文档库 最新最全的文档下载
当前位置:文档库 › 积分因子与全微分方程

积分因子与全微分方程

积分因子与全微分方程
积分因子与全微分方程

积分因子与全微分方程

1 微分方程的用途

镭是一种放射性物质,它的原子不停地向外放射出氦原子和其它的射线.从而自身的原子量减少,这样就变成了其它的物质(如常见的铅).一定质量的镭随着时间的变化,它的质量就会减少.现在已经发现镭的裂变速度(即单位时间裂变的质量)与它的剩余量成正比,设一块镭在时刻0t t =时,其质量0R R =,请确定这块镭在时刻t 的质量R .

分析:时刻t 时镭的剩余量R 是t 的函数,由于R 将随时间t 的流逝而减少.故镭的裂变速度dR

dt

应该是负值,于是按照镭的裂变规律可列出方程

dR

kR dt

=-,其中k 为一正的比例常数. 1.1 微分方程 定义1

[]()

1P 1 联系着自变量、未知函数以及它的导数的方程叫做微分方程.

上式是一个关于未知函数R 的微分方程,上述的问题就是要从这个式子中求出未知函数

()R R t =来.

不仅镭的质量满足这样的规律,其它的放射性物质也都满足这一规律,不同的只是各种放射性物质具有各自不同的系数k .从这个关系式出发,可以利用放射性物资来测定某种物体的绝对年龄,实际上,火箭的升空,弹道的计算,自动控制,化学反应过程中稳定性的研究等都要用到微分方程.

微分方程其实就是联系着自变量,未知函数以及它的导数的关系式,它的本质也是一个方程.像上面这些例子都可以建立成微分方程的的模型.

我们了解了什么是微分方程,和微分方程在现实中的应用.那么解这样的方程就是理所应当该首先考虑的问题了.

2 全微分方程的定义

我们可以将一阶方程

(),dy

f x y dx

=写成微分的形式(),0f x y dx dy -=,

写成具有对称形式的一阶微分方程

()(),,0M x y dx N x y dy +=.

其中(),M x y ,(),N x y 在某矩形域内是x , y 的连续且具有连续的一阶偏导数. 2.1 全微分方程 定义2

[]()

139P 如果微分方程()(),,0M x y dx N x y dy +=的左边恰好是某个二元函数

(),u x y 的全微分,即

()()(),,,M x y dx N x y dy du x y +≡

u u dx dy x y

??≡

+?? 则称()(),,0M x y dx N x y dy +=为全微分方程.

3 全微分方程的求解

知道了什么是全微分方程,自然会提出一些问题,①如何来判断方程是全微分方程,②判断了方程为全微分方程,那如何来求全微分方程的通解呢?下面我们来给一些结论:

方程()(),,0M x y dx N x y dy +=为全微分方程的冲要条件为:

M N

y x

??=??. 一般求解全微分方程通解的过程我们用一个例题来演示一下: 例1 求()()

222336640x xy dx x y y dy +++=的通解. 解 这里2

2

36M x xy =+,2

3

64N x y y =+, 这时

12M xy y ?=?,12N xy x

?=?, 因此方程是全微分方程.

现在求u ,使它满足如下两个方程

2236u

x xy x

?=+?, 2364u

x y y y

?=+?, 由

2236u

x xy x

?=+?,对x 积分,得到 ()3223u x x y y ?=++.

为了确定()y ?,将()3

2

2

3u x x y y ?=++对y 求导数,并且使它满足

2364u

x y y y

?=+?,

即得到

()223664d y u

x y x y y y dy

??=+=+?, 于是

()

34d y y dy

?=,积分后得()4y y ?=, 将()y ?代入()3223u x x y y ?=++,

得到32243u x x y y =++因此,方程的通解为3224

3x x y y c ++=,这里c 为任意常数.

4 积分因子

当方程()(),,0M x y dx N x y dy +=不是全微分方程时,则M N

y x

??=??不成立. 4.1 积分因子 定义3

[]()

241P 如果存在连续可微的函数

(),0x y μμ=≠,使得非全微分方程

()(),,0

M x y dx N x y dy +=两

()

,x y μ并且使得

()()()(),,,,0x y M x y dx x y N x y dy μμ+=变为一个全微分方程,即存在函数(),x y ν使

()()()(),,,,x y M x y dx x y N x y dy d μμν+≡则称(),x y μ为方程()(),,0

M x y dx N x y dy +=的积分因子.

