文档库 最新最全的文档下载
当前位置:文档库 › GJ15隔离锚固式整体挤压钢绞线拉索体系

GJ15隔离锚固式整体挤压钢绞线拉索体系

E C A A

1

B G

1234567

钢绞线拉索塔端穿索施工技术

钢绞线拉索塔端穿索施工技术 张国强韦福堂吕兵黄小铁 (柳州欧维姆工程有限公司,广西柳州 545005) 摘要:斜拉索安装是斜拉桥施工的关键环节,以合福铁路铜陵长江大桥斜拉索施工为例,介绍铜陵长江大桥单根钢绞线拉索安装的全新施工技术——钢绞线拉索塔端穿索施工技术。利用该技术有效的规避了常规施工方法中施工难度大、容易发生坠索、索体损伤严重的难题,同时确保了钢绞线拉索的安全、高效、高质的安装。 关键词:钢绞线拉索;塔端穿索;手持穿索器;连接器;循环卷扬系统;托板 0 前言 目前,国内大部分钢绞线斜拉索施工都是采用循环卷扬系统通过托板在PE护套管内的往复运动将钢绞线拉索从桥面一根根牵引至塔外,然后在塔外进行连接转换,塔内牵引拉索进入锚具并锚固的施工工艺。 循环卷扬系统和托板在这类工艺里起到了关键性的作用,但是由于循环卷扬系统在每次挂索时都要重新布设,工作量较大,在布设时需要专人指导,较为复杂。而托板在PE管内运动时,由于受到PE焊接接头和钢绞线自身扭力的影响,会在PE 管内翻转,造成钢绞线和循环绳打绞。打绞问题处理较为困难,有时甚至需要将拉索下放至桥面才能解决。打绞后,托板和循环绳会对拉索PE造成严重的损伤。 铜陵长江公铁大桥主桥为五跨连续钢桁梁双塔斜拉桥,主桥全长1290米,拉索采用平行钢绞线拉索,索体由多股Φ15.2无粘结高强度低松驰平行镀锌钢绞线组成,最大拉索达340m,共127股,总拉索重量高达5632t。由于拉索数量庞大,质量要求严格,如果采用循环系统挂索工艺很难满足施工进度和施工质量的相关要求。 铜陵长江大桥斜拉索施工采用柳州欧维姆工程公司独创的“钢绞线拉索塔端穿索施工技术”,放弃了原有施工工艺中的循环系统和托板,创造性地采用了“自上而下”的穿索模式,有效了规避了打绞、坠索等问题,在国内钢绞线拉索施工领域属于首例。 1工艺优点 钢绞线拉索塔端穿索的原理,即:通过钢绞线塔端穿索机将钢绞线从桥面牵引至塔顶,然后通过该穿索机将钢绞线连续下放至塔外操作平台处。塔外工作人员将

(整理)钢绞线整束挤压拉索样本

OVM.GJ钢绞线整束挤压式拉索体系

柳州欧维姆机械股份有限公司 鉴于建筑结构、桥梁结构拉索的可靠性、耐久性、适应性直接关系到结构的安全和正常使用寿命,柳州欧维姆机械股份有限公司凭借在预应力锚具领域的技术优势,研制开发了具有自主知识产权的整束挤压式钢铰线拉索体系。本拉索体系对钢绞线整束挤压夹持,具有锚固可靠,结构尺寸紧凑,张拉调索方便,防腐性能好的特点,适用于作为拱桥吊杆和系杆、桥梁拉索、岩土锚索及大型体育场馆等建筑结构用索。 一、产品特点 图一钢绞线成品索体截面图 注:1、成品索内的钢绞线可以是光面、环氧喷涂或镀锌钢绞线。 2、可根据客户需求,成品索内耦合长期监测拉索应变量变化的光纤光栅传感器 1、钢绞线在索体内隔离防腐,防腐蚀性能优越,抗振性能好 根据不同的吨位,采用相应的多根钢绞线,钢绞线外涂防锈油

脂,单根聚乙烯护套防护,整束缠包高强聚脂带再挤包聚乙烯护套,三层防腐,避免了钢丝束由于一处受腐蚀而整束锈蚀。 同时,钢绞线之间有聚乙烯护套相隔,结构阻尼较钢丝拉索的要大,抗振性能好; 如有必要,钢绞线可以在聚乙烯护套内滑动,外层聚乙烯护套基本上没有受到拉应力,更加有效地防止其拉应力开裂。 图二钢绞线整束挤压拉索锚具结构图 2、减轻索体自重 由于采用比钢丝束强度(1670MPa级)更高的1860 MPa级钢绞线,在相同设计应力下,索体钢丝的总截面积可以减少11.4%,拉索总重相应地也可以降低10%左右,改善了桥梁承重条件。 3、钢绞线两端整束挤压锚固,安全可靠、疲劳性能好 生产制作时,将成品索中的钢绞线两端整束挤压后,锚头对钢绞线的握裹力基本不变,并且,通过特殊的方法使钢绞线端部胀形为锥体,因此,在高、低应力甚至是负应力的情况下,钢绞线都不会滑脱。 钢绞线进入锚头的折角比冷铸锚、热铸锚中钢丝的折角小,疲劳性能更好。 4、索体可以方便地耦合测量长期应变量变化的光纤光栅传感器。 5、锚头结构紧凑,外径小,有利于整体结构的优化、美观 挤压锚碇套的外形尺寸比冷铸锚、热铸锚的小,可使预留孔尺寸减少。例如,在极限承载力基本相同的情况下,OVM.GJ15-19型拉索锚头外径为140mm,比LZM7-85锚杯外径205mm小65mm,

