性病变的边界,对临床手术及切除后复诊起到极其重要的指导意义。 2、MRI有多种参数的选择与变化从而有可能对各种病变的性质加以判断。 CT只能通过CT值的变化来进行诊断,参数只有CT值一个。MRI的参数有几十种之多,经常用到的就有十几种。根据参数选择的不同,MRI的图像就会完全不同。一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。临床上最常用 到的是T1加权像(又称解剖像)和T2加权像(又称病理像)。举例来说,脂肪在T1加权像和T2加权像上均为高信号,肌肉、肝脏、胰腺等组织器官在T1加权像上为中等信号,而在T2加权像上则为较低信号,肺组织,大血管,钙化等 在上述图像上均为一般均匀低信号,而肾、脾等组织器官在T1加权像上为较低信号,在质子像和T2加权像上均为较高信号。通过选择不同的参数,得到几种 不同信号表现的图像,MRI可以将每种组织器官及病变完全区分开来,而不同的 组织的CT值有可能完全一样,这时CT的局限性就暴露出来了。 3、MRI没有放射线的损害,MRI使用的是无线电波进行检测,频率也不高,以0.35T为例,频率仅为14.9MHz,并且持续时间很短。MRI只产生非常微量的热效应,人体几乎感觉不到。相对于CT所使用的射线,MRI无疑是一种环保的,

磁共振磁敏感加权成像技术及其临床应用新进展

. 9 China Medical Device Information | 中国医疗器械信息 常规的MRI 检查序列及MRA 对较大和快流速血管结构的显示较为敏感和准确,而对慢流速 和纤细血管结构的显示,其应用就受到很大限制。X 线脑血管造影检查虽为脑血管畸形诊断的“金标准”,但也不能发现某些隐匿性血管畸形,如海绵状血管瘤、毛细血管扩张症、血栓化的静脉畸形及血栓化的动静脉畸形等,从而导致误诊或漏诊。近年来,磁敏感加权成像(SWI )技术逐渐 应用于临床,并显示出对缓慢血流的静脉性血管、微出血以及铁等顺磁性物质的诊断的独特效果。 磁敏感加权成像(susceptibility weighted imaging ,SWI )是一个较新发展起来的成像技术。 SWI 是一个三维采集、完全流动补偿的、高分辨力的、薄层重建的梯度回波序列,它所形成的影像对比有别于传统的T1加权像、T2加权像及质子加权像,可充分显示组织之间内在的磁敏感特性的差别,如显示静脉血、出血(红细胞不同时期的降解成分)、铁离子等的沉积等。目前主要应 用于中枢神经系统。磁共振磁敏感加权成像技术及其临床应用新进展 董军 孙洪珍 吴树冰 山东省淄博市中心医院 (淄博 255036) 内容摘要: 探讨磁共振磁敏感加权成像(Susceptibility weighted imaging ,SWI)在脑部疾病中的临床应 用价值,评价SWI 序列较其他序列对显示小的出血灶、小的静脉、含铁血黄素、钙化等顺磁性物质的优越性。 关 键 词: 磁敏感加权成像 磁共振成像 临床应用 MRI Susceptibility Weighted Imaging Technical and Clinical Application of New Progress DONG Jun SUN Hong-zhen WU Shu-bing Zibo Central Hospital,Shan Dong Province (Zibo 255036)Abstract: MRI susceptibility weighted imaging in clinical application of brain diseases ,Evaluation of SWI sequences than the other sequences showed a small hemorrhage, small veins, hemosiderin, calcification and other sequences showed a small hemorrhage, small veins ,hemosiderin, calcification and other paramagnetic material superiority.Key words: susceptibility weighted imaging, MRI, clinical applications 文章编号:1006-6586(2014)01-0009-04 中图分类号:R445.2 文献标识码:A 收稿日期:2013-11-01