这时(),x y c ν=是

()()()(),,,,x y M x y dx x y N x y dy d μμν+≡的通解.因而就是

()(),,0M x y dx N x y dy +=的通解.

全微分方程可以通过积分求出它的通解.因此能否将一个非全微分方程化为全微分方程就有很大的意义.积分因子是在考虑将非全微分方程化为全微分方程进行求解这一问题上引进的.

对于某些简单的微分方程,可以通过“凑微分”的方法来找到它的积分因子.所以熟悉的掌握一些基本地二元函数的全微分是必要的.例如

[]()

143P :

()ydx xdy d xy += 2

ydx xdy

x d y y ??-= ???

2ydx xdy y d x x -+??

= ???

ln ydx xdy y d xy x -??

= ???

22

ydx xdy y d arcty x y x -?

?= ?+?

? 221ln

2ydx xdy x y

d x y x y

??

--= ?-+??

例 2 方程0ydx xdy -=不是全微分方程,而

21y 是它的积分因子,在方程两边同时乘以2

1y 后,即得到全微分方程

20ydx xdy y -=解它得到:0x d y ??= ???

.即这个方程的通解为x

c y =. 5 求积分因子

一般情况下用方程来求解积分因子比求这个微分方程本身都困难,但是有一些特殊的微分方程还是比较适合求得它的积分因子的.

5.1 积分因子不唯一定理 定理1

[]()

36P 如果方程()(),,0M x y dx N x y dy +=存在解,则该方程必有积分因子存在,

且不唯一.

5.2 只与x 或y 有关的积分因子

对于方程()(),,0M x y dx N x y dy +=如果存在只与x 有关的积分因子的()x μμ=,则

0y μ?=?.这时方程M N N M x y y x μμμ??????-=- ???????变成了d M N N dx y x μμ??

??=- ?????

,即M N

d y x

dx N

μμ??-

??=.由此可知,方程()(),,0M x y dx N x y dy +=有只与x 有关的积分因子的充要条件是

()M N y x x N ψ??-??=,这里()x ψ仅是x 的函数.假如条件()M N

y x

x N

ψ??-??=成立,则根据方程M N

d y x

dx N

μμ??-

??=可以求得方程()(),,0M x y dx N x y dy +=的一个积分因子()x dx

e ψμ?

=同样,假如()(),,0M x y dx N x y dy +=有只于y 有关的积分因子的充要条件是

()M N

y x

y M

???-??=-,这里()y ?仅是关于y 的函数.从而求得方程()(),,0M x y dx N x y dy +=的

一个积分因子.

例3 求解方程()

4430x y dx xy dy +-= 解 因为M= 4

4

x y +,N= 3

xy -,所以

34M y y ?=?,3N

y x

?=-?,显然M N y x ??≠??,从而原方程不是全微分方程.考虑到333

45y y xy x

+=--,从而方程有只与x 有关的积分因子55

1

dx x e

x μ??

- ???

?==

. 原方程两边乘以积分因子μ,变为43

5410y y dx dx dy x x x

+-=,整理得()44ln 04y d x d x ??+-= ???

,所以原方程的通解为4

4ln 4y x c x -=,

(这里c 为任意的常数). 例4 求解方程()0ydx y x dy +-= 解 因为M y =,N y x =-,所以

1M y ?=?,1N

x

?=-?也容易看出原方程不是全微分方程,所以方程有只与y 有关的积分因子221dy y e

y

μ??

- ???

?==

. 原方程两边都乘以积分因子

μ,变成了

2110x

dx dy dy y y y

+-=,整理得()ln 0x d y d y ??+= ???

,所以通解为ln x

y c y +=(这里c 为任意常数)

.另外,此方程还有0y =一个解.

5.3 用分项组合的方法求积分因子

下面我们再介绍一种用分项的方法求积分因子的方法. 当方程()(),,0M x y dx N x y dy +=不是全微分方程时,则

M N

y x

??=??不成立.但如果存在不恒为零的连续可微函数(),x y μμ=使方程()(),,0M x y dx N x y dy μμ+=成为全微分方程的积

分因子.