二次张拉低回缩钢绞线竖向预应力锚固系统

二次张拉低回缩钢绞线竖向预应力锚固系统 施工、验收要点

二次张拉钢绞线技术应用于 箱梁腹板竖向预应力的标准化研究课题组 二○○九年八月二日

图1-02 固定端安装进浆聚乙烯半硬管 图1-03 二次张拉竖向预应力安装示意图 图1-03 二次张拉竖向预应力安装示意图 中心线与盒体四周对称 二次张拉低回缩钢绞线竖向预应力锚固系统 施工、验收要点 二次张拉低回缩钢绞线竖向预应力锚固系统是一种新型的预应力筋锚固体系,它不同于传统的精轧螺纹钢筋YGM锚固体系,也不同于夹片式钢绞线锚固体系,具有其自身的特点,在施工、验收中应掌握如下要点,才能确保发挥这一新型锚固体系的优势,从而确保竖向预应力(含中短预应力束)永存应力稳定可靠,孔道压浆密实饱满,提升桥梁的安全性能。 一、预应力筋制作、安装 1、正确安装P锚挤压套和弹簧在钢绞线上的位置,确保弹簧总长度的90%以上在挤压套内。 2、P锚挤压安装油压应大于或等于25Mpa(当使用YJ40挤压机时,应大于或等于30Mpa)。 3、每500套P锚应抽样3套在现场按施工同一工艺挤压,用标定合格千斤顶做拉断试验,钢绞线拉断,钢绞线与挤压套应无滑动、滑脱现象。 4、每一根钢绞线挤压安装P锚时,都应有原始记录。 5、安装固定端应注意安装压板。(如图1-01) 6、安装进浆钢管与塑料管连接部位应用铁丝或管 卡固定(如图1-01) 7.固定端波纹管口应用水泥砂浆(或环氧砂浆或 海棉)堵严实,防止进浆。 8、张拉端槽口穴模与垫板应用螺栓联接,穴模底 板与垫板之间应无间隙。(如图1-03) 图1-01 固定端安装示意图

图2-01 第一次张拉示意图 9、检查张拉端槽口穴模固定螺栓孔是否对称(图1-04),如发现不对称情况应坚决返工。 10、安装张拉端槽口穴模时,穴模底板应与桥面基本平行。 11、进浆塑料管宜采用聚乙烯钢丝管或聚乙烯半硬管(图1-01;图1-02)。 12、浇筑混凝土后,混凝土终凝2~5小时内拆除张控端槽口穴模。 13.张拉端槽口拆模后,应及时采取防护措施,防止混凝土以及杂物进入槽口内。 二、施加预应力 1、第一次张拉施工按常规钢绞线夹片锚固施工方法施工,每束3根(含3根)以下的钢绞线束可单根张拉。 2、第二次张拉应在第一次张拉放张后2~16小时内进行,张拉时应采用专用千斤顶和张拉连接装置,将整束张拉至设计要求应力值。 3、张拉施工工序 (1)第一次张拉施工宜为 0→0.1σcon →0.2σcon →1.03σcon 锚 固 (2)第二次张拉施工宜为 0→0.5σcon →1.03σcon 拧紧支承螺母→放张 (3)检验测量第二次张拉放张后伸长值是否符合要求。 (4)采用双控,以张拉力为主的方法,用 伸长值进行校验,(a)第一次张拉实测伸长值与理论伸长值之差应控制在±6%以内,(b)第二次张拉实测伸长值与理论伸长值之差应控制在±10%以内,c 第二次张拉放张后实测伸长值与理论伸长值应控制在±10%以内。 图2-02 第一次张拉放张后示意图 持荷2min 持荷2min

斜拉桥钢绞线斜拉索下料长度计算

斜拉桥钢绞线斜拉索下料长度计算 发表时间:2018-05-08T16:21:13.363Z 来源:《建筑学研究前沿》2017年第35期作者:郝立林唐左平 [导读] XX长江公路二桥为主跨806m斜拉桥,斜拉索采用同向回转钢绞线斜拉索系统。 浙江交工集团股份有限公司浙江杭州 310000 摘要:XX长江公路二桥为主跨806m斜拉桥,斜拉索采用同向回转钢绞线斜拉索系统,同向回转钢绞线斜拉索系统中的拉索为无粘结钢绞线拉索,采用的镀锌钢绞线为成品索,因此对钢绞线下料长度计算的精度尤为重要,本文中采用悬链线长度计算公式进行钢绞线的无应力长度的计算,并考虑了其余一些影响量来计算钢绞线下料长度,并且成功的应用于实际施工中。 关键词:斜拉索钢绞线下料长度计算 1、工程概况 XX长江公路二桥跨江主桥布置为(100+308+806+308+100)m,全长1622m,为双塔四索面全漂浮体系斜拉桥。斜拉索采用同向回转钢绞线斜拉索系统,同向回转钢绞线斜拉索系统中的拉索为无粘结钢绞线拉索,是将每根拉索穿过桥面一侧锚具,绕过索塔后锚回到桥面同桩号截面的另一侧锚具,形成一对同编号拉索,鞍座巧妙的将拉索的拉力转换为环形径向压力传递给索塔。 本项目单塔共设置25对斜拉索,1-3为常规斜拉索,4-25为同向回转斜拉索,钢绞线根数根据索的受力不同从17根-41根都有,最长的拉索近900米。拉索均为梁端锚固。 斜拉索采用高强度、低松弛、热镀锌Φs15.2mm镀锌钢绞线索,σb=1860MPa,镀锌钢绞线外包PE管,锚具为夹片锚。本项目采用的镀锌钢绞线为成品索,均在工厂加工完成后,运输至施工现场,因此对钢绞线下料长度计算的精度尤为重要。 2、钢绞线下料长度计算 斜拉索的下料长度与穿索工艺有关,本项目斜拉索穿索采用三角循环系统,采用单根钢绞线穿索,根据穿索工艺,钢绞线分为两种,一种为加长索、一种为标准索,加长索用于第一根穿索。 成品索索长是指在设计温度时无应力状态下缆索锚头端部至锚头端部之间的长度。《公路斜拉桥设计规范》中平行钢丝斜拉索在设计温度时的无应力下料长度计算公式为: 根据以上内容对本项目斜拉索钢绞线下料长度进行列表计算,分为标准索和加长索两种,计算稍有不同,计算过程见下表:表1 标准索无应力长度计算