磁共振 (MRI) 低场系统的技术发展及临床应用

磁共振 (MRI) 低场系统的技术发展及临床应用 (上) 刘克成 等 本文作者刘克成先生,西门子迈迪特(深圳)磁共振有限公司副总裁; 徐健先生,翁得河先生,研发部研发工程师; 何超明先生,研发部研发工程师。2004年3月2日收到。 关键词:MRI 低场系统 高性能配置 高场应用低场化 导言 长期以来,磁共振低场系统由于受到信噪比的限制一直被认为只能用于常规的临床检查。随着技术的发展,许多高场的功能被逐级地移植到低场系统上,使得低场系统的临床应用得到很大的拓展。本文就低场系统的技术发展及临床应用趋势做一简单的概要。 一 医用磁共振低场系统的特点 1. T 1与场强 一般来说,低场系统是指主磁场场强低于0.5T 的系统。虽然当场强下降时,信噪比也随之下降。但是,由于人体组织的T 1值却是随着场强的降低而相应地减少。T 1与场强之间的关系可用下列公式来近似: T 1∝B 0n n=1/2~1/3(与组织有关) 在三种场强条件下的T 1值如下表所示: 从表中可以看出,对于绝大多数的组织,当场强从1.5T 降低到0.35T 时,其T1值将缩短将近一半。因而,为获取同样对比度的图像,在偏转角相同的条件下,在低场系统上重复时间TR 可以选择得比较小。这就是说,在给定的扫描时间里,低场系统允许有更多的平均。从Ernst 方程: αErnst =arccos(e 1T T R ?) 可以得出: 当偏转角α不变时,重复时间T R 为T 1的函数: T R =-ln(cos(α))×T 1 以脑脊液为例。在1.5T 和0.35T 的不同场强条件下,脑脊液的T 1值相差一倍。在偏转角相同的情况下,纵向弛豫恢复快慢差异是很明显的,如图1所示。从图中可以看出,在保持图像对比度相同的条件下,在0.35T 的系统上,由于脑脊液的T1值只是在1.5T 系统上的一半,所以重复时间可以相应地从3000ms 缩短到1500ms 。

磁共振成像的原理和临床应用

磁共振成像原理与临床应用 一、授课提纲:内容分四个部分:磁共振的发展背景和历史;磁共振的基本原理;磁共振的 安全性和优缺点;磁共振临床应用。 1、背景和发展历史:1946年由美国斯坦福大学的Felix Bloch和哈佛大学的Edward Purcell发现核磁共振现象,为此获得1952年诺贝尔奖。磁共振的发展史中共有16 位诺贝尔获奖者,分别在物理学、化学和生理医学奖项中夺魁。尤其近几年磁共振 在医学领域中的应用越来越广泛,从单纯的形态解剖学显示向功能和分子影像发 展,从而显示出磁共振的强大潜能。 2、磁共振基本原理:分物理学基础、磁共振的基本序列和图像特点三个方面概述。介 绍了磁化、进动、Larmor公式、静磁场(主磁场)和射频脉冲、驰豫和横向、纵向 驰豫,重复和回波时间、梯度磁场及两个主要基本序列(SE和GRE) 3、高磁场下的安全性:禁忌症和注意事项 4、磁共振的临床应用:包括三个方面,分别是形态解剖学的显示:尤其在细微解剖结 构、动态器官和血管解剖的形态显示上具有独特优势。其次是特殊序列的结构显示,如水成像、磁敏感加权显示,对于胆道、泌尿系和椎管等富有液性成分的结构能清 晰显示管腔内情况,对于梗阻的判断非常直接。最有优势体现在功能解剖学的显示,如脑功能成像,分别从弥散、灌注、波谱和神经网络及分子影像方面加以展示。 二、常用术语 1、共振、自旋磁矩、磁化、进动、Larmor公式 2、T1WI和T2WI、横向和纵向驰豫、重复和回波时间(TR、TE) 3、SE序列和GRE序列 三、磁共振成像过程 ?把病人放进磁场→人体被磁化产生纵向磁化矢量 ?发射射频脉冲(同时进行空间定位编码)→人体内氢质子发生共振从而产生横向 磁化矢量 ?关掉射频脉冲→质子发生T1、T2弛豫(同时进行空间定位编码) ?线圈采集人体发出的MR信号→计算机处理(付立叶转换)→显示图像