5.3.1 积分因子扩展定理 定理2

[]()

43132P - 如果(),x y μ是微分方程()(),,0M x y dx N x y dy +=的积分因子,即存在

可微函数

(),x y μμ=使得()(),,M x y dx N x y dy du μμ+=那么(),x y μ也是方程

()(),,0M x y dx N x y dy +=的积分因子的充要条件是()(),x y u μμφ=,这里()u φ是u 的可微函数.

证明 充分性.

()()()()()()u Mdx Ndy u Mdx Ndy u du d u μφφμμφ+=+==Φ,

这里()u Φ是()u φ的一个原函数,这就说明了()()0u Mdx Ndy μφ+=是全微分方程,其通解就是()u c Φ=(c 任意的常数).

必要性.因为(),x y μ是方程()(),,0M x y dx N x y dy +=的积分因子,所以存在可微函数

(),u u x y =,使得Mdx Ndy du μμ+=,两边都乘以μ,得()Mdx Ndy du du μμμμμ+==,

所以()du u du μμ

μ==Φ,这里令()du

u du

Φ=

为可微函数,得证. 5.3.2 分组求积分因子 定理3

[]540

P 如果

μ是微分方程()(),,0M x y dx N x y dy +=的积分因子,即

Mdx Ndy du μμ+=,那么()u μ?也是方程()(),,0M x y dx N x y dy +=的积分因子,这里()

u ?是u 的任何连续函数.

证明 ()()()()()()u Mdx Ndy u Mdx Ndy u du d u μ??μ?+=+==Φ,这里()u Φ是()u ?的一个原函数.

对于比较复杂的微分方程,可以通过观察进行“分项组合”而求得积分因子.例如在分项组合的情况下,有()()11220M dx N dy M dx N dy +++=.然后,分别找出两组的积分因子1μ以及2μ,也就是说,存在函数

()11,x y μμ=和()22,x y μμ=,使得11111M dx N dy du μμ+=,

22222M dx N dy du μμ+=,再借助1μ以及2μ来求微分方程()()11220M dx N dy M dx N dy +++=的

积分因子.

这样,对于上述“分项组合”的情形,如果能够选取适当的函数()1u ?以及()2u ?,使得

()()1122u u μμ?μ?==,那么,μ即使第一组的积分因子,也是第二组的积分因子,因而也就是

方程()()11220M dx N dy M dx N dy +++=的积分因子.

例5 求微分方程(

)

2

0xy y dx xdy ++=的通解.

解 把它的左边“分项组合”成()20xy dx ydx xdy ++=.现在21μ=,2u xy =,于是(),x y φ是第二组的积分因子,只要适当选取(),x y φ,使(),x y φ也是第一组的积分因子即可.为此,取

()221,x y x y φ=

.在所给方程的两边乘以22

1

x y

得到()220d xy dx x x y +=, 积分得所给方程的通解为1

ln x C xy

-

=,(这里C 为常数). 5.4 积分因子是含x ,y 的关系式 连续可微函数

(),x y μ为()(),,0M x y dx N x y dy +=式的积分因子即当

()()()(),,,,0x y M x y dx x y N x y dy μμ+=时,

存在函数(),x y ν,使

()()()(),,,,x y M x y dx x y N x y dy d μμν+≡

函数(),x y μ为()(),,0M x y dx N x y dy +=的积分因子的充要条件是

()()

M N y x

μμ??=?? 即:M N N

M x y y x μμμ??????-=- ???????

, 若方程()(),,0M x y dx N x y dy +=具有形式

(),x y μμ=Φ????的积分因子,应有

()(){}()(){}

,,,,x y M x y x y N x y y x

μμ?Φ?Φ????????=?? 即

M N

d y x

d N M x y

μμ??-

??=Φ?Φ?Φ-??, 从而()(),,0M x y dx N x y dy +=具有形式

(),x y μμ=Φ的积分因子的充要条件为

(),M N

y x

f x y N M x y

??-??=Φ?????Φ?Φ

-??, 此时()f d e μΦΦ

?

=.

例如(1):当(),x y x y Φ=+时

1x

=?,1y ?Φ=?,从而()(),,0M x y dx N x y dy +=具有形如()x y μ+的积分因子的充要条件为

()M N

y x

f x y N M

??-??=+-,

()f d e μΦΦ

?