钢绞线与预应力锚固体系的关系

钢绞线与预应力锚固体系的关系 预应力锚固,常用于混凝土结构。是指预应筋、锚具及其相关材料被包裹在混凝土中,增强混凝土与预应力筋的连接,使两者能共同工作以承担各种应力(协同工作承受来自各种荷载产生压力、拉力以及弯矩、扭矩等)。为了改善结构服役表现,在施工期间给结构预先施加的压应力,结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏。预应力混凝土结构,是在结构承受荷载之前,预先对其施加压力,使其在外荷载作用时的受拉区混凝土内力产生压应力,用以抵消或减小外荷载产生的拉应力,使结构在正常使用的情况下不产生裂缝或者裂得比较晚。常用于水利水电、地基基坑、矿井巷道、边坡等支护工程;道路交通建设中桥梁工程。下面我们主要从预应力混凝土桥梁和锚索支护两种工程中所使用的预应力材料进行整理。 1.预应力混凝土桥梁常用预应力材料及设备 预应力混凝土桥指的是以预应力混凝土作为上部结构主要建筑材料的桥梁。其优点是:节省钢材,降低桥梁的材料费用;由于采用预施应力工艺,能使混凝土结构的工地接头安全可靠,因而以往只适应于钢桥架设的各种不要支架的施工方法,现在也能用于这种混凝土桥,从而使其造价明显降低;同钢桥相比,其养护费用较省,行车噪声小;同钢筋混凝土桥相比,其自重和建筑高度较小,其耐久性则因采用高质量的材料及消除了活载所致裂纹而大为改进。缺点:自重要比钢桥大,施工工艺有时比钢桥复杂,工期较长。 预应力混凝土桥施工中常用预应力材料及设备有:预应力钢绞线;锚具(含锚板、夹片、锚垫板、螺旋筋)四件套;预应力波纹管(塑料波纹管和金属波纹管);张拉设备(穿心式千斤顶、电动油泵、工具锚具<工具锚板,工具夹片,限位板>三件套);压浆机等。 预应力锚固体系总成 本体系是由张拉端锚具,固定端锚具,连接器,波纹管,预应力钢绞线组成。可锚固12.7mm和15.2mm标准强度为1860MPa级别的低松弛高强度预应力钢绞线。本锚固可以从2至55束预应力钢绞线中任意选择,使用中按具体的工程设计使用。

斜拉索施工解析

3.9.1概述 本桥主桥采用双塔单索面斜拉桥,主跨120m,边跨70m。斜拉索采用钢绞线,每束拉索由31根φj15.25mm镀锌钢绞线组成,标准强度R b y=1860Mpa,最大索力控制在3230KN左右,两端采用钢绞线拉索锚具。斜拉索在主梁上的纵向基本间距为5m,纵立面上的每根斜索由横桥向并排两根组成,横向间距为 1.0m,塔上竖向间距为2.33m,索与梁的水平夹角为25°,斜拉索在塔顶连续通过鞍座,两侧对称锚于梁体。每个塔上设有8对32束斜拉索,全桥共64束。 3.9.2斜拉索安装工艺流程图。

3.9.3 斜拉索制作 斜拉索是斜拉桥的生命线,其制作的质量至关重要。斜拉索的制作由专业厂家完成,其具体工艺要求如下: 3.9.3.1 镀锌钢丝 3.9.3.1.1斜拉索采用标准强度为1860Mpa的Φj15.25mm镀锌钢绞线制作。将其断面排成正六边形或缺角六边形,且进行大捻距轴心左旋扭绞。斜拉索采用双重防腐措施,每股镀锌钢绞线外包裹PE,钢绞线外套PE管,这样大大减少了斜拉索松散的可能性。位于索鞍处的钢绞线为裸索,也采取相应的防腐措施。进货验收时应对材料制作方法、机械性能、尺寸及允许偏差、加工成品和表面要求、试样数量、质量证明书、包装和标准等进行检查。 3.9.3.1.2检验规则 a、检验分类 产品检验分为出厂检验和型式检验 出厂检验 可由生产厂的质量检验部门在日常生产中进行也可由用户指定的第三方代理机构进行。生产厂家的质量检验部门或第三方代理机构应出具每批产品的检验报告,作为该批产品的质量依据。 型式检验 凡属下列情况之一者,应进行型式检验: a)原料、工艺等有较大改变时; b)生产设备改造后或生产过程中设备发生较大故障时;