磁共振成像MRI质量控制手册ACR--中文版

磁共振成像(MRI)质量控制手册――英文版前言 美国放射学院(ACR)磁共振成像成像(MRI)质量保证委员会成立的目的,就是为了保证各指定医院磁共振成像性能质量。委员会的任命是为了保证患者、相关的医生和其它研究的完成。而这些研究是在指定医院,由训练有素、高技能的人员正确使用MRI 设备下进行的。 美国放射学院指定的MRI机构已同意持续进行MRI设备质量控制计划。美国放射学院MRI质量保证委员会已收到很多提问,如“组成一个恰当的MRI设备质量控制计划的内容是什么?”、“各科室不同的医疗卫生专业人员的恰当角色应当是怎样的?”等等。 本手册旨在帮助医院检测和维护自己的MRI设备,这和美国放射学院制定的《MRI 设备医学、诊断、物理、性能标准》[Res.19—1999]中的公开原则是一致的。委员会已把这些原则用于阐述哪些人应对哪项具体工作负有责任的具体内容,并提供了使用美国放射学院MRI体模检测和评价设备性能的许多方法。 美国放射学院MRI质量保证委员会成员,无偿地贡献出自己的时间和经验来完成《美国放射学院MRI质量控制手册》,特别是Geoffrey Clarke 博士编写了本手册的重要部分,并花费了大量时间检测本手册所写的程序。委员会之外的人员也参与其中,提供了非常有价值的内容和建议,在这里向他们表示衷心的感谢!他们是:William G..Bradley,Fr.,M.D.,Edward F.Jackson,Ph.D.,Joel P.Felmlee,Ph.D.,and Wlad Sobol,Ph.D.,and Jonathan T ucker,Ph.D., 后四位专家专门编写了“MRI物理师/技术专家篇”。我们也向美国放射学院秘书长Jeff Hayden,R.T.(R)(MR)表示感谢!向Pamela Wilcox Buchalla, Marie Zinninger,美国放射学院两位副执行官,以及几年来一直关注这项计划和美国放射学院其它计划认定的同仁,一并表示感谢! 我们使用本手册进行实验性检测来判断它的兼容性,美国放射学院向以下在实验性检测中主动提供宝贵的反馈意见的人员致谢!他们是:T om Callahan,MPS,R.T.(R)(MR),Glyn Johnson,Ph.D.,Viswanathan Venkataraman,M.S.,Edmond Knopp,M.D., Laura Foster B.S. R.T.(R)(QM)(M). Jeffrey C.Weinreb,M.D. 美国放射学院MRI质量保证委员会主席 2001年1月 磁共振成像(MRI)质量控制手册――中文版序言 1978年第一台头部磁共振成像(MRI)设备、1980年第一台全身磁共振成像设备投入临床应用,标志着放射诊断学进入了医学影像学的发展阶段。27年来,磁共振成像技术越发展现出在医学诊断领域中独特的价值!而且,磁共振成像主机设备及其成像功能正以超出人们想像的速度发展着。