=其中(),x y x y Φ=Φ=+,

例如(2):当(),x y xy Φ=时,

y x

=?,x y ?Φ=?,从而()(),,0M x y dx N x y dy +=具有形如()xy μμ=的积分因子的充要条件是

()M N y x

f xy yN xM

??-??=-, ()f d e μΦΦ

?

=,

其中 (),x y xy Φ=Φ=.

利用(),M N

y x f x y N M x y

??-??=Φ?????Φ?Φ-??和()f d e μΦΦ?=两个式子还可以求出方程()(),,0M x y dx N x y dy +=还具有以下特殊形式:()x μ,()y μ,()x y μ-,()22x y μ-,

()22x y μ+等好多的积分因子,相关证明请读者根据上述例题自己完成.

参考文献

[1] 王高雄,周之铭,朱思铭,王寿松.常微分方程[M].北京:高等教育出版社,2000

[2] 东北师范大学数学系微分方程教研室.常微分方程[M].北京:高等教育出版社,2004

[3] 滕文凯.积分因子的分组求法[J].承德民族师专学报,2004.5,2期

[4] 龚雅玲.求解微分方程的积分因子法[J].南昌教育学院学报,2007,1期

[5] 李振东,张永珍.求积分因子的新方法[J].唐山学院报,2003,6期

[6] (美)Dennis G.Zill,(美)Michael R.Cullen编.陈启宏,张凡,郭凯旋译.微分方程与边界值问题[M].北京:机械工业出版社,2005

[7] 徐安农,段复建.全微分方程与积分因子法[J].桂林电子工业学院学报,2002.4,2期

[8] Walter W. Ordinary differential equations. New york :springer-verlag, 1998

数值积分与微分方程

2.3 数值积分 2.3.1 一元函数的数值积分 函数1 quad 、quadl 、quad8 功能 数值定积分,自适应Simpleson 积分法。 格式 q = quad(fun,a,b) %近似地从a 到b 计算函数fun 的数值积分,误差为10-6。 若给fun 输入向量x ,应返回向量y ,即fun 是一单值函数。 q = quad(fun,a,b,tol) %用指定的绝对误差tol 代替缺省误差。tol 越大,函数计 算的次数越少,速度越快,但结果精度变小。 q = quad(fun,a,b,tol,trace,p1,p2,…) %将可选参数p1,p2,…等传递给函数 fun(x,p1,p2,…),再作数值积分。若tol=[]或trace=[],则用缺省值进行计算。 [q,n] = quad(fun,a,b,…) %同时返回函数计算的次数n … = quadl(fun,a,b,…) %用高精度进行计算,效率可能比quad 更好。 … = quad8(fun,a,b,…) %该命令是将废弃的命令,用quadl 代替。 例2-40 >>fun = inline(‘3*x.^2./(x.^3-2*x.^2+3)’); equivalent to: function y=funn(x) y=3*x.^2./(x.^3-2*x.^2+3); >>Q1 = quad(fun,0,2) >>Q2 = quadl(fun,0,2) 计算结果为: Q1 = 3.7224 Q2 = 3.7224 补充:复化simpson 积分法程序 程序名称 Simpson.m 调用格式 I=Simpson('f_name',a,b,n) 程序功能 用复化Simpson 公式求定积分值 输入变量 f_name 为用户自己编写给定函数()y f x 的M 函数而命名的程序文件名 a 为积分下限 b 为积分上限 n 为积分区间[,]a b 划分成小区间的等份数 输出变量 I 为定积分值 程序 function I=simpson(f_name,a,b,n) h=(b-a)/n; x=a+(0:n)*h; f=feval(f_name,x); N=length(f)-1;

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

一阶微分方程积分因子探讨

一阶微分方程积分因子的求法探讨 数学与信息科学学院 数学与应用数学专业 指导教师:郑丽丽 职称:教授 摘 要:针对满足某些条件的微分方程,本文将给出几种直接、有效地求积分因子的方法. 关键词:一阶微分方程;积分因子 The Solution of Integral Factor for the First Order Ordinary Differential Equation Abstract :This paper has made a special effort to study how to quadrate integral factors directly and efficiently .When the differential equations meet some conditions , therefore , the common method we can get from it . Key Words :the first order ordinary differential equation ;integral factor 0前 言 一阶微分方程的求解是整个微分方程求解的基础,一般的有两种处理方式:一是 以变量可分离的方程为基础,通过适当的变量代换把一阶微分方程化为可积型方程;另外就是以全微分方程为基础,采取积分因子法把一个一阶微分方程化为全微分方程求.这里我们讨论了积分因子存在的充要条件,给出了确定若干特殊类型的积分因子的求法. 1 积分因子的定义 若对于一阶微分方程 ()(),,0M x y dx N x y dy += (1) 其中(),M x y ,(),N x y 在矩形域内是,x y 的连续函数,且有连续的一阶偏导数.若存在连续可微的函数(),0x y μ≠,使得 ()()()(),,,,0x y M x y dx x y N x y dy μμ+≡, 为一恰当方程,即存在函数V ,使