斜拉桥平行钢绞线斜拉索安装施工工艺

斜拉桥平行钢绞线斜拉索安装施工工艺 10.1.1工艺概述 本工艺适用于斜拉桥平行钢绞线斜拉索施工,明确平行钢绞线斜拉索施工作业的工艺流程、操作要点和相应的工艺标准,指导、规范平行钢绞线斜拉索的施工。 10.1.2作业内容 平行钢绞线斜拉索安装作业包括 PE 管制作、PE 管及钢绞线安装、钢绞线张拉、顶压夹片、索力平均、索力监测、调索、安装减震器、防护处理等工序。 10.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《铁路钢桥保护涂装及涂料供货技术条件》(TB/T 1527-2011) 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 10.1.4工艺流程图 图10.6.4-1 平行钢绞线斜拉索安装工艺流程图 10.1.5工艺步骤及质量控制 一、施工准备 1.施工场地布置 (1)材料存放场地

在施工现场便于运输的地方设置材料存放场地,斜拉索部件在堆放和吊运时应无破损、无变形、无腐蚀。施工场地内需要存放的主要构件有:钢绞线;短节高密度聚乙烯外套管(HDPE管)、延伸管、热缩管;钢质PE管保护罩和张拉端及锚固端的锚垫板;锚头;其它临时构件。 存放场地表面应平整,可直接在其上铺枕木抄垫存放构件,在存放场内均需搭设临时棚用以存放锚头、钢质PE管保护罩、锚垫板等铁件以防下雨受潮生锈。钢绞线盘、聚乙烯管露天用彩条布覆盖即可。锚头运到现场时应根据运输文件检查其数量,检查包装是否有损伤,检查锚具组件是否完好。短节HDPE管在装卸时应小心轻放,连同外包装塑料袋整体装卸,避免损伤或弄脏外表。存放时应在下方垫以方木,并摆放整齐,上盖塑料布。锚具采用二点吊装,把锚具放在木制平台(枕木)上。锚具可水平放置也可竖向放置,如果储放时间短,最好水平放置;若时间较长则垂直放置。水平放置时在储存期内应特别注意对锚头丝扣和锚头内延伸管的保护。锚具在储存期间应采取措施以防延伸管束、导向管变形和锚头上的孔洞被杂物堵塞。 (2)塔内外挂索施工脚手架搭设 塔外挂索施工脚手架搭设:为经济计,塔外挂索施工脚手架的搭设宜在塔柱施工之前与塔柱施工脚手架综合考虑。塔外脚手架的搭设应满足:挂索期间不与斜拉索相碰;方便塔外索道管口操作;通道畅通;结构安全等的要求。 塔内挂索施工脚手架搭设:挂索施工脚手架的搭设可与塔柱施工脚手架综合考虑采用固定式脚手架,也可以在塔柱施工完后采用塔顶吊挂的活动平台脚手的形式。 (3)HDPE管焊接车间 需一大约2Om× 10Om的矩形工作区建造HDPE管焊接车间,焊接车间可建在桥面,如桥面不具备设置焊接车间的条件,可在地面上便于运输处设置焊接车间,焊接好的HDPE管经运输抵达墩位处由塔顶卷扬机起吊安装。 二、斜拉索验收 斜拉索部件进场后应进行钢绞线、锚头、夹片、HDPE管等重要部件的抽检: 1.钢绞线柚检: (1)钢绞线力学检验:按有关规范、设计要求和试验规程进行操作。 (2)外观检查: ①外包聚乙烯皮是否光滑、均匀、对钢绞线包裹紧密,是否划伤、有缺陷(此项工作多半在挂索过程中进行); ②外包聚乙烯皮的厚度应不小于15mm,以便有良好的保护钢绞线功能; ③外包聚乙烯皮的外径是否过大(有些体系的锚头对此有严格限定,聚乙烯皮外径过大容易将延伸管端部的密封圈带出理论位置而起不到密封油脂功能); ④外包聚乙烯皮是否外观浑圆,无凹陷现象; ⑤将外包聚乙烯皮的钢绞线放直,在长度方向任一位置的10m长度弯曲度最大不大于25mm; ⑥钢绞线不能有任何的机械损伤或腐蚀。 2.锚头抽检: (1)硬度检验:按有关规范、设计要求和试验规程进行操作。 (2)外观检查:应全部检查,主要检查有无外观缺陷、表面裂缝、有关尺寸是否正确,对每孔均应做探入式检查,检查是否有扭孔、破损、孔洞、被杂物堵塞等情况出现。检查螺纹有无破损,碰伤、被水泥渣弄脏的情况。 3.夹片抽检 (1)硬度检验:按有关规范和试验规程操作。 (2)外观检查:夹片是否有生锈、尺寸异常情况。 4.HDPE管检查: HDPE管主要做外观检查:检查是否连续挤压或为标准长度焊接,焊接处强度不小于母材强度。检查外表色泽是否退色或改变、是否有划伤、被污物污染或其它缺陷、厚度是否均匀、圆度是否良好。 5.钢质PE管保护罩:

《跨京开高速公路中承式钢箱混凝土拱桥监控监测方案》

《跨京开高速公路中承式钢箱混凝土拱桥监控监测方案》

京沪高速铁路跨京开高速公路 32.1+108+32.1 m中承式钢箱拱桥监控、监测实施方案 土木工程学院桥梁工程系 二○○九年十月

目录 目录 ........................................................................... I 1工程概况.. (1) 2监控、监测方案制定依据 (3) 3施工控制的目的、方法与原则、内容 (4) 3.1施工监控、运营监测目的 (4) 3.2施工控制、运营监测的方法和原则 (4) 3.3施工控制、运营监测的内容 (6) 4施工控制技术方案 (6) 4.1施工控制方法 (6) 4.2 施工控制的预测计算、误差分析和调整 (7) 4.3 施工控制计算分析方法 (13) 4.4 现场实时控制 (14) 5施工监控、运营监测方案 (15) 5.1监控计算分析工作 (15) 5.2环境参数监测 (15) 5.3线形监测 (16)