磁共振的临床应用价值

磁共振的临床应用价值1、MRI比较于CT的优势 MRI利用人体中最多的氢质子在磁场中产生的共振效应,通过计算机处理后得到的图像。根据图像的性质不同,一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。而CT是依赖于组织的X线衰减(CT值)。这是它们图像上的基本不同。所以,MRI相对于CT的优势非常明显: 1、MRI有很高的组织对比分辨率:MRI成像主要是考察组织的含水量的多少以及所含水的特性不同。也就是说,含水量不同,MRI图像上就可以明显区分开来,即使含水量一样,由于所含水的特性(比如弛豫特性、流动特性、扩散特性等等)不同,在MRI的图像上,最终表现出来的信号会完全不同。所以MRI的图像在所有的影像学图像中,是最接近于人体实际解剖结构的,甚至可以说和解剖书上的示图完全一样,非常直观。在考察软组织病变,特别是占位性病变比如脑膜瘤,胶质瘤,垂体腺瘤等等时,MRI的优势巨大。MRI图像上病变边缘会较CT 清晰锐利得多,完全可以确定占位性病变的边界,对临床手术及切除后复诊起到极其重要的指导意义。 2、MRI有多种参数的选择与变化从而有可能对各种病变的性质加以判断。CT只能通过CT值的变化来进行诊断,参数只有CT值一个。MRI的参数有几十种之多,经常用到的就有十几种。根据参数选择的不同,MRI的图像就会完全不同。一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。临床上最常用到的是T1加权像(又称解剖像)和T2加权像(又称病理像)。举例来说,脂肪在T1加权像和T2加权像上均为高信号,肌肉、肝脏、胰腺等组织器官在T1加权像上为中等信号,而在T2加权像上则为较低信号,肺组织,大血管,钙化等在上述图像上均为一般均匀低信号,而肾、脾等组织器官在T1加权像上为较低信号,在质子像和T2加权像上均为较高信号。通过选择不同的参数,得到几种不同信号表现的图像,MRI可以将每种组织器官及病变完全区分开来,而不同的组织的CT值有可能完全一样,这时CT的局限性就暴露出来了。 3、MRI没有放射线的损害,MRI使用的是无线电波进行检测,频率也不高,以为例,频率仅为,并且持续时间很短。MRI只产生非常微量的热效应,人体几乎感觉不到。相对于CT所使用的射线,MRI无疑是一种环保的,绿色的影像学

磁共振临床应用手册

磁共振成像技术(核磁共振,MRI)是与CT几乎同步发展起来的医学成像技术。MRI 作为最先进的影像检查技术之一,在许多方面有其独到的优势,尤其是近年来高场磁共振超 快速成像与功能成像的出现,使得MRI的优势更为明显。但是,由于国情所限,MRI远没有CT普及,实际工作中,大量的病例本应首选MRI检查,却都进行了CT检查,因此造成的误诊及漏诊屡见不鲜。除病人经济情况的原因之外,临床医生对MRI的了解不足也是一个重要原因。 目前关于磁共振成像的书籍虽很多,专业性均很强,信息量也非常大,临床医生很难有时间仔细翻阅,但临床医生又急需了解磁共振的相关知识。鉴于此,我们编写了这本小册子,以期临床医生在阅读之后能够了解磁共振成像的临床应用价值、哪些情况下应当建议病人进 行MRI检查、以及一些磁共振基本读片知识。 1 磁共振成像的特点 一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI 投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT 检查。 二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有几十种,且新的技术和序列不断更新,理论上有无限多种图像类型。可根据组织特意性用不同的技术制造对比,制造影像,力求诊断疾病证据充分、客观、可靠。有更丰 富的细节和依据方便医师作出明确的诊断,对疾病的治疗前及愈后作出更详细、系统的评估。 三、图像对比度高。磁共振图像的软组织对比度要明显高于CT。磁共振的信号来源于氢原子核,人体各处都主要由水、脂肪、蛋白质三种成分构成,它们均含有丰富的氢原子核 作为信号源,且三种成分的MRI信号强度明显不同,使得MRI图像的对比度非常高,正常 组织与异常组织之间对比更显而易见。CT的信号对比来源于X线吸收率,而软组织的X线吸收率都非常接近,所以MRI的软组织对比度要明显高于CT。 四、任意方位断层。由于我院MRI拥有 1.5T高场强主磁体及先进的三维梯度系统逐点 获得容积数据,所以可以在任意设定的成像断面上获得图像。 五、心血管成像无须造影剂增强。基于MRI特有的时间飞逝法(TOF)和相位对比法(PC)血流成像技术,磁共振血管成像(MRA)与传统的血管造影(DSA)相比,对人体无损伤性(不需要注射造影剂)、费用低、检查方便等优点。且随着MRI技术的不断进步,我院磁共振MRA的图像质量与诊断能力已与DSA非常接近,基于以上MR血管成像特性,MRA完全可作DSA术前筛查以及血管手术后复查。 六、代谢、功能成像。MRI的成像原理决定了MRI信号对于组织的化学成分变化极为 敏感。我院在高场MRI系统上拥有丰富磁共振功能成像技术,划时代地实现了对于功能性 疾病、代谢性疾病的影像诊断,同时也大大提高了对一些疾病的早期诊断能力,甚至可达到分子水平。 2 磁共振成像的原理 想获得人体的体层图像,任何成像系统都需要解决三方面问题:图像信号的来源、图像组织对比度的来源、图像空间信息的来源。磁共振成像也同样要解决这些问题。现对磁共振成像的原理作一简单介绍。 2.1 核磁共振信号的来源 磁共振成像,是依靠核磁共振现象来成像的。核磁共振现象,是指处于静磁场中的原子核系统受到一定频率的电磁波作用时,将在他们的磁能级间产生共振跃迁。 上述过程,是原子核与磁场发生的共振,所以称为核磁共振,因为“核”字涉嫌核辐射,