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

微分方程积分因子的求法

微分方程积分因子的求法 何佳 【摘要】 利用积分因子,可以对一个一阶微分方程的求解进行统一处理。因此,如何求解积分因子就成为解一阶微分方程的一个重点了。但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。但是,对于某些特殊的情况,却可以简单地得出积分因子。通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。所以我们在这里来讨论一下关于求解()x y αβμ和 ()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式 相近的积分因子。如:通过x y μ=+,可以得到x y μ=-的积分因子。如此举一反三,力求使得求积分因子的问题变的简便易行。同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。 【关键字】 微分方程 , 积分因子 , 求解方法

【目录】 引言 (1) 目录 (2) 一、()x y αβμ和()m n ax by μ+两类积分因子 § 1、 与()x y αβμ有关的积分因子 …………………………………………… 3 § 2、 与()m n ax by μ+有关的积分因子 …………………………………………… 4 二、微分方程积分因子求法的推广 § 1、 满足条件 ()P Q P Qf x y x y ??-=-??的积分因子求法 (7) § 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-????++++++=????积 分因子 (10) § 3、 方程13()30m m m x m x y x dx x dy -??+++=?? 积分因子 (12) § 4、 方程1(4)4450m m m m x mx y y dx x x y dy -????++++++=????积分因子 …………………………………………… 13 参考文献 (15)

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

全微分方程及积分因子

1.5 全微分方程及积分因子

一、全微分方程的定义及条件 则它的全微分为 是一个连续可微的函数设,),(y x U U =dy y U dx x U dU ??+??=如果我们恰好碰见了方程 0),(),(=??+??dy y y x U dx x y x U 就可以马上写出它的通积分 . ),(c y x U =

定义1使得 若有函数),,(y x U dy y x N dx y x M y x dU ),(),(),(+=则称微分方程) 1(,0),(),(=+dy y x N dx y x M 是全微分方程..),()1(c y x U =的通积分为此时如0 =+ydx xdy 0 )2()3(322=+++dy xy x dx y y x 0 )()(=+dy y g dx x f 是全微分方程.=)(xy d =+)(23xy y x d =+òò))()((y d y g x d x f d 1.全微分方程的定义

需考虑的问题(1) 方程(1)是否为全微分方程? (2) 若(1)是全微分方程,怎样求解? (3) 若(1)不是全微分方程,有无可能转化为全微分方程求解?2 方程为全微分方程的充要条件 定理1则方程 偏导数中连续且有连续的一阶域在一个矩形区和设函数,),(),(R y x N y x M ) 1(,0),(),(=+dy y x N dx y x M 为全微分方程的充要条件是 ). 2(,),(),(x y x N y y x M ??=??)1(, 0),(),(=+dy y x N dx y x M

证明“必要性”设(1)是全微分方程,使得 则有函数),,(y x U dy y U dx x U y x dU ??+??=),(dy y x N dx y x M ),(),(+=故有),,(y x M x U =??),(y x N y U =??从而从而有都是连续的和由于,22y x U x y U ??????,22y x U x y U ???=???故.),(),(x y x N y y x M ??=??y x U y N x y U y M ???=?????=??22 ,