5.4温度监测 (18) 5.5应力监测 (20) 5.6吊杆应力和预应力系杆索力监测 (22) 5.7施工临时结构监测 (23) 6 数据采集、传输系统 (23) 6.1自动化采集系统方案的设计原则及选择.. 23 6.2光纤仪器监测系统组成及功能 (25) 6.3光纤仪器监测系统特点 (25) 7 施工监控技术方案的保障措施 (26) 8 项目组成员 (27) 9 经费预算 (28)

1工程概况 本桥位于北京附近,为京沪高速铁路北京特大桥的节点桥之一,跨京开高速公路,铁路与高速公路交叉夹角81°10',桥位处高速铁路为平坡、直线。跨京开高速公路主桥采用(32.1+108+ 32.1)m中承式钢箱混凝土拱式连续梁体系,如图1-1所示。D130和D131号墩拱脚支座设在承台顶,无墩身,D129号和D132号桥墩采用流线形圆端实体墩。基础均采用钻孔桩基础,D129号和D132号桥墩采用直径1.25m钻孔灌注桩,D130和D131号墩采用直径1.5m钻孔灌注桩。 本桥为京沪高速铁路双线桥,设计时速为350 km/h;线间距为5.0m,采用CRTSⅡ型板式无砟轨道。 拱肋中心距12m。主跨拱肋矢高采用25m(系杆中心线上下各为12.5m),矢跨比为1/4.32。边拱肋中心距12m,矢高11.75,矢跨比为1/5.19。主拱肋及边拱肋拱轴线均采用二次抛物线。主拱肋和主纵梁固结。主跨桥面以上设一道一字横撑和二道K撑,桥面以下设两道K撑;边跨桥面以下设一字横撑。吊杆对应主跨小横梁设置,间距5.4m,全桥共设11对吊杆。 图1-1 全桥结构图 边拱肋和主拱肋采用变截面钢箱混凝土截面,主纵梁采用钢箱截面。主拱肋截面宽1.6m,截面高度由拱顶2m到理论拱脚处2.6m,上下翼缘板厚除拱梁固结点处厚44mm

钢绞线与预应力锚固体系的关系

钢绞线与预应力锚固体系的关系

钢绞线与预应力锚固体系的关系 预应力锚固,常见于混凝土结构。是指预应筋、锚具及其相关材料被包裹在混凝土中,增强混凝土与预应力筋的连接,使两者能共同工作以承担各种应力(协同工作承受来自各种荷载产生压力、拉力以及弯矩、扭矩等)。为了改进结构服役表现,在施工期间给结构预先施加的压应力,结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏。预应力混凝土结构,是在结构承受荷载之前,预先对其施加压力,使其在外荷载作用时的受拉区混凝土内力产生压应力,用以抵消或减小外荷载产生的拉应力,使结构在正常使用的情况下不产生裂缝或者裂得比较晚。常见于水利水电、地基基坑、矿井巷道、边坡等支护工程;道路交通建设中桥梁工程。下面我们主要从预应力混凝土桥梁和锚索支护两种工程中所使用的预应力材料进行整理。 1.预应力混凝土桥梁常见预应力材料及设备 预应力混凝土桥指的是以预应力混凝土作为上部结构主要建筑材料的桥梁。其优点是:节省钢材,降低桥梁的材料费用;由于采用预施应力工艺,能使混凝土结构的工地接头安全可靠,因而以往只适应于钢桥架设的各种不要支架的施工方法,现在也能用于这种混凝土桥,从而使其造价明显降低;同钢桥相比,其养护费用较省,行车噪声小;同钢筋混凝土桥相比,其自重和建筑高度较小,其耐久性则因采用高质量的材料及消除了活载所致裂纹

而大为改进。缺点:自重要比钢桥大,施工工艺有时比钢桥复杂,工期较长。 预应力混凝土桥施工中常见预应力材料及设备有:预应力钢绞线;锚具(含锚板、夹片、锚垫板、螺旋筋)四件套;预应力波纹管(塑料波纹管和金属波纹管);张拉设备(穿心式千斤顶、电动油泵、工具锚具<工具锚板,工具夹片,限位板>三件套);压浆机等。 预应力锚固体系总成 本体系是由张拉端锚具,固定端锚具,连接器,波纹管,预应力钢绞线组成。可锚固12.7mm和15.2mm标准强度为1860MPa 级别的低松弛高强度预应力钢绞线。本锚固能够从2至55束预应力钢绞线中任意选择,使用中按具体的工程设计使用。 预应力桥锚固体系总装件

屋盖结构斜拉索施工工艺[详细]