磁共振成像的临床应用

磁共振成像的临床应用 (作者:___________单位: ___________邮编: ___________) 【摘要】上世纪七十年代CT的问世是医学影像学的一场革命,她带动了医学事业蓬勃发展,因此,发明者获得了诺贝尔医学奖。至八十年代磁共振成像(magneticresonanceimaging)的兴起,医学影像的成像原理发生了本质变化,从简单的x线能量衰减转化为物理生物学成像。大大拓宽了医学影像的发展道路,各种新的成像技术层出不穷。改变了影像学就是形态学的传统观念,引导影像学向定性、定量诊断方向发展。 【关键词】磁共振原理临床应用技术设备 磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。 核磁共振(nuclearmagneticresonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成

像混淆,现改称为磁共振成象。参与MRI成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。 1中枢神经系统 (1)脑血管性疾病由于弥散、灌注及水抑制的应用,使的MRI 诊断脑梗塞的敏感性、特异性均明显高于CT。MRI对脑溢血的价值在于其能对血肿进行准确分期。脑动脉瘤、动静脉畸形均有流空血管影显示。 (2)脑肿瘤脑肿瘤在MRI上有形态学和异常信号改变,三维成像的使用对脑肿瘤的定性、定位诊断更准确。 (3)炎症各种细菌、病毒、霉菌性脑炎、脑膜炎与肉芽肿在MRI 可显示,注射顺磁性造影剂Gd-DTPA对定性诊断更有价值。对弓形体脑炎、脑囊虫、脑包虫病可定性诊断,并能分期分型。 (4)脑退行性病变MR能清楚的显示皮质性、髓质性、弥漫性脑萎缩。MR还能诊断原发性小脑萎缩。协助诊断皮质下动脉硬化性脑病、Alzermer氏病、pick氏病、hunfing氏舞蹈病,wilson氏病、leigh氏病、fahr氏病及CO中毒、霉变干蔗中毒、甲旁减等疾病。 (5)脑白质病变MR对诊断多发性硬化、肾上腺性脑白质病等脱髓鞘和髓鞘形成不良性疾病都有重要价值。 (6)脑室与蛛网膜下腔病变MR能清楚的显示孟氏孔和中脑导水管,即能明确分辨梗阻性和交通性脑积水。MR显示蛛网膜囊肿、室管膜囊肿、脑室内肿瘤、脑室内囊肿等均很敏感。

相关文档