积分因子与全微分方程

积分因子与全微分方程 1 微分方程的用途 镭是一种放射性物质,它的原子不停地向外放射出氦原子和其它的射线.从而自身的原子量减少,这样就变成了其它的物质(如常见的铅).一定质量的镭随着时间的变化,它的质量就会减少.现在已经发现镭的裂变速度(即单位时间裂变的质量)与它的剩余量成正比,设一块镭在时刻0t t =时,其质量0R R =,请确定这块镭在时刻t 的质量R . 分析:时刻t 时镭的剩余量R 是t 的函数,由于R 将随时间t 的流逝而减少.故镭的裂变速度dR dt 应该是负值,于是按照镭的裂变规律可列出方程 dR kR dt =-,其中k 为一正的比例常数. 1.1 微分方程 定义1 []() 1P 1 联系着自变量、未知函数以及它的导数的方程叫做微分方程. 上式是一个关于未知函数R 的微分方程,上述的问题就是要从这个式子中求出未知函数 ()R R t =来. 不仅镭的质量满足这样的规律,其它的放射性物质也都满足这一规律,不同的只是各种放射性物质具有各自不同的系数k .从这个关系式出发,可以利用放射性物资来测定某种物体的绝对年龄,实际上,火箭的升空,弹道的计算,自动控制,化学反应过程中稳定性的研究等都要用到微分方程. 微分方程其实就是联系着自变量,未知函数以及它的导数的关系式,它的本质也是一个方程.像上面这些例子都可以建立成微分方程的的模型. 我们了解了什么是微分方程,和微分方程在现实中的应用.那么解这样的方程就是理所应当该首先考虑的问题了. 2 全微分方程的定义 我们可以将一阶方程 (),dy f x y dx =写成微分的形式(),0f x y dx dy -=, 写成具有对称形式的一阶微分方程 ()(),,0M x y dx N x y dy +=. 其中(),M x y ,(),N x y 在某矩形域内是x , y 的连续且具有连续的一阶偏导数. 2.1 全微分方程 定义2 []() 139P 如果微分方程()(),,0M x y dx N x y dy +=的左边恰好是某个二元函数

常微分方程初值问题数值解法

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

常微分方程数值解法

第八章 常微分方程数值解法 考核知识点: 欧拉法,改进欧拉法,龙格-库塔法,单步法的收敛性与稳定性。 考核要求: 1. 解欧拉法,改进欧拉法的基本思想;熟练掌握用欧拉法,改进欧拉法、求微 分方程近似解的方法。 2. 了解龙格-库塔法的基本思想;掌握用龙格-库塔法求微分方程近似解的方 法。 3. 了解单步法的收敛性、稳定性与绝对稳定性。 例1 用欧拉法,预估——校正法求一阶微分方程初值问题 ? ??=-='1)0(y y x y ,在0=x (0,1)0.2近似解 解 (1)用1.0=h 欧拉法计算公式 n n n n n n x y y x y y 1.09.0)(1.01+=-+=+,1.0=n 计算得 9.01=y 82.01.01.09.09.02=?+?=y (2)用预估——校正法计算公式 1,0)(05.01.09.0)0(111)0(1=???-+-+=+=++++n y x y x y y x y y n n n n n n n n n 计算得 91.01=y ,83805.02=y 例2 已知一阶初值问题 ???=-='1 )0(5y y y 求使欧拉法绝对稳定的步长n 值。 解 由欧拉法公式 n n n n y h y h y y )51(51-=-=+ n n y h y ~)51(~1-=+

相减得01)51()51(e h e h e n n n -==-=-Λ 当 151≤-h 时,4.00≤

微分方程数值解法答案

包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。解答问题关键在过程,能够显示出你已经掌握了书上的内容,知道了解题方法。这次考试题目的类型:20分的选择题,主要是基本概念的理解,后面有五个大题,包括差分格式的构造、截断误差和稳定性。 习题一 1. 略 2. y y x f -=),(,梯形公式:n n n n n n y h h y y y h y y )121(),(2111+-+=+- =+++,所以0122)1(01])121[()121()121(y h h y h h y h h y h h n h h n n n +--+--+-+=+-+==+-+= ,当0→h 时, x n e y -→。 同理可以证明预报-校正法收敛到微分方程的解. 3. 局部截断误差的推导同欧拉公式; 整体截断误差: ? ++++++-++≤1 ),())(,(11111n n x x n n n n n n n dx y x f x y x f R εε 11)(++-++≤n n n y x y Lh R ε,这里R R n ≤ 而111)(+++-=n n n y x y ε,所以 R Lh n n += -+εε1)1(,不妨设1