大门斜拉索施工 一、工程概况 屋盖结构平面尺寸为56米×12米,由两跨21.5米波浪式钢筋混凝土井式梁板(梁高60厘米)组成,两端成悬臂状态.中间设一根1.2米×2.5米的钢筋混凝土柱,用20根斜拉索拉住屋面梁板,见图8-94.. 二、斜拉索构造 1.拉索材料 拉索材料选用1860级中φ15.24低松弛钢绞线.拉索设计索力一般为钢索极限索力的1/3.所需的钢绞线根数见表8-10. 第一道采用涂防腐油脂外包PE管,壁厚增至1.2米米;第二道采用直径75米米的PVC硬塑料管,壁厚4米米;第三道采用水泥浆将管道内的空隙灌满,达到全封闭要求. 3.锚具选用 拉索张拉端位于屋盖井式梁交点处,采用0V米XGl5-4(3)系杆锚具.该锚具为三片式,特殊齿形,有防松装置,以防低应力状态下滑索;其锚板具有外螺纹并配有螺母,供最后整体张拉用.拉索固定端采用0V米1.5P挤压锚具. 4.节点构造 拉索张拉端的构造见图8-95,由钢垫板、螺旋筋及φ70(60)米米金属波纹管组成.在屋面处插一段φ60米米×2.5米米无缝钢管,并设置一道止水钢环. 拉索固定端的构造见图8-96,由锚垫板(钻有3或4个φ20米米孔)、螺旋筋及φ80米米金属波纹管组成.为防止锚板与金属波纹管连接处漏浆,在锚板上焊有封口钢管. 三、斜拉索施工 1.工艺流程 屋盖梁板模板钢筋安装→张拉端埋件安装→屋盖混凝土浇筑→中间立柱模板钢筋安装→固定端埋件安装→中间立柱混凝土浇筑→穿拉索→装PVC套管→拉索单根张拉φ拉索整体张拉→拉索张拉端锚具封头→PVC管竖向灌浆. 2.预埋件安装 根据设计图样要求,计算每个张拉端预埋孔道的水平偏移角及垂直偏移角,按此角度严格控制预埋孔道的安装位置及角度 ,并与周围钢筋焊牢,混凝土浇筑时派人跟踪检查,以确保预埋孔道的位置与角度符合要求. 3.穿束、装套管 无粘结钢绞线下料后,固定端装挤压锚具;在钢绞线两端750米米范围内剥皮,用柴油清洗后用锯末擦净,以确保灌浆粘接.

钢绞线斜拉索防护应用分析

钢绞线斜拉索防护应用分析 结合现有技术对钢绞线斜拉索自由段、过渡段和锚固段三部分的防护方式进行了研究分析,同时结合当前应用分析了各种防护材料和防腐蚀措施的优劣性,以供参考。 标签:钢绞线斜拉索;防蚀;应用 Abstract:Based on the existing technology,the protection methods of free section,transition section and anchor section of steel strand cable are studied and analyzed. At the same time,in combination with the current application,the advantages and disadvantages of various protective materials and anticorrosion measures are analyzed. Keywords:steel strand stay cable;anticorrosion;application 前言 斜拉索作為斜拉桥的重要受力构件,保证其安全可靠具有非常重要的意义。从桥梁的耐久性来说,几乎所有的标准或规范都对斜拉桥的使用寿命作了明确的规定。对耗费大量资金的桥梁投资方来说,斜拉索的设计使用寿命应尽可能延长。斜拉索的某些组件可以是短寿命的,比如索导管定位器、减振装置或防腐蚀涂料,这些组件需要定期的维护或更换来达到斜拉索体系的设计寿命。对实施多层防护的斜拉索,其设计目标是使整个生命周期成本最小化。随着大跨度斜拉桥的大量建设,斜拉索的设计寿命提高到了100年甚至120年。为了确保桥梁的安全性,斜拉索腐蚀防护显得尤为重要。 斜拉索结构通常由自由段、过渡段和锚固段三部分组成,桥梁拉索结构受到腐蚀破坏的主要原因有以下几方面:HDPE管的损坏;锚头表面的锈蚀;钢丝表面锈蚀[1]。笔者结合当前设计规范的要求,对拉索设计采取的防护方式进行了研究分析,供大家探讨。 1 自由段的防护 钢绞线斜拉索自由段主要由钢绞线及其保护层组成。国际斜拉索规范即国际混凝土协会发布的fib bulletin 30“Acceptance of stay cable system using prestressing steel”、美国的PTI DC45.1-12“Recommendations for stay cable design,testing and installation”和法国的CIP2002“Cable Stay-Recommendation of French intermiinsterial commission on Prestressing”都对斜拉索主受力筋提出了在设计使用寿命期间免受腐蚀的防蚀系统要求。目前,大量的斜拉索均采用整束钢绞线外加HDPE外护套管的形式,来形成整个自由段的四层防护体系,即钢绞线上的镀锌/环氧层+油性蜡+钢绞线热挤PE护套+HDPE外护套(如图1)。他们的作用分别是:

斜拉桥钢绞线拉索技术条件

GB/T 30826-2014 斜拉桥钢绞线拉索技术条件 基本信息 【英文名称】Technical conditions for steel strand cable of cable stayed bridge 【标准状态】现行 【全文语种】中文简体 【发布日期】2014/6/24 【实施日期】2015/4/1 【修订日期】2014/6/24 【中国标准分类号】H49 【国际标准分类号】77.140.65 关联标准 【代替标准】暂无 【被代替标准】暂无 【引用标准】GB/T 230.1,GB/T 231.1,GB/T 228.1,GB/T 264,GB/T 269,GB/T 512,GB/T 528,GB/T 699,GB/T 1040.2,GB/T 1804-2000,GB/T 2361,GB/T 3077,GB/T 3512,GB/T 4162-2008,GB/T 4929,GB/T 4985,GB/T 5224,GB/T 5796.1,GB/T 5796.2,GB/T 5796.3,GB/T 5796.4,GB/T 6031,GB/T 6402-2008,GB/T 8124,GB/T 8804.3-2003,GB/T 8806,GB/T 9341,GB/T 10125,GB/T 14370,GB/T 16924,GB/T 19810,GB/T 21073,GB/T 21839,GB/T 23988,GB/T 25823,CJ/T 297,JB/T 4730.4-2005,JB/T 5000.8,JB/T 5000.9,JB/T 5000.13,JG 161,YB/T 152,SH/T 0081,SH/T 0324,SH/T 0325,SH/T 0331,SH/T 0387-1992(2005),SY/T 0039,SY/T 0040,HG 2-146 适用范围&文摘 本标准规定了斜拉桥钢绞线拉索的术语和定义、符号和说明、拉索结构、技术要求、拉索产品验收检验、标志、包装、运输及贮存、拉索防腐与防护、拉索安装、拉索更换、拉索的检查等。 本标准适用于采用单根PE防护钢绞线作为受拉构件的斜拉桥钢绞线拉索(以下简称拉索)的设计、试验与安装。 本标准适用于公路及城市道路桥梁的斜拉索,其他工程结构的拉索亦可参照使用。

系杆、吊杆施工组织设计解析

四川资阳市沱江三桥系杆、吊杆安装工程施工组织设计 编制:廖德鸿 复核:沈飞 校核: 批准: 柳州欧维姆工程有限公司 2012年5月19日

目录 一、工程概况 二、编制依据 三、主桥总体施工步骤 四、施工工艺流程 1.系杆施工工艺流程 2.吊杆施工工艺流程 五、施工质量控制 六、施工进度计划 七、施工组织管理机构 八、施工主要机具 九、施工安全保证措施

一、工程概况 四川资阳市沱江三桥为中承飞燕式提篮拱桥,主桥分为60+180+60m三跨,桥面全宽为双向二车道外加人行道。主跨拱肋采用钢管砼拱空间桁架结构,跨中肋间中距20.1 m。主孔拱肋为等截面,主拱墩顶间的跨度为180米,每片拱布置6根水平系杆,一共12根系杆,均采用环氧全喷涂装高强低松弛钢绞线,外包双层HDPE护套成品索;规格为 =1860MPa,弹性模量为1.95×105MPa;系杆锚具采用可换索式钢55фS15.20,极限强度R b y 绞线系杆锚具,规格为OVMXGK15A-55。边拱肋是为系杆提供锚固端,从而平衡主拱推力而设置。系杆从主拱肋外侧及拱肋两弦管内通过,两端锚固于边拱端横梁上。全桥共设置单吊杆27对,共54根,吊杆为OVM.GJ钢绞线挤压拉索,由31фS15.20无粘结环氧全喷涂装高强低松弛钢绞线缠包热挤HDPE组成,拱肋上端锚具为OVM.GJ15B-31张拉端锚具,下端为OVM.GJ15D-31铰接锚具。 图1 桥梁概况图 二、编制依据 1、《资阳市沱江三桥初步设计》, 四川西南交大土木工程设计有限公司; 2、《资阳市沱江三桥施工图设计》,四川西南交大土木工程设计有限公司; 3、《公路桥涵施工技术规范》,(JTG/T F50-2011) 4、《OVM.GJ钢绞线整束挤压拉索体系》,(OVM技术、资料档案) 5、《斜拉桥热挤聚乙烯拉索技术条件》,(JT/T6-94) 三、主桥总体施工步骤 主桥采用“先拱后梁”的施工方法,主要施工步骤如下: 1、利用施工平台和已浇筑好的承台、交界墩、拱座架设临时支承,在满堂支架上进行主桥边拱拱肋,边拱立柱,边拱横梁,主拱立柱横梁的施工;

预应力钢绞线安装

预应力混凝土连续梁质量控制的几个关键因素 发布日期:2008-02-29 所属类别:施工技术 -------------------------------------------------------------------------------- 一、预应力钢绞线安装 预应力钢束的孔道位臵、钢绞线是否发生缠绞现象是质量控制的关键。孔道位臵不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位臵准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,张拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位臵不准确或不按照规范和设计规定的间距布设,必然造成钢束位臵与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束

缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 沈大高速公路苏家屯互通立交D匝道为4孔一联的曲线连 续梁,梁长220米,曲线半径55米,因此钢束既有平弯又有竖弯,井字架按照50cm间距布设而且坐标准确,采用人工配合机械穿束(将钢绞线束固定在一个锥形的牵引装臵上,用卷扬机牵引锥形牵引装臵),在广州南部快速路工程14标马克特大桥2联100米连续梁施工中,同样使用以上方法,由于特别注意控制孔道坐标和孔道线形圆顺,并且很好的避免了钢绞线间的互相缠绞,张拉过程中以上两项工程钢束伸长值均满足要求。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值:张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规范》(JTJ041-2000)中理论伸长值的计算有个正确理解: ①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况

预应力钢绞线安装

一、预应力钢绞线安装 预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,张拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规范和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 沈大高速公路苏家屯互通立交D匝道为4孔一联的曲线连续梁,梁长220米,曲线半径55米,因此钢束既有平弯又有竖弯,井字架按照50cm间距布设而且坐标准确,采用人工配合机械穿束(将钢绞线束固定在一个锥形的牵引装置上,用卷扬机牵引锥形牵引装置),在广州南部快速路工程14标马克特大桥2联100米连续梁施工中,同样使用以上方法,由于特别注意控制孔道坐标和孔道线形圆顺,并且很好的避免了钢绞线间的互相缠绞,张拉过程中以上两项工程钢束伸长值均满足要求。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值:张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规范》(JTJ041-2000)中理论伸长值的计算有个正确理解: ①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况下,孔道局部偏差和预应力筋与孔道壁间的摩擦系数对理论伸长值大小的影响不大,均可按照规范取中值。 ②钢绞线的弹性模量Ep取值对理论伸长值大小的影响较大,应根据实测值进行计算。