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1、1 对于形如 0),(),(=+dy y x N dx y x M (1、1) 的微分方程,如果方程的左端恰就是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1、1)为全微分方程、 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数)、 定理1、1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1、1)就是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1、2) 证明见参考文献[1]、 定义1、2 对于微分方程(1、1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1、3) 就是全微分方程,则称),(y x μ为微分方程(1、1)的积分因子、 定理1、2 可微函数),(y x μ为微分方程(1、1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1、4) 证明:由定理1、1得,),(y x μ为微分方程(1、1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

微分方程数值解――

微分方程数值解―― 第二章 习题 1. 设)('x f 为)(x f 的一阶广义导数,试用类似办法定义)(x f 的k 阶广义导数) () (x f k ( ,2,1=k )。 解:对一维情形,函数的广义导数是通过分部积分来定义的。 我们知,)(x f 的一阶广义导数位)(x g ,如果满足 dx x x f dx x x g b a b a )()()()('?? -=?? 类似的,)(x f 的k 阶广义导数为)()() (x f x g k =,如果有 dx x x f dx x x g b a k k b a )()()1()()()(?? -=?? 2. 试建立与边值问题 ?????====<<=+=) 2.1(0)()(,0)()() 1.1(,''44b u b u a u a u b x a f u dx u d Lu 等价的变分问题。 证明: 设}0)()(,0)()(),(|{' '2====∈=b v a v b v a v I H v v V 对方程)1.1(两边同乘以v ,再关于x 在),(b a 上积分)(V v ∈,得 ??=+b a b a fvdx vdx u dx u d )(44 其中 dx dx dv dx u d dx dx dv dx u d dx u d v dx u d d v vdx dx u d b a b a b a b a b a ???? -=-==33 33333344|)( dx dx v d dx u d dx dv dx u d dx u d d dx dv b a b a b a ??+-=-=22222222|)( dx dx v d dx u d b a ? = 2 222 (*) 记dx uv dx v d dx u d v u a b a ?+=)(),(2 222,?=b a fvdx v f ),(。于是我们得到以下等价变分问题的提法:

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分? x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子: x N y M y M x N ??-??=????????-??μμμ1 )(x μ: N x N y M dx d ??-??=μμ1 )(y μ: M x N y M dy d ??-??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解: x N y M ??≡??=x 2 ??=-+x y C dy y xydx 002)0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y

解: x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解: x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23232322 )(32)(32)(32 既C y x x =-+2322 )(32 4)0)ln (3=++dy x y dx x y 解: x N y M ??≡??=x 1 C dy y dx x y y x =+??030既C y x y =+4/||ln 4 5)05233 3222=+-+dy y y x dx y y x 解: x N y M ??≡??=326--y x ??=-+-x y C dy y dx y y x 00222253 C y x y x =++-/523 6)02cos )2sin 1(2=-+xdy y dx x y 解: x N y M ??≡??=x y 2sin 2 C ydy dx x y x y =-+??002)2sin 1(

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=9.8m/s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=(F-mg-0.4v2)/m=(32000-0.4v2)/(1400-18t)-9.8 dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[(32000-0.4*x(2)^2)/(1400-18*t)]-9.8; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[(32000-0.4*(v.^2))./(1400-18*t)]-9.8; [t,h,v,a]; 数据如下: t h v a 0 0 0 13.06 1.00 6.57 13.19 13.30 2.00 26.44 26.58 1 3.45 3.00 59.76 40.06 13.50 4.00 106.57 53.54 13.43 5.00 16 6.79 66.89 13.26 6.00 240.27 80.02 12.99 7.00 326.72 92.83 12.61 8.00 425.79 105.22 12.15 9.00 536.99 117.11 11.62 10.00 659.80 128.43 11.02 11.00 793.63 139.14 10.38 12.00 937.85 149.18 9.71 13.00 1091.79 158.55 9.02 14.00 1254.71 167.23 8.33 15.00 1425.93 175.22 7.65 16.00 1604.83 182.55 6.99 17.00 1790.78 189.22 6.36 18.00 1983.13 195.27 5.76 19.00 2181.24 200.75 5.21 20.00 2384.47 205.70 4.69 21.00 2592.36 210.18 4.22 22.00 2804.52 214.19 3.79 23.00 3020.56 217.79 3.41 24.00 3240.08 221.01 3.07 25.00 3462.65 223.92 2.77 26.00 3687.88 226.56 2.50 27.00 3915.58 228.97 2.27

相关文档