(完整版)斜拉桥斜拉索施工方案

斜拉桥斜拉索施工方案 1、概况 该桥斜拉索采用填充型环氧涂层钢绞线斜拉索,塔上设置张拉端,梁下为锚固端;每侧主塔设12对斜拉索,全桥共24对斜拉索,其规格为15-27、15-31、15-34、15-37、15-43、15-55、15-61共7种,斜拉索采用平行钢绞线斜拉索体系。斜拉索由固定端锚具、过渡段、自由段、HDPE护套管、张拉端锚具及索夹、减振器等构成。 2、斜拉索施工工艺 本工程主梁采用前支点挂篮悬臂现浇施工,斜拉索挂索方式与支架现浇和后支点挂篮施工有所不同,需在挂篮上设置索力转换装置。其基本工艺流程详见附《表3 施工工艺框图》。 3、斜拉索施工准备 (1)、施工前准备工作 施工前准备工作包括:施工平台、施工机具的准备;施工人员的工作分配;斜拉索锚具的组装和安装;HDPE外套管的焊接等。 ①、施工平台准备 斜拉索挂索施工前,在主塔和箱梁处设置施工平台,以方便施工人员操作。主塔施工处在塔内、外均设置施工平台,箱梁处施工平台设置在挂篮上。施工平台的搭设满足施工要求,并采取适当的安全措施,确保人员和设备的安全可靠。 ②、施工机具准备 正式施工前,所有施工机具就位。张拉用千斤顶、油泵和传感器经过有资质的第三方进行配套标定。因本工程斜拉索规格较大,采用机械穿索方式进行挂索施工,双塔双索面同时施工时,主要施工设备清单如下。

③、施工人员分配 为有效安排斜拉索施工的各环节,统一协调指挥,斜拉索施工前,需进行人员的工作分配。按本工程双塔双索面斜拉索同时施工的要求,每个索面需进行如下主要人员及岗位配置。 备注:HDPE管焊接和锚具组装安装在挂索前完毕,张拉工和穿索工经过培训后可上岗操作; ④、斜拉索锚具组装和安装 斜拉索各部件单独包装运输,现场组装。 斜拉索挂索前,对锚具进行组装和安装。对于张拉端锚具,将固定端锚板与密封装置组装好,旋上螺母后安装于箱梁上混凝土锚块处,并临时将其与锚垫板固定。对于张拉端锚具,将锚板与密封装置组装好后安装与塔内钢锚箱的锚固端处,并临时将其与锚垫板固定。安装张拉端和固定端锚具时,在锚具上做好标记,确保上下锚具孔位严格对应一致。 ⑤、HDPE管焊接 HDPE外套管为定尺生产,其标准长度一般为6m/根或9m/根。斜拉索挂索施工前,将标准长度的HDPE管焊接成设计长度,采用热熔焊接机进行HDPE 管的焊接。 4、钢绞线穿索张拉 (1)、HDPE管吊装 ①、准备工作 依次将防水罩、延伸管套到HDPE管上,安装临时抱箍,并穿入首根钢绞线。 将带法兰的延伸管套到塔柱端的HDPE外套管上,直至大约1.5m的外套管

预应力钢绞线后张法施工技术

预应力钢绞线后张法施工技术 一、预制场地选择3 1、预制场位置3 2、预制场的面积3 3、预制场的布置3 二、钢绞线的技术标准3 1、技术要求3 2、钢绞线的验收与检测4 三、锚具、夹具和连接器要求5 1、锚固能力5 2、分级张拉6 3、自锚能力6 4、锚具性能6 5、进场验收规定6 四、锚具与千斤的配套选择7 1、DM型锚具7 4、QM型锚具8 5、OVM型锚具8 6、YM型锚具9 7、XYM型锚具9 8、 TM型锚具9 9、 STM型锚具10 10、BUPC无粘结预应力筋张拉锚固体系10 五、后张法预应力梁张拉前的准备工作10 1、管道摩阻力和锚口损失10 2、千斤顶配套校验10 3、单质材料试验10 4、锚具检查10 5、钢绞线(钢丝束)理论伸长值的计算11 6、管道清理11 7、锚固率试验11 8、张拉工艺审查12 六、梁后张法的张拉12 1、张拉前对梁砼强度的检验12 2、穿束前后的检查12 3、张拉顺序12 4、张拉方式12 5、张拉程序12 七、后张法预应力梁张拉现场施工原始记录13 后张法预应力梁张拉现场施工原始记录表13 八、 OVM锚具张拉注意事顶14 1、工具夹片锚和工作锚夹片14 2、锚固回油15

3、限位板15 4、曲线管道张拉15 5、锚具、千斤顶安装15 6、钢绞线切割15 7、OVM锚特点16 8、管道压浆16 9、张拉人员条件16 10、滑丝、断丝16 九、YCW型千斤顶使用时注意事项16 十、后张法张拉孔道压浆18 后张预应力筋制作安装允许偏差19 预应力孔道压浆现场施工原始记录19 钢绞线检验报告20 锚具、夹片硬检验报告21

相关文档